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ABSTRACT

In this paper are given examples of tori T 2 embedded in S3 with all their asymptotic lines dense.
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1 INTRODUCTION

Let α : M → S3 be an immersion of class Cr , r ≥ 3, of a smooth, compact and oriented two-dimensional

manifold M into the three dimensional sphere S3 endowed with the canonical inner product 〈∙ , ∙〉 of R4.

The Fundamental Forms of α at a point p of M are the symmetric bilinear forms on TpM defined as

follows (Spivak 1999):

Iα(p; v,w) = 〈Dα(p; v), Dα(p; w)〉,

I Iα(p; v,w) = 〈−DNα(p; v), Dα(p; w)〉.

Here, Nα is the positive unit normal of the immersion α and 〈Nα, α〉 = 0.

Through every point p of the hyperbolic regionHα of the immersion α, characterized by the condition

that the extrinsic Gaussian Curvature Kext = det(DNα) is negative, pass two transverse asymptotic lines

of α, tangent to the two asymptotic directions through p. Assuming r ≥ 3 this follows from the usual

existence and uniqueness theorems on Ordinary Differential Equations. In fact, on Hα the local line fields

are defined by the kernels Lα,1, Lα,2 of the smooth one-forms ωα,1, ωα,2 which locally split I Iα as the

product of ωα,1 and ωα,2.
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The forms ωα,i are locally defined up to a non vanishing factor and a permutation of their indices.

Therefore, their kernels and integral foliations are locally well defined only up to a permutation of their

indices.

Under the orientability hypothesis imposed on M, it is possible to globalize, to the whole Hα, the

definition of the line fields Lα,1, Lα,2 and of the choice of an ordering between them, as established in

(Garcia and Sotomayor 1997) and (Garcia et al. 1999).

These two line fields, called the asymptotic line fields of α, are of class Cr−2 onHα; they are distinctly

defined together with the ordering between them given by the subindexes {1, 2} which define their orien-

tation ordering: “1” for the first asymptotic line field Lα,1, “2” for the second asymptotic line field

Lα,2.

The asymptotic foliations of α are the integral foliations Aα,1 of Lα,1 and Aα,2 of Lα,2; they fill

out the hyperbolic region Hα.

In a local chart (u, v) the asymptotic directions of an immersion α are defined by the implicit differen-

tial equation

I I = edu2 + 2 f dudv + gdv2 = 0.

In S3, with the second fundamental form relative to the normal vector N = α ∧αu ∧αv, it follows that:

e =
det

[
α, αu, αv, αuu

]

√
EG − F2

, f =
det

[
α, αu, αv, αuv

]

√
EG − F2

, g =
det

[
α, αu, αv, αvv

]

√
EG − F2

.

There is a considerable difference between the cases of surfaces in the Euclidean and in the Spherical

spaces. InR3 the asymptotic lines are never globally defined for immersions of compact, oriented surfaces.

This is due to the fact that in these surfaces there are always elliptic points, at which Kext > 0 (Spivak 1999,

Vol. III, chapter 2, pg. 64).

The study of asymptotic lines on surfacesM ofR3 and S3 is a classical subject of Differential Geometry.

See (do Carmo 1976, chapter 3), (Darboux 1896, chapter II), (Spivak 1999, vol. IV, chapter 7, Part F) and

(Struik 1988, chapter 2).

In (Garcia and Sotomayor 1997) and (Garcia et al. 1999) ideas coming from the Qualitative Theory of

Differential Equations and Dynamical Systems such as Structural Stability and Recurrence were introduced

into the subject of Asymptotic Lines. Other differential equations of Classical Geometry have been con-

sidered in (Gutierrez and Sotomayor 1991, 1998); a recent survey can be found in (Garcia and Sotomayor

2008).

The interest on the study of foliations with dense leaves goes back to Poincaré, Birkhoff, Denjoy,

Peixoto, among others.

In S3 the asymptotic lines can be globally defined, an example is the Clifford torus, C = S1(r)×S1(r) ⊂

S3, where S1(r) = {(x, y) ∈ R2 : x2 + y2 = r2} and r =
√

2/2. In C all asymptotic lines are closed

curves, in fact, Villarceau circles. (See Villarceau 1848) and illustration in Figure 1.

An asymptotic line γ is called recurrent if it is contained in the hyperbolic region and γ ⊆ L(γ ),

where L(γ ) = α(γ ) ∪ ω(γ ) is the limit set of γ , and it is called dense if L(γ ) = M.

In this paper is given an example of an embedded torus (deformation of the Clifford torus) with both

asymptotic foliations having all their leaves dense.
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2 PRELIMINARY CALCULATIONS

In this section will be obtained the variational equations of a quadratic differential equation to be applied

in the analysis in Section 3.

PROPOSITION 1. Consider a one parameter family of quadratic differential equations of the form

a(u, v, ε)dv2 + 2b(u, v, ε)dudv + c(u, v, ε)du2 = 0,

a(u, v, 0) = c(u, v, 0) = 0, b(u, v, 0) = 1.
(1)

Let v(u, v0, ε) be a solution of (1) with v(u, v0, 0) = v0 and u(u0, v, ε) solution of (1) with

u(u0, v, 0) = u0. Then the following variational equations holds:

cε + 2vεu = 0, aε + 2uεv = 0,

cεε + 2cvεvε − 2bεcε + 2vuεε = 0,

aεε + 2auεuε − 2bεaε + 2uvεε = 0.

(2)

PROOF. Differentiation with respect to ε of (1) written as

a(u, v, ε)

(
dv

du

)2

+ 2b(u, v, ε)
dv

du
+ c(u, v, ε) = 0, v(u, v0, 0) = v0,

taking into account that

av =
∂a

∂v
, aε =

∂a

∂ε
, aεu = auε =

∂2a

∂ε∂u
=

∂2a

∂u∂ε
,

leads to:

(aε + avvε)

(
dv

du

)2

+ 2a
dv

du
vεu + 2

(
bε + bvvε

)dv

du
+ 2bvεu + cε + cvvε = 0. (3)

Analogous notation for b = b(u, v(u, v0, ε), ε), c = c(u, v(u, v0, ε), ε) and for the solution

v(u, v0, ε).

Evaluation of equation (3) at ε = 0 results in:

cε + 2vεu = 0.

Differentiating twice the equation (1) and evaluating at ε = 0 leads to:

cεε + 2cvεvε + 4bεvεu + 2bvuεε = 0,

cεε + 2cvεvε − 2bεcε + 2vuεε = 0.
(4)

Similar calculation gives the variational equations for uε and uεε . This ends the proof. �
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3 DOUBLE RECURRENCE FOR ASYMPTOTIC LINES

Consider the Clifford torus C = S1
(

1√
2

)
× S1

(
1√
2

)
⊂ S3 parametrized by:

C(u, v) =

√
2

2

(
cos(−u + v), sin(−u + v), cos(u + v), sin(u + v)

)
, (5)

where C is defined in the square Q =
{
(u, v) : 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π

}
.

PROPOSITION 2. The asymptotic lines on the Clifford torus in the coordinates given by equation (5)

are given by dudv = 0, that is, the asymptotic lines are the coordinate curves (Villarceau circles). See

Figure 1.

Fig. 1 – Torus and Villarceau circles.

PROOF. The coefficients of the first fundamental form I = Edu2 + 2Fdudv + Gdv2 and the second

fundamental form I I = edu2+2 f dudv+gdv2 of C with respect to the normal vector field N = C∧Cu∧Cv

are given by:
E(u, v) =1, e(u, v) = 0,

F(u, v) =0, f (u, v) = 1,

G(u, v) =1, g(u, v) = 0.

Therefore the asymptotic lines are defined by dudv = 0 and so they are the coordinate curves. Fig-

ure 1 is the image of the Clifford torus by a stereographic projection of S3 to R3. �

THEOREM 1. There are embeddings α : T2 → S3 such that all leaves of both asymptotic foliations, Aα,1

and Aα,2, are dense in T. See Figure 2.

PROOF. Let N (u, v) = (α ∧ αu ∧ αv)/|α ∧ αu ∧ αv|(u, v) be the unit normal vector to the Clifford torus.

We have that,

N (u, v) =

√
2

2

(
cos(−u + v), sin(−u + v), − cos(u + v), − sin(u + v)

)
.
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Fig. 2 – Stereographic projection of a deformation of a Clifford torus with ε = 2/3.

Let c(u, v) = h(u, v)N (u, v), h being a smooth 2π− double periodic function, and consider for ε 6= 0

small the one parameter family of embedded torus

αε(u, v) =
C(u, v) + εc(u, v)

|C(u, v) + εc(u, v)|
. (6)

Then the coefficients of the second fundamental form of αε with respect to

Nε = αε ∧ (αε)u ∧ (αε)v/|αε ∧ (αε)u ∧ (αε)v|,

after multiplication by 1/(1 + ε2h2)2, are given by:

e = εhuu + 2ε2huhv + ε3
(
2hh2

u − h2huu
)
,

f = 1 + εhuv + ε2
(
h2

u + h2
v − h2

)
+ ε3

(
2hhuhv − h2huv

)
+ ε4h4,

g = εhvv + 2ε2huhv + ε3
(
2hh2

v − h2hvv

)
.

(7)

By Proposition 1 the variational equations of the implicit differential equation

e(u, v, ε) + 2 f (u, v, ε)
dv

du
+ g(u, v, ε)

(
dv

du

)2

= 0, (8)

with e(u, v, 0) = g(u, v, 0) = 0, f (u, v, 0) = 1 and v(u, v0, 0) = v0 are given by:

eε + 2vεu = 0, eεε + 2evεvε − 2 fεeε + 2vuεε = 0. (9)

In fact, differentiating equation (8) with respect to ε it is obtained:

(ev(u, v, ε)vε + eε(u, v, ε)) + 2( fv(u, v, ε)vε + fε(u, v, ε))vu + 2 f vuε(u, v, ε)

+ (gv(u, v, ε)vε + gε(u, v, ε))(vu)
2 + 2g(u, v, ε)vuvuε = 0.

(10)

Making ε = 0 leads to equation eε + 2vεu = 0.

Differentiation of equation (10) with respect to ε and evaluation at ε = 0 leads to

eεε + 2evεvε − 2 fεeε + 2vuεε = 0.
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Therefore, the integration of the linear differential equations (9) leads to:

vε(u) = −
1

2

∫ u

0
huudu, vuεε =

1

2
huuv

∫ u

0
huudu + huuhuv − 2huhv. (11)

Taking h(u, v) = sin2(2v − 2u), it results from equation (7) that:

e(u, v, ε) = e(v, u, ε) = g(u, v, ε), f (u, v, ε) = f (v, u, ε). (12)

In fact, from the definition of h it follows that:

h(u, v) = h(v, u), hu = −hv = −2 sin(4v − 4u),

huu = hvv = 8 cos(4v − 4u), huv = −8 cos(4v − 4u).

So, a careful calculation shows that equation (12) follows from equation (7).

So, from equation (11), it follows that

vε(u, v0, 0) = − sin(4v0) − sin(4v0 − 4u),

vεε(u, v0, 0) = − 12u − 4 sin(4u) − 4 sin(8v0 − 4u),

−
5

2
sin(8v0) +

13

2
sin(8v0 − 8u).

Therefore,

vε(2π, v0, 0) − vε(0, v0, 0) = 0, vεε(2π, v0, 0) − vεε(0, v0, 0) = −24π.

Consider the Poincaré map π1
ε : {u = 0} → {u = 2π}, relative to the asymptotic foliation Aα,1,

defined by π1
ε (v0) = v(2π, v0, ε).

Therefore, π1
0 = I d and it has the following expansion in ε:

π1
ε (v0) = v0 +

ε2

2
vεε(2π, v0, 0) + O(ε3) = v0 − 12πε2 + O(ε3)

and so the rotation number of π1
ε changes continuously and monotonically with ε.

By the symmetry of the coefficients of the second fundamental form in the variables (u, v) and the fact

that e(u, v, ε) = g(u, v, ε), see equation (12), it follows that the Poincaré map π2
ε : {v = 0} → {v = 2π},

relative to the asymptotic foliation Aα,2, defined by π2
ε (u0) = u(u0, 2π, ε) is conjugated to π1

ε by an

isometry.

Therefore we can take ε 6= 0 small such that the rotation numbers of π i
ε , i = 1, 2, are, modulo 2π ,

irrational. Therefore all orbits of π i , i = 1, 2, are dense in S1. See (Katok and Hasselblatt 1995, chapter

12) or (Palis and Melo 1982, chapter 4). This ends the proof. �

4 CONCLUDING COMMENTS

In this paper it was shown that there exist embeddings of the torus in S3 with both asymptotic foliations

having all their leaves dense.

The technique used here is based on the second order perturbation of differential equations.

It is worth mentioning that the consideration of only the first variational equation was was technically

insufficient to achieve the results of this paper. The same can be said for the technique of local bumpy

perturbations of the Clifford Torus.
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RESUMO

Neste artigo são dados exemplos de toros T2 mergulhados em S3 com todas as suas linhas assintóticas densas.

Palavras-chave: linhas assintóticas, recorrências, toro de Clifford, equação variacional.
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