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ABSTRACT

A rigorous microscale electrokinetic model for hydrogel-colloid composites is adopted to compute
macroscale profiles of electrolyte concentration, electrostatic potential, and hydrostatic pressure across
membranes that separate electrolytes with different concentrations. The membranes are uncharged poly-
meric hydrogels in which charged spherical colloidal particles are immobilized and randomly dispersed
with a low solid volume fraction. Bulk membrane characteristics and performance are calculated from a
continuum microscale electrokinetic model (Hill 2006b, c). The computations undertaken in this paper
quantify the streaming and membrane potentials. For the membrane potential, increasing the volume frac-
tion of negatively charged inclusions decreases the differential electrostatic potential across the membrane
under conditions where there is zero convective flow and zero electrical current. With low electrolyte
concentration and highly charged nanoparticles, the membrane potential is very sensitive to the particle
volume fraction. Accordingly, the membrane potential – and changes brought about by the inclusion size,
charge and concentration – could be a useful experimental diagnostic to complement more recent appli-
cations of the microscale electrokinetic model for electrical microrheology and electroacoustics (Hill and
Ostoja-Starzewski 2008, Wang and Hill 2008).

Key words: electrodiffusion, electrokinetic phenomena, hydrogel-colloid composites, membrane potential,
microhydrodynamics, soft composite materials, streaming potential.

INTRODUCTION

Hydrogels are an important class of soft matter that have gained widespread application in drug delivery

(Qiu and Park 2001, Lin and Netters 2006, Peppas et al. 2000), tissue engineering (Khademhosseini and

Langer 2007, Barndl et al. 2007, Drury and Mooney 2003), advanced materials (Peppas et al. 2006,

Eddington and Beebe 2004, Chaterji et al. 2007), and molecular separations (Wang et al. 1993, Kim

and Park 1998). Novel characteristics can be achieved by immobilizing organic and inorganic colloidal
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particulates in the polymer skeleton. For example, embedding gold or gold-coated silica nanoparticles

into a thermally responsive hydrogel induces light-wavelength-sensitive swelling to achieve optically ac-

tive microfluidic flow control (Sershen et al. 2005). In biosensing, immobilizing silica nanoparticles in

polyacrylamide hydrogels and applying an electric field increase the otherwise diffusion-limited flux of un-

charged macromolecules across the composite membrane (Matos et al. 2006). Other applications include

delivering growth factors for bone regeneration (Chung et al. 2007), improving the contrast of ultrasound

imaging for early tumor detection (Liu et al. 2006, Dayton and Ferrara 2002), and absorbing infrared

energy for certain cancer treatment (Loo et al. 2005). Note also that polystyrene nanoparticles have been

dispersed in neutral polyacrylamide hydrogels to increase the storage modulus and produce mechanoelec-

trical effects for artificial tactile perception and psycho-sensorial materials (Thévenot et al. 2007).

Hill (2006c, b) developed an electrokinetic transport model to quantify how imposed gradients of

electrostatic potential, ion concentration, and pressure perturb an equilibrium state where each colloidal

inclusion in the hydrogel-colloid composite is enveloped by a diffuse layer of counterions. Such an equi-

librium is widely acknowledged to be reasonably well described by the non-linear Poisson-Boltzmann

equation (Verwey and Overbeek 1948), which itself is a special case of a much more general electrokinetic

transport (non-equilibrium) model (e.g., Overbeek 1943, Booth 1950). Similar methodologies have been

adopted for ordered and random consolidated porous media with the immobile charge uniformly distributed

on the solid matrix, often under conditions where the Debye length is smaller than the characteristic pore

size (e.g., Gupta et al. 2007, Wang and Chen 2007).

Hill calculated perturbations to the equilibrium state of a single charged sphere immobilized in an

uncharged porous medium (polymer hydrogel), and averaged the governing microscale equations to derive

macroscale equations for dilute random dispersions, with transport coefficients derived from the microscale

analysis of a single sphere. In principle, this theory could be advanced to handle higher particle concentra-

tions by adopting cell models to account for particle interactions (e.g., Ahualli et al. 2006). Accordingly,

the present macroscale equations are appropriate only when the inclusion volume fraction is sufficiently

small, which, nevertheless, may often be the case. It should also be noted that the polymer skeleton is

uncharged, so the immobile charge in the composite arises solely from the colloidal inclusions. Neverthe-

less, the calculations are valid for all practical values of the electrolyte concentration (Debye length), and

particle size and surface charge density, which together determine the ζ -potential.

The hydrogel phase is modeled as a porous (Brinkman) medium with a very low volume fraction,

so it hinders fluid flow due to hydrodynamic (Darcy) drag and viscous stresses, but does not hinder ion

diffusion and electromigration. Predictions of the electroosmotic pumping capacity (termed the incremental

pore mobility) and its relation to chemical and physical characteristics of the hydrogel and inclusions were

recently found to compare well with experiments involving silica nanoparticles embedded in polyacrylamide

(Hill 2007, Matos et al. 2006). Noteworthy is that the theoretical interpretation suggests that particle-particle

and particle-polymer interactions (in the experiments) increase the effective hydrodynamic permeability of

the hydrogel (Hill 2007).

The present model does not address elastic deformation, which is likely to be significant in situations

where flow is driven by a sufficiently large applied pressure gradient (e.g., during streaming potential mea-

surements), or the composite has to accommodate large gradients in the bulk concentration of electrolyte.

However, recent advances of this model quantify how the electrolyte and inclusions couple (mechani-
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cally, electrically, and hydrodynamically) with the elastic polymer network (Hill 2006a, Hill and Ostoja-

Starzewski 2008, Wang and Hill 2008), thereby facilitating calculations of the particle displacements and

velocity when hydrogel-colloid composites are subjected to steady and oscillatory electric fields. Such

experiments are relevant to the fields of microrheolgy (Cicuta and Donald 2007, Furst 2005, MacKintosh

and Schmidt 1999) and electroacoustics (Hunter 1998, O’Brien 1990, 1988), which are widely used to

probe the microstructure of complex fluids, including colloidal dispersions, polymer solutions and gels.

This paper establishes a systematic methodology for calculating macroscale transport properties of

hydrogel-colloid composites based on earlier microscale analysis in the literature (Hill 2006c, b). These

macroscale calculations are expected to complement experimental measurements of ion fluxes and mem-

brane potentials. Accordingly, the paper begins by considering the continuum equations for a simple

electrolyte in the absence of inclusions and hydrogel. This analysis of the well-known Poisson equation

and ion-conservation equations is then used to rationalize an approximation (often referred to as an as-

sumption) of bulk electroneutrality. The accompanying exact solution of this simple model provides a

useful limiting case for interpreting subsequent numerical solutions of the non-linear coupled macroscale

equations for hydrogel-colloid composite membranes: namely Hill’s averaged ion-conservation equations,

and fluid mass and momentum conservation equations. Several striking aspects of the results are physically

interpreted using previous knowledge of the underlying microscale electrokinetic phenomena.

ELECTRODIFFUSION IN THE ABSENCE OF POLYMER AND INCLUSIONS

Here we consider electrodiffusion in an electrolyte without polymer or inclusions. Accordingly, the ions

migrate by convection, diffusion and electromigration. If the fluid velocity is independently specified, then

the equations required to determine the electrostatic potential ψ and N ion concentrations n j (z j is the

valence and D j the diffusion coefficient with j = 1 . . . N ) under steady conditions are the well-known

Poisson and ion-conservation equations:

∇ ∙ (εoεs E) =
N∑

j=1

n j z j e, (1)

∇ ∙ j j = ∇ ∙ (−D j∇n j + z j e
D j

kT
n j E + n j u) = 0. (2)

If the average fluid velocity u is specified, then this is a closed system of N + 1 equations involving

E = −∇ψ and n j as unknowns (εo is the vacuum permittivity, kT is the thermal energy, and e is the

fundamental charge). Note that electrical neutrality is not imposed explicitly, since it should emerge

naturally from the boundary conditions.

For a one-dimensional problem (0 ≤ x ≤ L) with uniform dielectric constant εs , the equations above

are

εoεs Ex =
N∑

j=1

n j z j e, (3)

j j = −D j n j,x + z j e
D j

kT
n j E + n j u, (4)

where subscripts x denote differentiation, and j j = const. is the flux of the j th species.
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Note that the electrical current density is

i =
N∑

j=1

j j ez j , (5)

so under conditions where i = 0 with a z-z electrolyte, j1 = j2 = j .

Alternatively, consider solving

−εoεsψxx =
N∑

j=1

n j z j e, (6)

−D j n j,xx − z j e
D j

kT
(n j,xψx + n jψxx)+ n j,x u = 0. (7)

If the average fluid velocity u is specified, then a closed system of N + 1 equations must be solved with ψ

and n j as unknowns. However, while these equations could be solved with prescribed boundary conditions

(at each end of the domain), the electrical current cannot be set to zero a priori. Rather, the electrostatic

potential difference across the domain that yields zero electrical current must be established. Even so,

a numerical solution may still be challenging because, as demonstrated below, the left-hand side of the

Poisson equation above is extremely small compared to the right-hand side when the characteristic length

scale is larger than the Debye length (typically between 1 and 100 nm).

ELECTRONEUTRALITY

Consider scaling the Poisson equation using a macroscopic length scale lc, with electrostatic potential

scale ψc = kT/e and ion-concentration (charge density) scale nc. Accordingly, the left-hand side is

O[(κlc)
−2] with respect to the right-hand side, with κ−1 ∼ [εoεskT/(e2nc)]1/2 the Debye length. Since

κ−1 is of nanometer scale for charge densities in aqueous electrolytes, on macroscopic scales (κlc)
−2 � 1.

Therefore, in the ‘outer’ region where lc � κ−1 is indeed the appropriate length scale, the leading-order

approximation of the Poisson equation becomes a statement of local electroneutrality, so the governing

equations above become

0 =
N∑

j=1

n j z j e, (8)

−D j n j,xx − z j e
D j

kT
(n j,xψx + n jψxx)+ n j,x u = 0. (9)

This important result was first established formally by MacGillivray (1968) using matched asymptotic

expansions, and it is now widely adopted in standard texts. The following example establishes an explicit

formula to be adopted in the following sections that address the much more difficult problem where charged

colloidal inclusions are immobilized in an uncharged hydrogel skeleton.

For a z-z electrolyte, the bulk electroneutrality approximation requires n1 = n2 = n, so the ion-

conservation equations are

0 = −D1nxx − z1e
D1

kT
(nxψx + nψxx)+ nx u, (10)

0 = −D2nxx − z2e
D2

kT
(nxψx + nψxx)+ nx u, (11)
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or

j1 = −D1nx + z1e
D1

kT
nE + nu (12)

j2 = −D2nx + z2e
D2

kT
nE + nu. (13)

Eliminating E gives

j1/D1 + j2/D2 = −2nx + nu(1/D1 + 1/D2), (14)

which is easily solved for n(x) given a constant value of u.

When the current density i = 0, j1 = j2 = j and

n(x) = n(0)+ ( j/u)[exp (−Pex/L)− 1], (15)

so

j =
u[n(L)− n(0)]

[exp (−Pe)− 1]
(16)

with

Pe = uL/De and De = 2/(1/D1 + 1/D2). (17)

Note that with zero convective flux (u = 0),

j = −Denx , (18)

and

E(x) = −ψx =
(γ − 1)

(1 + γ )

kT nx

nz1e
=
(1 − γ )

(1 + γ )

kT nx

nz2e
, (19)

where γ = D1/D2 and z1 = −z2. Moreover, the potential difference across the membrane (membrane

potential) is

1ψ ≡ −
∫ L

0
E(x)dx = −

(γ − 1)

(1 + γ )

kT

z1e

∫ L

0
(nx/n)dx

= −
(γ − 1)

(1 + γ )

kT

z1e
ln [n(L)/n(0)].

(20)

Let us examine the validity of the electroneutrality approximation by evaluating the left-hand side of

the Poisson equation, which, recall, was neglected in reaching Eqn. (20):

εoεs Ex = −
(γ − 1)

(1 + γ )

εoεskT

z1e
(nx/n)2. (21)

This charge density is equivalent to a molar concentration of ions, each with charge z1e (NA is Avagadro’s

constant):
εoεs Ex

103 NAz1e
= −

(γ − 1)

(1 + γ )

εoεskT

103 NA(z1e)2
(nx/n)2. (22)

It is easily verified that this concentration is generally extremely small unless the characteristic length scale is

O(nm). For example, for KNO3, γ = D+/D− ≈ 73.5/71.46 ≈ 1.029. Therefore, with n(0) = 1 mmol l−1

and n(L) = 100 mmol l−1, Eqn. (22) gives a maximum at x = 0 of approximately 2 × 10−6 mmol l−1

when L = 1 mm. In general, therefore, and consistent with MacGillivray (1968), the electroneutrality

approximation is reasonable when the characteristic length scale is greater than the Debye length.
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The averaged equations derived by Hill (2006b) are written below for unidirectional transport of a z-z

electrolyte in hydrogel composites. Note that the electroneutrality approximation requires 〈n1〉 = 〈n2〉 =

〈n〉, and the fluid conservation (continuity) equation requires 〈u〉 = const., so the remaining ion conservation

equations and momentum equation are

〈 j j 〉 = 〈n〉〈u〉 − z j e
D j

kT
〈n〉〈∇ψ〉 − D j 〈∇n〉

+φ(3/a3)z j e
D j

kT
〈n〉(−〈∇ψ〉DE + 〈∇n〉DB + 〈u〉DU )

+φ(3/a3)D j (−〈∇ψ〉C E
j + 〈∇n〉C B

j + 〈u〉CU
j ) (23)

and

〈∇ p〉 = −(η/`2)〈u〉 − φ(3/a3)(η/`2)(−〈∇ψ〉C E + 〈∇n〉C B + 〈u〉CU ). (24)

These are more compactly written





〈 j1〉

〈 j2〉

〈∇ p〉




 =






A11 A12 A13

A21 A22 A23

A31 A32 A33











〈∇n〉

〈∇ψ〉

〈u〉




 , (25)

where

A11 = −D1 + φ(3/a3)z1e
D1

kT
〈n〉DB + φ(3/a3)D1C B

1 (26)

A12 = −z1e
D1

kT
〈n〉 − φ(3/a3)z1e

D1

kT
〈n〉DE − φ(3/a3)D1C E

1 (27)

A13 = 〈n〉 + φ(3/a3)z1e
D1

kT
〈n〉DU + φ(3/a3)D1CU

1 (28)

A21 = −D2 + φ(3/a3)z2e
D2

kT
〈n〉DB + φ(3/a3)D2C B

1 (29)

A22 = −z2e
D2

kT
〈n〉 − φ(3/a3)z2e

D2

kT
〈n〉DE − φ(3/a3)D2C E

2 (30)

A23 = 〈n〉 + φ(3/a3)z2e
D2

kT
〈n〉DU + φ(3/a3)D2CU

2 (31)

A31 = −φ(3/a3)(η/`2)C B (32)

A32 = φ(3/a3)(η/`2)C E (33)

A33 = −(η/`2)− φ(3/a3)(η/`2)CU . (34)

Note that the asymptotic coefficients: DE ,C E
1 = C E

2 , C E ; DB,C B
1 = C B

2 ,C B ; DU ,CU
1 = CU

2 ,CU

are, in general, functions of the local scaled particle radius κa, scaled ζ -potential ζe/(kT ), and scaled

Brinkman screening length κ` (or `/a) for a given electrolyte [η is the fluid viscosity and `2 is the hydro-

dynamic (Darcy) permeability of the polymer skeleton].

Again, with the local macroscale electroneutrality approximation, the bulk current density

〈i〉 = z1e〈 j1〉 + z2e〈 j2〉 (35)
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provides an algebraic relationship between the two bulk ion fluxes. For the example below, however, there

is zero electrical current, so 〈 j1〉 = 〈 j2〉 = 〈 j〉 = const.

It is helpful to write the macroscale equations above in a form that explicitly relates the unknown

gradients of 〈n〉, 〈ψ〉 and 〈p〉 to the (co-linear) constants 〈 j1〉, 〈 j2〉 and 〈u〉, i.e.,






〈 j1〉

〈 j2〉

〈u〉




 =






B11 B12 B13

B21 B22 B23

B31 B32 B33











〈∇n〉

〈∇ψ〉

〈∇ p〉




 , (36)

where 




B11 B12 B13

B21 B22 B23

B31 B32 B33




 =






A11 − A13 A31/A33 A12 − A13 A32/A33 A13/A33

A21 − A13 A31/A33 A22 − A13 A32/A33 A23/A33

−A31/A33 −A32/A33 1/A33




 . (37)

The components of matrix B depend on 〈n〉(x), so this non-linear system of equations must be solved

for y(x) = [〈n〉(x), 〈ψ〉(x), 〈p〉(x)], given a constant b = (〈 j1〉, 〈 j2〉, 〈u〉). This is easily achieved by

numerically integrating1

dy

dx
= B−1[〈n〉(x)]b (38)

with ‘initial condition’ y(x = 0) = [〈n〉(0), 〈ψ〉(0), 〈p〉(0)]. Because B(x) is independent of 〈ψ〉 and 〈p〉,

the solution provides 1y ≡ y(x = L) − y(x = 0) in the parameter space comprising b and y(x = 0).

In practical terms, this means the flux j = |〈 j〉|, pressure differential 1〈p〉, and electrostatic potential

differential1〈ψ〉 can be calculated (implicitly) as a function of the bulk convective flow u = |〈u〉|, and bulk

ion concentrations on each side of the composite membrane: e.g., with 1〈n〉 = 〈n〉(x = L)− 〈n〉(x = 0)

and 〈n〉(x = 0) as two independent scalars.

In general, such a computation is rather intensive, since, in addition to the bulk ion concentration, the

asymptotic coefficients vary with κa and ζe/(kT ) (with fixed `/a), both of which are non-linear functions

of 〈n〉(x). However, the asymptotic coefficients can be computed beforehand, and subsequently interpolated

from sufficiently refined tables. Representative values (and several other quantities derived from them) are

provided in Tables I, II and III for NaCl electrolyte with `/a = 0.1 (a = 10 nm and ` = 1 nm). For the

macroscale computations presented below, the asymptotic coefficients were available for many more values

of κa and ζe/(kT ). The reader is referred to Hill (2006a, c) for details of these microscale calculations

and the physical significance of the other quantities provided2. Note that it is straightforward to permit

the inclusions to have a constant charge, in which case the ζ -potential varies with position according to

the particle size and surface charge density, and the bulk electrolyte concentration (Verwey and Overbeek

1948, Russel et al. 1989).

The hydrogels for the calculations presented below have a Brinkman screening length ` = 1 nm,

which is representative of polyacrylamide (Hill 2007). The inclusion radius a = 10 nm, and the electrolyte

(NaCl) is moderately asymmetric with γ = D1/D2 ≈ 1.33/2.33. Note that the dimensionless parameter

`/a = 0.1, whereas previous microscale calculations reported in the literature for NaCl have `/a ≈ 0.01

1 This can be performed with any of the standard ordinary-differential-equation solvers in Matlab.
2 The values of CU

j in Table II of Hill (2006c) are reported too small by factors of 10−1 for κa = 10 and 10−2 for κa = 100. All
other values are correctly reported.
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TABLE I

Scaled (dimensionless) asymptotic coefficients for bulk electromigration of NaCl in a Brinkman medium
with charged spherical inclusions (see Hill 2006c, for details): `/a = 0.1 (a = 10 nm, ` = 1 nm); T = 25◦C;
D1 ≈ 1.33×10−9m2s−1 (Na+); D2 ≈ 2.03×10−9m2s−1 (Cl−); u∗ = εsεo(kT/e)2/(ηa) ≈ 5.15×10−2 m s−1.

ζe/(kT ) DE/a3 C E
j kT/(2I a3e) C E kT/(u∗a4e) 1K 1E

1 1E
2 −3C E/a3

( j = 1, 2) [(nm s−1)/(V cm−1)]

κa = 0.1, I = 9.25 × 10−6 mol l−1

−1.0−6 −4.999−1 5.505−5 −4.396−8 −1.499+0 −1.499+0 −1.500+0 2.644−4

−0.5 −2.825−1 2.752+1 −2.197−2 −3.517+1 1.642+2 −1.659+2 1.322+2

−1.0 3.664−1 5.500+1 −4.391−2 −6.751+1 3.310+2 −3.288+2 2.641+2

−2.0 2.912+0 1.096+2 −8.752−2 −1.280+2 6.665+2 −6.491+2 5.265+2

−4.0 1.232+1 2.162+2 −1.724−1 −2.327+2 1.334+3 −1.260+3 1.037+3

−6.0 2.544+1 3.148+2 −2.507−1 −3.164+2 1.965+3 −1.812+3 1.508+3

κa = 1, I = 9.25 × 10−4 mol l−1

−1.0−6 −4.999−1 1.047−6 −7.615−8 −1.499+0 −1.499+0 −1.499+0 4.581−4

−0.5 −4.690−1 5.232−1 −3.797−2 −2.059+0 1.688+0 −4.517+0 2.284+2

−1.0 −3.782−1 1.041+0 −7.536−2 −2.434+0 5.028+0 −7.327+0 4.534+2

−2.0 −4.340−2 2.043+0 −1.459−1 −2.679+0 1.196+1 −1.227+1 8.781+2

−4.0 9.125−1 3.735+0 −2.548−1 −1.921+0 2.485+1 −1.947+1 1.533+3

−6.0 1.666+0 4.793+0 −3.080−1 −9.797−1 3.340+1 −2.352+1 1.853+3

κa = 10, I = 9.25 × 10−2 mol l−1

−1.0−6 −4.999−1 7.197−8 −2.194−7 −1.499+0 −1.499+0 −1.499+0 1.320−3

−0.5 −4.914−1 3.640−2 −1.092−1 −1.519+0 −1.382+0 −1.609+0 6.574+2

−1.0 −4.658−1 7.435−2 −2.158−1 −1.490+0 −1.201+0 −1.679+0 1.298+3

−2.0 −3.663−1 1.581−1 −4.088−1 −1.296+0 −6.239−1 −1.737+0 2.459+3

−4.0 −4.427−2 3.505−1 −6.307−1 −5.701−1 1.239+0 −1.756+0 3.794+3

−6.0 2.307−1 5.035−1 −6.172−1 6.402−2 2.997+0 −1.859+0 3.713+3

κa = 100, I = 9.25 × 10+0 mol l−1

−1.0−6 −4.999−1 7.895−9 −3.362−7 −1.499+0 −1.499+0 −1.499+0 2.023−3

−0.5 −4.985−1 3.825−3 −1.679−1 −1.500+0 −1.667+0 −1.390+0 1.010+3

−1.0 −4.941−1 8.098−3 −3.349−1 −1.492+0 −1.822+0 −1.276+0 2.014+3

−2.0 −4.754−1 1.940−2 −6.604−1 −1.450+0 −2.075+0 −1.040+0 3.973+3

−4.0 −3.852−1 6.369−2 −1.214+0 −1.235+0 −2.181+0 −6.149−1 7.304+3

−6.0 −2.108−1 1.493−1 −1.456+0 −8.190−1 −1.425+0 −4.213−1 8.765+3
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TABLE II

Scaled (dimensionless) asymptotic coefficients for bulk diffusion of NaCl in a Brinkman medium with
charged spherical inclusions (see Hill 2006b, for details): `/a = 0.1 (a = 10 nm, ` = 1 nm); T = 25◦C,
D1 ≈ 1.33×10−9m2s−1 (Na+); D2 ≈ 2.03×10−9m2s−1 (Cl−); u∗ = εsεo(kT/e)2/(ηa) ≈ 5.15×10−2 m s−1.

ζe/(kT ) DB 2I e/(kT a3) C B
j /a

3 C B 2I/(u∗a4) −3C B/a3 3DB/a3 1B
1 1B

2

( j = 1, 2) [(nm s−1)/(mol l−1 cm−1)] (V/mol l−1)

κa = 0.1, I = 9.25 × 10−6 mol l−1

−1.0−6 −2.202−4 4.999−1 6.473−16 −5.406−9 −9.171−1 −1.499+0 −1.500+0

−0.5 −1.100+2 2.826−1 1.615−4 −1.349+3 −4.584+5 1.642+2 −1.659+2

−1.0 −2.199+2 −3.660−1 6.425−4 −5.366+3 −9.162+5 3.310+2 −3.288+2

−2.0 −4.386+2 −2.911+0 2.512−3 −2.098+4 −1.826+6 6.666+2 −6.491+2

−4.0 −8.648+2 −1.231+1 9.136−3 −7.630+4 −3.601+6 1.334+3 −1.260+3

−6.0 −1.259+3 −2.543+1 1.713−2 −1.431+5 −5.245+6 1.965+3 −1.812+3

κa = 1, I = 9.25 × 10−4 mol l−1

−1.0−6 −4.191−6 4.999−1 4.276−15 −3.571−10 −1.745−4 −1.499+0 −1.499+0

−0.5 −2.092+0 4.699−1 1.054−3 −8.807+1 −8.714+1 1.728+0 −4.548+0

−1.0 −4.165+0 3.816−1 4.046−3 −3.380+2 −1.734+2 5.100+0 −7.394+0

−2.0 −8.165+0 5.620−2 1.370−2 −1.144+3 −3.400+2 1.207+1 −1.242+1

−4.0 −1.490+1 −8.713−1 2.938−2 −2.454+3 −6.208+2 2.495+1 −1.975+1

−6.0 −1.911+1 −1.604+0 3.105−2 −2.593+3 −7.961+2 3.346+1 −2.387+1

κa = 10, I = 9.25 × 10−2 mol l−1

−1.0−6 −2.881−7 4.999−1 −6.007−15 5.017−12 −1.200−7 −1.499+0 −1.499+0

−0.5 −1.445−1 4.934−1 −1.440−3 1.203+0 −6.018−2 −1.262+0 −1.696+0

−1. −2.919−1 4.739−1 −5.097−3 4.257+0 −1.215−1 −9.810−1 −1.857+0

−2.0 −6.046−1 3.981−1 −1.273−2 1.063+1 −2.518−1 −2.800−1 −2.096+0

−4.0 −1.295+0 1.396−1 −8.868−3 7.407+0 −5.394−1 1.529+0 −2.358+0

−6.0 −1.892+0 −1.239−1 3.962−4 −3.309−1 −7.880−1 3.210+0 −2.466+0

κa = 100, I = 9.25 × 10+0 mol l−1

−1.0−6 −2.829−8 4.999−1 −1.991−14 1.663−13 −1.178−10 −1.499+0 −1.499+0

−0.5 −1.499−2 4.990−1 −4.801−3 4.010−2 −6.244−5 −1.471+0 −1.517+0

−1.0 −3.076−2 4.963−1 −1.729−2 1.444−1 −1.281−4 −1.432+0 −1.528+0

−2.0 −6.812−2 4.848−1 −4.765−2 3.980−1 −2.837−4 −1.324+0 −1.538+0

−4.0 −1.958−1 4.280−1 −6.521−2 5.447−1 −8.155−4 −9.525−1 −1.552+0

−6.0 −4.487−1 3.043−1 −4.797−2 4.007−1 −1.868−3 −2.119−1 −1.567+0
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TABLE III

Scaled (dimensionless) asymptotic coefficients for bulk convec-
tion of NaCl in a Brinkman medium with charged spherical in-
clusions (see Hill 2006c, for details): `/a = 0.1 (a = 10 nm,
` = 1 nm); T = 25◦C, D1 ≈ 1.33×10−9m2s−1 (Na+); D2 ≈ 2.03×
10−9m2s−1 (Cl−); u∗ = εsεo(kT/e)2/(ηa) ≈ 5.15 × 10−2 m s−1.

ζe/(kT ) DU eu∗/(kT a2) CU
j u∗/(2I a2) CU/a3

( j = 1, 2)

κa = 0.1, I = 9.25 × 10−6 mol l−1

−1.0−6 3.515−5 3.654−6 8.599−1

−0.5 1.758+1 1.859+0 8.599−1

−1.0 3.517+1 3.779+0 8.600−1

−2.0 7.021+1 7.783+0 8.607−1

−4.0 1.386+2 1.621+1 8.633−1

−6.0 2.020+2 2.457+1 8.698−1

κa = 1, I = 9.25 × 10−4 mol l−1

−1.0−6 6.090−7 6.331−8 8.599−1

−0.5 3.049−1 3.442−2 8.601−1

−1.0 6.074−1 7.375−2 8.605−1

−2.0 1.184+0 1.610−1 8.624−1

−4.0 2.087+0 3.131−1 8.688−1

−6.0 2.539+0 3.684−1 8.733−1

κa = 10, I = 9.25 × 10−2 mol l−1

−1.0−6 1.754−8 1.824−9 8.599−1

−0.5 8.824−3 1.096−3 8.599−1

−1.0 1.762−2 2.527−3 8.600−1

−2.0 3.424−2 5.999−3 8.601−1

−4.0 5.657−2 1.131−2 8.605−1

−6.0 5.854−2 9.734−3 8.608−1

κa = 100, I = 9.25 × 10+0 mol l−1

−1.0−6 2.689−10 2.795−11 8.599−1

−0.5 1.360−4 1.794−5 8.599−1

−1.0 2.747−4 4.359−5 8.599−1

−2.0 5.566−4 1.152−4 8.599−1

−4.0 1.091−3 3.016−4 8.599−1

−6.0 1.434−3 4.393−4 8.599−1
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(a = 100 nm and ` ≈ 1 nm) (Hill 2006c, a). This difference affects all quantities derived from the

microscale analysis that depend on convective flow3.

STREAMING POTENTIAL

A fundamental characteristic of interest that has not been explicitly considered for hydrogel-colloid com-

posites is the streaming potential. This is the differential potential 1〈ψ〉 that prevails when 1〈n〉 = i = 0

with u 6= 0 and 1〈p〉 6= 0. Accordingly, when φ � 1, the streaming potential is

1〈ψ〉 = −1〈p〉(`2/η)(3φ/a3)

[
DU +

(γ − 1)kT

(γ z1 − z2)e〈n〉
CU

j

]
, (39)

where, recall, γ = D1/D2. This equation is obtained by multiplying Eqn. (23) for each species by z j e

and setting their sum (electrical current) to zero. Note that terms involving the product φ〈∇ψ〉 are O(φ)

smaller than the electromigrative term for the pure electrolyte, and a consistent approximation of Eqn. (24)

is u ≈ −(`2/η)1〈p〉/L , since φ � 1.

Writing Eqn. (39) in terms of the dimensionless asymptotic coefficients provided in Table 3 above gives

1〈ψ〉 = −
3φ1〈p〉`2e

εoεskT

[
D

U
+

2(γ − 1)

(γ z1 − z2)
C

U
j

]
, (40)

where D
U

≡ DU eu∗/(kT a2) and C
U
j ≡ CU

j u∗/(2I a2) with u∗ = εoεs(kT/e)2/(ηa). Note that 〈n〉 = I

(bulk ionic strength). Equation (40) reveals that very large pressure differentials (∼ 105 Pa) are necessary

to produce even small streaming potentials (∼ 1 mV). In general, therefore, the streaming potential is not

a practically viable means of probing the microstructure.

CONCENTRATION-GRADIENT DRIVEN FLUX WITH ZERO ELECTRICAL CURRENT AND FLOW

In the following example, the flux is specified as j = −De[〈n〉(L) − 〈n〉(0)] [Eqn (15)], with 〈n〉(0) =

0.01 mmol l−1, 〈n〉(L) = 10 mmol l−1 and L = 500 μm, so 1 ln 〈n〉 ≈ 6.9. Recall, this flux prevails in

the absence charged inclusions when u = 0. The electrical current density i = 0, so j1 = j2. Note that the

numerically exact solutions do not yield 〈n〉(x = L) = 10 mmol l−1, because the charged inclusions change

the macroscale fluxes. Also, while the calculations could be performed with 1〈p〉 = 0 and, hence, u 6= 0,

for simplicity the computations were undertaken with u = 0, so 1〈p〉 6= 0. The asymptotic coefficients

are determined by the local bulk electrolyte concentration. Accordingly, from the local values of κa and

ζe/kT , asymptotic coefficients are obtained by interpolating refined versions of Tables I, II and III. Details

of the microscale calculations, and a discussion of various quantities derived from them, are given by Hill

(2006a, c).

When 1 ln 〈n〉 � 1, it is reasonable to approximate the asymptotic coefficients as constants based on

an approximately constant bulk concentration 〈n〉, so

1〈ψ〉

1 ln 〈n〉
≈
(kT/e) (1−γ )

(γ z1−z2)
+ (3φ/a3)

[
〈n〉DB − (kT/e) (1−γ )

(γ z1−z2)
C B

j

]

1 + (3φ/a3)
[

DE + (1−γ )
(γ z1−z2)

C E
j (kT/e)/〈n〉

] , (41)

3 This generally means the asymptotic coefficients denoted C X with X ∈ {E, B,U }, since these indicate the strength of the r−3

decaying microscale fluid velocity disturbance (Hill 2006a).
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where, recall, γ = D1/D2, i = u = 0, and φ � 1. Again, this equation is obtained by multiplying

Eqn. (23) for each species by z j e and setting their sum (electrical current) to zero; note also that 1〈n〉/L ≈

(〈n〉/L)1 ln 〈n〉. Writing Eqn. (41) in terms of the dimensionless asymptotic coefficients provided in

Tables I and II gives

1〈ψ〉e/(kT )

1 ln 〈n〉
≈

(1−γ )
(γ z1−z2)

+ 3φ
[

D
B
/2 − (1−γ )

(γ z1−z2)
C

B
j

]

1 + 3φ
[

D
E

+ 2(1−γ )
(γ z1−z2)

C
E
j

] (42)

or
1〈ψ〉e/(kT )

1 ln 〈n〉

(γ z1 − z2)

(1 − γ )
≈ 1 + 3φ

[
(γ z1 − z2)

2(1 − γ )
D

B
− C

B
j − D

E
−

2(1 − γ )

(γ z1 − z2)
C

E
j

]
, (43)

where D
B

≡ DB2I e/(kT a3), C
B
j ≡ C B

j /a
3, D

E
≡ DE/a3 and C

E
j ≡ C E

j kT/(2I a3e), with u∗ =

εoεs(kT/e)2/(ηa). Note that 〈n〉 = I (bulk ionic strength), and that the increment

1E ≡ [〈ψ〉(x = L;φ = 0)/〈ψ〉(x = L;φ)− 1]/φ

≈ 3
[
(γ z1 − z2)

2(1 − γ )
D

B
− C

B
j − D

E
−

2(1 − γ )

(γ z1 − z2)
C

E
j

] (44)

is the same as the more general expression of Hill (2006b). Furthermore, a careful inspection of Tables I

and II reveals that the dimensionless asymptotic coefficients generally yield φ1E ∼ 1 only when κa < 1

and |ζ | > kT/e.

Note that microscale theory does not account for particle interactions, so φ∗ = φ[1 + (κa)−1]3 should

be small. This is restrictive on the particle volume fraction φ = c(4/3)πa3 when κa � 1 (c is the

particle number density). For the specific example introduced above with 1 ln 〈n〉 ≈ 6.9, the macroscale

calculations were undertaken with φ = 0.64(0, 0.1, 0.2, 0.4, 0.8)/[1 + (κa)−1]3, with κa < 1 evaluated at

x = 0, which is generally the position where the ionic strength is lowest (with j > 0) and, hence, where

κa is smallest. With 〈n〉(0) = 0.01 mmol l−1, φ ≈ (0, 0.0534, 0.1069, 0.2137, 0.4275)× 10−3. Note also

that calculations were performed with a constant particle surface charge density σ = 1 μC cm−2, with the

ζ -potential varying according to the (semi-empirical) formula (Russel et al. 1989)

σ = εoεs[kT/(ze)]κ{2 sinh [ζ ze/(2kT )] + [4/(κa)] tanh [ζ ze/(4kT )]}. (45)

When φ = 0, the bulk concentration varies approximately linearly across the membrane, as given by

Eqn. (15) when Pe → 0. As the inclusion volume fraction increases, the specified flux j is achieved

with practically the same (almost uniform) electrolyte concentration gradient, even though the membrane

is macroscopically inhomogeneous due to the varying ζ -potential. As seen in Figure 1, the high surface

charge density and low bulk electrolyte concentration produce a high ζ -potential at x = 0. With higher

electrolyte concentrations, the ζ -potentials are low (with fixed surface charge) and the diffuse double layers

thin; accordingly, the inclusions behave as impenetrable uncharged spheres and the membrane potential

tends to its value for pure electrolyte, and the effective diffusion coefficients tend to their Maxwell values

(see below). These and other limiting cases were thoroughly discussed by Hill (2006b, c).

As expected from the very small particle volume fractions (φ ∼ 10−4), the charge on the inclusions

has a negligible influence on transport that occurs predominantly by gradient diffusion alone. However, as

shown in the top panel of Figure 2, the inclusions have a significant impact on the electrostatic potential.
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Fig. 1 – Scaled particle ζ -potential ζe/(kT ) according to Eqn. (45) (a = 10 nm) as a function of position x (mm) with constant

particle surface charge density σ = 1 μC cm−2. The accompanying bulk ionic strength varies approximately linearly with

position: 〈I 〉 ≈ 0.01 + (10 − 0.01)(x/L) mmol l−1.

Increasing the particle concentration decreases the membrane potential 1〈ψ〉 = 〈ψ〉(x = L). At the

highest particle concentration of only φ ≈ 4 × 10−4, 1〈ψ〉 is about 20 mV lower than in the absence

of inclusions. From Eqn. (20), 1〈ψ〉 ≈ 24.6 mV. Therefore, the increment 1E ≡ [〈ψ〉(x = L;φ =

0)/〈ψ〉(x = L;φ)− 1]/φ ∼ −103, which is in good agreement with expectations for uniform membranes

with small macroscale gradients (Hill 2006c, Fig. 7).

As identified by Hill (2006c), the negatively charged inclusions here with Na+ counterion reduce the

effective asymmetry of the electrolyte by increasing (decreasing) the effective diffusion coefficient of the

otherwise less (more) mobile Na+ (Cl−) ion. This diminishes the accompanying electric field required to

maintain equal bulk fluxes (zero electrical current). The bottom panel of Figure 2 shows the electrostatic

potential for membranes with the same particle volume fractions and electrolyte, but with constant particle

ζ -potential (ζ = −4kT/e ≈ −100 mV) rather than constant surface charge. In both cases, the gradient of

electrostatic potential is negative in a thin region at x = 0. In the absence of an accompanying pressure

gradient, the large, positive electric field would drive electroosmotic flow in the direction of the bulk

concentration gradient (from left to right). However, because these calculations have been performed with

zero convective flow (u = 0), the pressure, which is plotted in Figure 3, varies in a very similar manner to

the electrostatic potential.

A useful measure of the overall influence of the inclusions on transport is the bulk diffusion coefficient

D∗ ≡ − j x/[〈n〉(x)− 〈n〉(0)]. (46)

This is plotted in Figure 4 scaled with the diffusion coefficient De given by Eqn. (17) for electrodiffusion

in the absence of inclusions (φ = 0). The fact that D∗ ≈ 1 when x ≈ L reflects the underlying (almost)

linear bulk ion concentration profile. However, near x = 0, where ζe/(kT ) is large and κa is small, D∗ is

a complicated and rapidly changing function of position and particle concentration. Note that the effective
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Fig. 2 – Bulk electrostatic potential 〈ψ〉, scaled with kT/e ≈ 25 mV, as a function of position x (mm), decreasing monotonically

with increasing particle volume fraction φ = φ∗(0, 0.1, 0.2, 0.4, 0.8) = (0, 0.0534, 0.1069, 0.2137, 0.4275) × 10−3: constant

charge density σ = 1 μC cm−2 (left panel); constant ζ -potential ζ = −4kT/e ≈ −100 mV (right panel). The accompanying

bulk electrolyte concentration gradient is practically constant. See text and Tables I–III for other microscale parameters.
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Fig. 3 – Bulk pressure head 〈p〉/(ρg) (mm) as a function of position x (mm), decreasing monotonically at x = L with increasing

particle volume fraction φ = φ∗(0, 0.1, 0.2, 0.4, 0.8) = (0, 0.0534, 0.1069, 0.2137, 0.4275) × 10−3: constant charge density

σ = 1 μC cm−2 (left panel); constant ζ -potential ζ = −4kT/e ≈ −100 mV (right panel). The accompanying bulk electrolyte

concentration gradient is practically constant. See text and Tables I–III for other microscale parameters.
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diffusion coefficient of a tracer in a dilute random array of impenetrable spherical inclusions is (Maxwell

1873, Batchelor and O’Brien 1977)4

D∗ = D[1 − (3/2)φ], (47)

so with the largest value of φ ≈ 0.000428, Eqn. (47) gives D∗/D ≈ 0.9994. However, the top panel of

Figure 4 indicates that D∗/De ≈ 1.0030 when φ = 0.000428, so, overall, the charge on the inclusions

produces a higher effective diffusivity than expected from Eqn. (47).
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Fig. 4 – Bulk diffusion constant D∗ ≡ − j x/[〈n〉(x) − 〈n〉(0)] scaled with De ≡ 2/[1/D1 + 1/D2] [Eqn. (17)] as a function

of position x (mm), decreasing monotonically at x = L with increasing particle volume fraction φ = φ∗(0, 0.1, 0.2, 0.4, 0.8) =

(0, 0.0534, 0.1069, 0.2137, 0.4275) × 10−3: constant charge density σ = 1 μC cm−2 (left panel); constant ζ -potential ζ =

−4kT/e ≈ −100 mV (right panel). The accompanying bulk electrolyte concentration gradient is practically constant. See text

and Tables I–III for other microscale parameters.

The overall, but very slight, increase in the flux due to the inclusions is more pronounced in the bot-

tom panel of Figure 4, because the particle ζ -potential (ζ ≈ −100 mV) is relatively high and uniform

throughout the membrane; for example, D∗(L)/De ≈ 1.0055 when φ ≈ 0.000428. Here the incremental

quantity [D∗(L)/De −1]/φ ∼ 10. This is much greater than the value −3/2 from Eqn. (47), but consistent

with expectations for uniform composites with small macroscale gradients (Hill 2006b). For example, the

incremental contributions to the individual ion diffusion coefficients in Table II (1B
1 for Na+ and 1B

2 for

Cl+) (see also Hill 2006b, Fig. 6) reveal that the inclusions increase (decrease) the effective diffusion coef-

ficient of the otherwise less (more) mobile Na+ (Cl−) ion. Accordingly, the negatively charged inclusions

decrease the asymmetry of the NaCl electrolyte, which explains the overall decrease in the membrane po-

tential shown in Figure 1. It is also evident from Table II that when ζe/(kT ) is large, the inclusions enhance

the effective diffusivity of Na+ more than Cl−, i.e., |1B
1 /1

B
2 | > 1. This explains the overall tendency

4 This is also evident from the microscale theory, which gives 1B
1 → −3/2 and 1B

2 → −3/2 as ζ → 0 in Table II (see also Hill
2006b).
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for D∗(L)/De to be greater than one. Clearly, lower ζ -potentials will yield D∗(L)/De less than one, as

expected from Eqn. (47) when ζ → 0.

SUMMARY

Numerical solutions of the coupled macroscale ion conservation equations and fluid mass and momentum

conservation equations for electrodiffusion across hydrogel-colloid composite membranes were presented

for the first time. These computations were undertaken with the approximation of local macroscale elec-

troneutrality, using bulk transport properties established in earlier work for microscale electrokinetic trans-

port processes. The principal example presented was characterized by a low bulk electrolyte concentration

on one side of the membrane, with a very low solid volume fraction of small, highly charged colloidal

inclusions. The influence of these inclusions on the bulk fluxes was negligible in absolute terms, but the

incremental contribution of the particles was significantly larger than expected from Maxwell’s classical

theory for impenetrable particles in a permeable continuum. Significant from a practical perspective was

that very low concentrations of inclusions have a measurable impact on the membrane diffusion potential.

Such changes reflect the size, charge, and concentration of the inclusions. Therefore, experimental mea-

surements of the membrane potential may be promising for testing the microscale theory, which underlies

several other interesting and technologically important microscale electrokinetic problems, including those

of electrical microrheology and electroacoustics.
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RESUMO

Um modelo eletrocinético rigoroso para compósitos formados por um hidrogel e um colóide é adotado para computar

os perfis macroscópicos de concentração eletrolítica, potencial eletrostático e pressão hidrostática através de uma

membrana que separa soluções com diferentes concentrações eletrolíticas. A membrana é composta por um hidrogel

polimérico sem carga elétrica onde partículas esféricas são imobilizadas e dispersas aleatoriamente com baixa fração

de volume do sólido. As características da membrana e a sua performance são calculadas a partir de um modelo

eletrocinético de contínuo microscópico (Hill 2006b, c). As computações realizadas neste artigo quantificam os

potenciais de corrente e de membrana. Para o potencial de membrana, aumentando a fração de volume das inclusões

carregadas negativamente diminui o diferencial do potencial eletrostático através da membrana sob condições de fluxo

convectivo e corrente elétrica nulos. Para concentrações eletrolíticas baixas o potencial de membrana torna-se muito

sensível à fração de volume das partículas. De maneira similar, o potencial de membrana e as cargas elétricas trazidos

pelo tamanho da inclusão, carga e concentração podem prover um diagnóstico experimental útil para complementar

aplicações mais recentes do modelo eletrocinético microscópico em eletroacústica e eletro-micro-reologia (Hill and

Ostoja-Starzewski 2008, Wang and Hill 2008).

Palavras-chave: eletrodifusão, fenômenos eletrocinéticos, Colóide-hidrogel compósitos, potencial de membrana,

micro-hidrodinâmica, materiais compostos macios, potencial de corrente.
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