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ABSTRACT

Ion-specific interactions between two colloidal particles are calculated using a modified Poisson-Boltzmann
(PB) equation and Monte Carlo (MC) simulations. PB equations present good results of ionic concentration
profiles around a macroion, especially for salt solutions containing monovalent ions. These equations
include not only electrostatic interactions, but also dispersion potentials originated from polarizabilities of
ions and proteins. This enables us to predict ion-specific properties of colloidal systems. We compared
results obtained from the modified PB equation with those from MC simulations and integral equations.
Phase diagrams and osmotic second virial coefficients are also presented for different salt solutions at
different pH and ionic strengths, in agreement with the experimental results observed Hofmeister effects.
In order to include the water structure and hydration effect, we have used an effective interaction obtained
from molecular dynamics of each ion and a hydrophobic surface combined with PB equation. The method
has been proved to be efficient and suitable for describing phenomena where the water structure close to
the interface plays an essential role. Important thermodynamic properties related to protein aggregation,
essential in biotechnology and pharmaceutical industries, can be obtained from the method shown here.
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1 INTRODUCTION

In a series of papers in the late 1880’s, Franz Hofmeister could demonstrate that salts with fixed cations
and different anions have different capacities in stabilizing protein suspensions (Ninham and Yaminsky
1997, Kunz et al. 2004b). One of these experiments was on a dispersion of proteins of whole hen-egg-
white. Depending on the anion, different concentrations were required to precipitate a prescribed protein
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concentration. The salts could be ordered in a sequence of effectiveness that later seemed to be universal,
being the same for a number of colloidal systems. Hofmeister’s specific ion effects turn up frequently in
biology and solution chemistry. For a long time the explanation for these effects has remained a mystery.
Ries-Kautt and Ducruix (1989) investigated the relative effectiveness of various ions on the solubility of
hen-egg-white lysozyme at pH 4.5. The experiments revealed that the effectiveness followed a reversed
Hofmeister series: SCN− >NO−

3 >Cl−. This was interesting since the original paper of Hofmeister (Kunz
et al. 2004a) gives exactly the opposite anion sequence. This we term a direct Hofmeister series. Later on,
the same group demonstrated a direct order for a protein studied at a pH higher than its pI (Carbonnaux et
al. 1995).

In general, Hofmeister effects refer to the relative effectiveness of either anions or cations, individually
or as ion pairs, on a wide range of phenomena. These effects have, for instance, been observed in experiments
as diverse as double layer force measurements (Pashley and Ninham 1987, Boström et al. 2001a, Tavares et
al. 2004a, b), bubble fusion (Craig et al. 1993), conformational changes of rhodopsin (Vogel 2004), bacterial
cell growth (Lo Nostro et al. 2004), yield stresses in silica suspensions (Franks 2002), cutting-efficiency
of DNA by restriction enzymes (Kim et al. 2001), charge of globular proteins (Curtis et al. 2002), surface
tension of electrolytes (Boström et al. 2001b, 2005a), and the solubility of protein solutions (Kunz et al.
2004a, b, Ries-Kautt and Ducruix 1989, Carbonnaux et al. 1995).

The only ionic characteristics included in textbook descriptions of aqueous proteins in salt solutions are
bulk pH, salt concentration, ionic charges and “hydrated ionic radii”. Electrostatic theories based on these
parameters do not account for the experimentally observed ion specificity. Since standard theory failed,
it has been customary to invoke various specific “ionic characteristics” such as: “structure breaking”;
“structure creating”; “lyotropic”; “kosmotropic”; “chaotropic”; “salting-in”; and “salting-out” (Collins
and Washabaugh 1985, Collins 2004). These concepts attempt to encompass the missing ion solvent in-
teractions qualitatively. But the concepts have turned out to be difficult to quantify. There has been no
quantitative explanation of the origin of the Hofmeister series.

It has only recently become evident that the non-electrostatic (NES) forces (Ninham and Yaminsky
1997, Kunz et al. 2004b), among which are those due to the ion specific polarizability of ions, neglected in
previous theories, play an essential role in determining molecular forces above and beyond electrostatics,
which is non-specific. Polarizability is a quantity that measures the response of a particle to a perturbation
in the electromagnetic field. While two charged particles can interact via electrostatic forces, there is also
a quantum mechanical attraction, the dispersion force, between two charge neutral particles that is related
to the polarizabilities of the two particles. The same force is important also for ions. Dispersion forces
have usually been assumed to be small compared to electrostatic forces, or when they have been considered
and dismissed they were included incorrectly, or not at the same level as the other forces. The extensions
of the Lifshitz theory do formally include ion specific hydration or self-energy, and hydration interactions
(Boström and Ninham 2004, 2005). While electrostatic forces often dominate at low salt concentrations,
NES forces become important at high salt concentrations where the electrostatic forces are weakened due
to screening. We have shown in a series of papers that dispersion forces between an ion and an interface
often dominate over electrostatic forces above and around physiological salt concentrations (Ninham and
Yaminsky 1997, Boström et al. 2001a, b, 2005a, Tavares et al. 2004a, b).

Important recent contributions are addressed here, highlighting some novel techniques that give rise to
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good results when compared with molecular simulations and experiments. More specifically, we show the
importance of considering the non-electrostatic interactions between ions and surfaces when modeling the
interactions among proteins by Monte Carlo simulations in order to predict ion specific effects; we also show
that a computationally efficient modified version of the Poisson-Boltzmann equation including these non-
electrostatic interactions gives good results for monovalent counterions when compared to more complex
and time consuming methods, such as molecular simulations and integral equations. We show calculations
of the reversal Hofmeister series, osmotic second virial coefficient, and phase diagram for globular protein
solutions. In the second part of the paper, we used the PB equation with a much more realistic potential of
mean force between each ion and the colloid interface and, in addition, we treated the dielectric constant
as an inhomogeneous function close to the water-interface, both of them extracted from MD simulations.
Using this approach, it is possible to capture the important physics of the system due to the inclusion of
ion-surface van der Waals forces, short range hydration, image potential and different solvent-mediated
forces. Then, we present ion specificity/competition in a mixture of salts near an uncharged nanoparticle.
We show that soft ions are more attracted by hydrophobic surfaces. Of course, our calculation is done on
a primitive model level, but nevertheless it is in reasonable agreement with recent results from molecular
simulation and with experimental data from the literature.

Our program here is to use these NES forces to explain the ion specificity observed in protein solutions.
Our main objective is to analyze the interaction forces between proteins and between other colloidal parti-
cles. To do so, we develop the necessary theoretical foundations for using Monte Carlo (MC) simulations
to calculate the potential of mean force (PMF) between two colloidal particles in Section 2 (Tavares et
al. 2004a). We also discuss how simple estimates for the NES forces can be obtained. The theory is
then used in Section 3 to evaluate the ion specific PMF between two colloidal particles. In Section 4 we
compare the ion distributions near a globular protein using Modified-Poisson-Boltzmann equation (MPB
equation), hypernetted chain approximation, and solvent averaged MC simulations. This will demonstrate
that, to a good approximation, one can often use MPB equation that includes ionic NES potentials to cal-
culate ion distributions near globular proteins (Boström et al. 2005b, 2006). In Section 5 we present the
calculation of the pressure between two planar surfaces coated with lysozyme proteins. We will demon-
strate that, for pH<pI (where the anions are counterions), the double layer repulsion increases in the order
NaSCN<NaI<NaCl. At higher pH>pI (where the anions are coions), the double layer repulsion increases
in the order NaCl<NaI<NaSCN. This is in good agreement with both solubility experiments and second
virial coefficients deduced from experiments using SAXS (Boström et al. 2005c). In fact, for large polar-
izable anions, such as thiocyanate, the double layer pressure can even become attractive at small protein
separations. The MPB equation in bispherical coordinates discussed in Section 6 opens up for computer
efficient calculations of protein-protein potentials of mean force. Then, in Section 7, we discuss different
levels of approximations for the ion-protein potential of mean force. Recent work by Tavares and co-workers
have demonstrated that the potential of mean force acting between each ion and a hydrophobic colloidal
particle obtained from simulations that include explicit water molecules may be an important improvement
compared to NES potentials from Lifshitz theory (Lima et al. 2007a, 2008a, b, Horinek et al. 2008).
We finally present a short summary in Section 8. Our results taken together provide a strong hint that we
are close to the quantitative understanding of an important long standing question in solution chemistry
and biology.
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2 ION SPECIFIC MONTE CARLO SIMULATIONS AND NES POTENTIALS

The potential of mean force (PMF) for two macroions is affected not only by the size and charge of each
electrolyte ion, but also by the ion’s polarizability (Tavares et al. 2004a). The Lifshitz theory provides a
basis for calculating the van der Waals interaction between cation-colloid, anion-colloid, cation-cation and
anion-anion pairs. Monte Carlo simulations can be used to determine how salt identity affects the PMF
among colloidal particles or globular proteins in a saline solution.

Tavares et al. (2004a) focused on the contribution of ion-ion and ion-macroion van der Waals interac-
tions to the colloid-colloid (or protein-protein) PMF. A primitive model, where water is represented by a
dielectric continuum, was used.

The interaction energy between particles i and j is the sum of three parts:

wi j = whs
i j + welec

i j + w
disp
i j . (1)

The hard-sphere potential whs
i j is

whs
i j =





∞ for ri j < (σi + σ j )/2

0 for ri j ≥ (σi + σ j )/2 ,
(2)

where ri j is the center-to-center distance between particles i and j (ion or macroion). The electrostatic
interaction welec

i j is

welec
i j =

qi q j

4πε0εri j
for ri j ≥ (σi + σ j )/2 , (3)

where q and σ are the charge and the diameter, respectively, of particle i (ion or macroion); ε0 = 8.854 ×
10−12C2/(Jm) is the dielectric permittivity of vacuum; and ε is the dielectric constant of the solvent.

To calculate ion-ion dispersion interactions, we use Lifshitz theory (Israelachvili 1992) for van der
Waals forces. The dispersion potential w

disp
12 between two small particles 1 and 2 (in this case, ions) in a

medium 3 (the solvent) is given by:

w
disp
12 =

−B12

r6
12

for r12 ≥ (σ1 + σ2)/2 . (4)

The dispersion parameter B12 is calculated using multiple absorption frequencies (Israelachvili 1992),

B12

kB T
= 3

α1(0)α2(0)

[ε3(0)]2
+

3h

πkB T

∫ ∞

νmin

α1(ν)α2(ν)

[ε3(ν)]2
dν (5)

where αi (0) and αi (ν) are the effective polarizabilities in water of particle i at frequencies 0 and ν, respec-
tively; νmin = 2πkB T

h is the first non-zero frequency; hνmin = 2.59 × 1013erg at 298K; ν I
3 is the ionization

frequency of the solvent, and hν I
3 = 20 × 10−12erg is the ionization energy of the solvent (water); h

is Planck’s constant; ε3(ν) is the dielectric constant of the solvent at frequency ν, and ε3(0) is the static
dielectric constant, i.e., the dielectric constant of the solvent (for water ε3(0) = ε = 78, at 298K).

To calculate ion-colloid dispersion interactions, we note that the ion is much smaller than the macroion;
therefore, the ion-macroion van der Waals interaction is approximated by the potential between a small
spherical particle i and a planar macroion m (Israelachvili 1992):

w
disp
im =

−Bim

d3
im

for dim ≥ σi/2 , (6)
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where dim is the perpendicular distance from the center of the small particle i (ion) to the surface of the
macroion (colloid) m. The dispersion interaction parameter Bim is calculated from the Lifshitz theory
(Ninham and Yaminsky 1997):

Bim

kB T
=

αi (0)

4ε3(0)

(
εm(0) − ε3(0)

ε3(0) + ε3(0)

)
+

h

4πkB T

∫ ∞

νmin

αi (ν)

ε3(ν)

(
εm(ν) − ε3(ν)

εm(ν) + ε3(ν)

)
dν , (7)

where εm(0) and εm(ν) are the dielectric constants of the macroion at frequencies 0 and ν, respectively.
To calculate dispersion interaction parameters, Bi j and Bim , we need to know how the effective polar-

izabilities of ions and the dielectric constants for the macroion and the solvent vary with frequency. For a
molecule with one characteristic absorption frequency (the ionization frequency) , its polarizability and its
dielectric constant at a frequency ν I are given by the harmonic-oscillator model (Israelachvili 1992, Von
Hipper 1958):

α(ν) =
α(0)

(
1 + (ν/ν I )2

) (8)

and

ε(ν) = 1 +
(n2 − 1)

(
1 + (ν/ν I )2

) , (9)

where n is the refractive index for the sodium D line at 298K. Eq. (9) is used for both the solvent and for the
macroion. Ninham and Parsegian (1970a, b) demonstrated that Eq. (8) can be used for atoms, and Ninham
and Yaminsky (1997) later showed that it is also applied to cations and anions.

Eqs. (8) and (9) are substituted into Eqs. (5) and (7) to calculate the dispersion interactions between
ion-ion and ion-macroion, respectively. Static dielectric constants, ionization energies and refractive indices
for water and for colloid (or protein) are taken from Israelachvili (1992) and Tavares et al. (2004a). For
cations and anions, the effective polarizabilities are given in Wu et al. (1998, 1999) and estimated ionization
energies in aqueous solution in Tavares et al. (2004a).

The dispersion interaction parameters are obtained by integrating Eqs. (5) and (7) numerically. The
resulting dispersion interactions at contact for ion-ion, Eq. (4) and ion-macroion, Eq. (6) are presented by
Tavares et al. (2004a).

Canonical Monte Carlo simulation is used to calculate the mean force F(r) between two macroions
in electrolyte solution at a given center-to-center distance r . Potential of mean force W is obtained by the
integration of the mean force: W (r) =

∫ r
∞ F(r)dr . Details of calculating the PMF from the mean force

are given elsewhere (Wu et al. 1998, 1999).
In the Monte Carlo simulations, dispersion interactions of ion-ion and ion-macroion pairs are taken

into account. The mean force between two macroion particles surrounded by small ions is the sum of four
contributions (Tavares et al. 2004a),

F(r) = −
∂welec

mm

∂r

〈
N∑

i=1

∂welec
im

∂r

〉

−

〈
N∑

i=1

∂w
disp
im

∂r

〉

+ FC(r) , (10)

where the angular brackets denote canonical ensemble average; r is the center-to-center separation between
two macroions; and rim is the center-to-center distance between a small ion and a macroion. Subscripted
m denotes a macroion; superscripted elec denotes electrostatic (Coulomb) forces, and superscripted disp
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denotes van der Waals dispersion forces. The first term on the right hand side of Eq. (10) is the direct
Coulomb interaction between two macroions; this term is always repulsive for like-charged macroions.
In Eq. (10), the term corresponding to the direct dispersion interaction (Hamaker forces) between two
macroions is set equal to zero. The Hamaker term is independent of the other contributions and can be
included or modified after the calculation of all other terms is completed. The second term accounts for
the Coulombic forces exerted on either of the macroions by all small ions. The third term accounts for the
dispersion force exerted on either macroions by all small ions. The last term represents the mean force
resulted from collisions between hard-sphere macroion particles and ions. The collision contribution to the
mean force is calculated using (Tavares et al. 2004a, Wu et al. 1998):

FC(r) = −kB T lim
1r→0+

〈NC〉

1r
− kB T lim

1r→0−

〈NC〉

1r
. (11)

Here, NC is the number of salt ions that collide with a macroion due to a small range of distance 1r

between the two macroions. Eq. (11) shows that the hard-sphere collision force is repulsive when small
ions accumulate between the two macroions, and is attractive when they are depleted.

Monte Carlo simulation details are reported elsewhere (Tavares et al. 2004a, Wu et al. 1998, 1999).

3 ION SPECIFIC PROTEIN-PROTEIN POTENTIAL OF MEAN FORCE

In this section, we show some numerical results obtained using ion specific Monte Carlo simulations
(Tavares et al. 2004a).

Figure 1 shows the simulation results for the total mean force (F) between two positively charged
macroions, with a diameter of σm = 20Å and a valence of +20, in electrolyte solutions of NaI and Na2SO4

at ionic strength of 0.125 M. For all simulations, we use around 200 small ions, all with the same diameter
σi = 4Å, such that we have electroneutrality in the simulation box. The direct van der Waals interaction
between two macroions (Hamaker) is not included. The mean forces are normalized using the Bjerrum
length, lB = e2/(4πε0εkB T ), that represents the distance between two unit charges (e) where the pair
potential equals thermal energy kB T . Here, T = 298K and lB = 7.14Å (aqueous solutions). The line is
the normalized mean force calculated using DLVO theory (in this case, only the double layer repulsion).
As expected, the DLVO theory predicts repulsion for all intermacroion distances and overestimates this
repulsion even for monovalent counterions. DLVO theory cannot represent the intercolloidal attraction that
appears in the presence of divalent counterion.

The attractive dispersion forces between the counterion (iodide or sulfate) and the macroion increase
the concentration of counterions around the macroion particles and, thereby, enhance both hard-sphere
repulsion and screening of the electrostatic forces. The electrostatic force decays quickly with the distance
and becomes insignificant at a separation distance sufficient to accommodate a monolayer of counterions
in-between the two macroions. At about the same distance, we also observe rapid changes in the van der
Waals forces and collision contributions to the mean force; these rapid changes are related to ion binding
(Tavares et al. 2004a). This effect is stronger for sulfate (divalent) than iodide (monovalent). Bound
counterions screen the electrostatic repulsion and create a bridge of attraction between two macroions.
Therefore, the calculated total force can be attractive at short distances and the minimum is shifted to a
shorter distance, as shown in Figure 1. Even though the structural solvation effects are neglected in these
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Fig. 1 – Total mean force between two macroions in monovalent and divalent electrolytes solution of ionic strength 0.125 M.

Results are for NaI, Na2SO4, and classical DLVO theory (Tavares et al. 2004b).

simulations, results shown in Figure 1 are consistent with the industrial practice where ammonium sulfate
is commonly used to induce protein precipitation.

To illustrate counterion specificity for a set of common ions, Figure 2 shows the calculated potential
of mean force between two like-charged macroions of diameter equal to 2 nm at center-to-center distance
of 2.6 nm, for solutions at ionic strength 0.125M for different salts. The center-to-center distance of 2.6
nm is chosen in the range where ion-specific effects are still sufficiently strong, while the uncertainties
due to neglecting of molecular solvation (most significant in the macroion hydration shell) become less
significant. As in previous calculations, results do not include the direct macroion-macroion dispersion
(Hamaker) force.

Fig. 2 – Effect of counterion identity on the potential of mean force between two macroions at a fixed distance (r = 1.3σm) in a

solution of ionic strength 0.125 M. In (a), the macroion net charge number is −20, the counterions are cations. In (b), the macroion

net charge number is +20, the counterions are anions. Raising counterion polarizability, increases the attraction between two

macroions (Tavares et al. 2004a).

The affinity of an anion for an anion-exchange resin depends on the particular resin, but the general
trend (Gjerde et al. 1980) is given by the order SCN− >I− >Br− >Cl−. Also, Everett (1988) reported
that the experimental effectiveness of monovalent cations in coagulating a negatively charged colloid
usually varies in the order Cs+ >Rb+ >K+ >Na+ >Li+. The same sequence holds for ionic adsorption
at surfaces, for ester hydrolysis, and for precipitation of albumin (Gjerde et al. 1980). These experimental
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results agree with the sequences shown in Figure 2 for anions and cations.
While our model relies on an approximate McMillan-Mayer representation of the solvent, the present

results are qualitatively consistent with specific-salt effects observed experimentally by numerous investi-
gators, starting with Hofmeister for aqueous proteins over 100 years ago.

4 MODIFIED POISSON-BOLTZMANN EQUATION AND COMPARISON WITH OZ/HNC AND MC

The distribution of ions at a charged surface is a fundamental problem of colloid and interface science. The
ions are considered as point charges embedded in a continuum of a uniform dielectric constants. In the
classical theory, the chemical potential, μi , of the ion ‘i’ with charge, ezi , is given by:

μi = μ0i + kB T ln(ci ) + eziφ , (12)

where, μ0i represents the standard chemical potential of the ion of species ‘i’, kB is the Boltzmann constant,
T is the temperature, ci stands for the ion concentration, e is the elementary charge, zi is the ion valence
and φ is the self-consistent electric potential. In thermal equilibrium, μi remains constant throughout the
system. Consequently, each sort of ion ‘i’ obeys the Boltzmann distribution.

ci = c0i exp
(

−
zi eφ

kB T

)
(13)

where, c0i is the ion concentration at the bulk reservoir.
The classical theory accounts only for electrostatics and thermal motion and neglects several important

effects such as dispersion forces, fluctuation, hydration, ion size effects and the water structure at the
interface. Several extensions of the theory are aiming at including one of these contributions to the model
in the framework of mean-field Poisson-Boltzmann theory.

The fundamental Poisson equation is used to self-consistently relate the electric potential φ to the net
excess charge density at a position x :

∇ ∙
(
ε0εw(x̄)∇φ(x)

)
+ ρ(x̄) = 0 (14)

where, ε0 = 8.854 × 10−12C2/(Jm) is the dielectric permittivity of vacuum, εw is the dielectric constant
of the solvent and ρ(x̄) is the net charge density at a given position, defined as:

ρ(x̄) = e
∑

i

zi ci (x̄) . (15)

The interaction between an ion and a surface is not only electrostatic; each ion experiences a fur-
ther additive term that comes partly from dispersion forces, Ui . Then, we have a modified Boltzmann
distribution of ions in the solution:

ci = c0i exp

(

−

[
zi eφ + Ui

]

kB T

)

. (16)

The combination of Boltzmann distribution and Poisson equation for net excess charge density leads to a
nonlinear second-order differential equation for the electric potential φ. Therefore, the Poisson-Boltzmann
equation is written

∇ ∙ (ε0εw(x)∇φ(x)) + e
∑

i

zi coi exp
(

−
zi eφ(x) + Ui (x)

kB T

)
= 0 . (17)
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A question that can be raised is whether or not ion size correlation and electrostatic correlation, not
accounted for in MPBE, may influence the result. Solvent averaged Monte Carlo (MC) simulations were
performed by Boström et al. (2005b) for ion distributions outside a single globular macroion in different salt
solutions. The model we used included both electrostatic and NES interactions among ions and between
ions and macroions.

Simulation results were compared with the predictions of the Ornstein-Zernike equation (OZ) with
the hypernetted chain (HNC) closure approximation and the non-linear Poisson-Boltzmann equation in
spherical coordinates, both extended to include Lifshitz NES potentials. We show in Figure 3 that there is
good agreement among modified Poisson-Boltzmann theory, MC simulations, and HNC calculations when
the counterions and co-ions are monovalent. There is also good agreement among the different approaches
with divalent co-ions (not shown here) (Boström et al. 2005b). However, the results from MPBE cannot
account for ion size correlation and neither for electrostatic correlation. These correlation effects become
more important for divalent counterions, as shown in Figure 4. The reason is simply that the divalent
counterions accumulate close to the colloid surface preventing, by size exclusion, co-ions to come close to
the colloid surface. The co-ions form a second layer outside the first layer.

Fig. 3 – Concentration profiles near a macroion (σM = 30Å and −20e0) in a monovalent electrolyte solution of ionic strength

1.0 M for NaCl (a) and NaI (b). Open circles represent counterion concentrations, and dark circles the coions. Solid lines are

numerical solutions of the non-linear Poisson-Boltzmann equation and dashed lines are for the OZ-HNC integral equation (Boström

et al. 2005b).

However, the general conclusion is that MPBE is, in many cases, a good approximation as compared
to mean-field MC simulations or HNC calculations that account for ion size correlations. This motivates
the success of the MPBE.

Other modified PB equations have been designed in the literature to incorporate better ion size corre-
lation effects. In this matter, we refer to the series of papers by Lozada-Cassou and co-workers (Jimenez-
Angeles et al. 2006, Messina et al. 2002).
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Fig. 4 – Concentration profiles near a macroion (σM = 30Å and +20e0) in solution of ionic strength 1.0 M for Na2SO4 (Boström

et al. 2005b). Symbols refer to MC simulation results. Open circles represent counterion concentrations (sulfate) and gray circles

the coions (Na+). Solid lines are numerical solutions of the non-linear Poison-Boltzmann equation, and dashed lines are for the

OZ-HNC integral equation. The inner figure shows that the HNC calculations for coion distributions coincide with the simulation

results.

5 USING MPB EQUATION TO UNDERSTAND REVERSAL OF HOFMEISTER SERIES

We next consider two planar surfaces coated with lysozyme proteins, whose isoelectric point is pI≈ 11.
The purpose is to investigate if one can understand why the Hofmeister sequences can be totally different
when the ions are counterions as compared to when they are co-ions. Assuming that we know the correct
ion distributions, the double layer pressure between two planar plates (see section IV) a distance L apart
can be written as (Lima et al. 2008a),

P = kT
∑

i

[
ci (L/2) − co,i

]
− 2

∑

i

∫ L/2

xo

ci
dUi

d L
dx . (18)

In order to compute the change of surface charge density as a function of pH, we have used charge
regulated surfaces (Boström et al. 2005c). Details about charge regulation model and its implementation
are given by Ninham and Parsegian (1970a) and Boström et al. (2005c).

In Figure 5 we show the sum of co-ion and counter-ion concentrations (normalized with bulk values)
for 0.15 M NaCl and 0.15 M NaSCN at pH 4 and pH 12. It is clear from this figure that the first term
in the double layer pressure (which is directly related to the concentration in the midpoint) gives rise to a
reverse Hofmeister sequence at pH 4, and a direct Hofmeister sequence at pH 12. Below the isoelectric
point, there is strong counter-ion adsorption of SCN−. This leads to a reduction in the total number of
ions in the midplane between the plates and a reduced repulsion, as compared to the corresponding case
for Cl−. Above the isoelectric point, there can be co-ion adsorption with SCN−. This leads to a higher
concentration of counter-ions (Na+) between the two surfaces. While this co-ion adsorption leads to
slightly less co-ions with thiocyanate, as compared with chloride, the dominant effect is that it increases
the number of counter-ions between the plates. There is a strong clue that suggests that this is the main
source of the different Hofmeister sequences observed when pH is below or above the isoelectric point.

The second term in Eq. (18) for the double layer pressure is related to the ionic dispersion interaction
between the ions and the two plates. For attractive dispersion potentials, this term gives an attraction. At
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Fig. 5 – The ion density (anion+cation) normalized with the bulk values in between two charge regulated plates (that carry the

same charge density and charge groups as hen-egg-white lysozyme, which is supposed to be uniformly smeared out on the surface)

20Å apart. The upper (lower) two curves are for pH 4 (pH 12) and the solid (dashed) lines correspond to 0.15 M NaSCN (0.15 M

NaCl) (Boström et al. 2005c).

least in the examples considered here, it increases with the magnitude of the dispersion potential. The two
terms together give rise to a situation where the total pressure due to the salt follows a reverse Hofmeister
sequence for pH<pI, and a direct Hofmeister sequence for pH>pI.

We are now ready to look in some detail at how the pressure for a fixed plate separation (20Å ) changes
with pH as we cross the isoelectric point. The calculation was done for lysozyme coated plates (pI≈ 11.16)
for different 0.15 M salt solutions. However, the qualitative results would be valid for other proteins as
well. In excellent agreement with experiments on a variety of proteins (with lysozyme the experiments
could not be done above pI), we see in Figure 6 that we obtain a reverse Hofmeister sequence for pH<pI,
and a direct Hofmeister sequence for pH>pI. Close to the isoelectric point, where electrostatic effects are
very small, one can even have attraction with very polarizable anions such as thiocyanate.
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Fig. 6 – The double layer pressure in 0.15 M salt solutions between two plates carrying the same charge density and charge groups

as lysozyme proteins 20Å apart. We are in all examples excluding the direct van der Waals pressure between the two plates across

a water solution. The different curves correspond to: electrostatics (circles); NaCl (squares); NaI (triangles pointing up); and

NaSCN (triangles pointing down). (The lines are only there to aid the eye) (Boström et al. 2005c).
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6 USING MPB EQUATION IN BISPHERICAL COORDINATES

There is a considerable effort in the literature trying to calculate the mean force among proteins and among
colloidal particles. In this context, the Poisson-Boltzmann (PB) equation can be a useful way because
it is solved with reduced computational cost, compared with molecular simulations and integral equation
theories, and also because it does not present numerical instabilities for large asymmetrical systems.

We use now the ion-specific MPB equation in bispherical coordinates. This Modified Poisson-
Boltzmann equation enables us to predict ion-specific properties of colloidal systems by studying the
interactions between two spherical particles. Phase diagrams and osmotic second virial coefficients
are presented for different salt solutions at different pH and ionic strengths, in agreement with the ex-
perimental observed Hofmeister effects.

The mean force between two proteins immersed in an electrolyte solution is a function of the electro-
static potential profile. We have implemented the finite volume method (Lima et al. 2007a) to solve the
ion-specific Poisson-Boltzmann equation for two dissimilar colloidal particles immersed in an electrolyte
solution, including sphere-sphere (Lima et al. 2007a, c) and plane-sphere geometries (Lima et al. 2007b).
The method has been proved to be efficient and suitable for PB calculations. The PB equation in bispherical
coordinates, considering ion-colloid van der Waals dispersion interactions, has successfully predicted the
ion specificity commonly observed experimentally, as shown here in Figures 7a and 7b. We emphasize that
our calculations are predictive, i.e., there are no adjustable parameters. In order to simulate the interaction
between lysozyme particles, we use the charge regulation model (Ninham and Parsegian 1970a).

Figure 7a shows a comparison of the calculated osmotic second virial coefficient for lysozyme-
lysozyme interactions in NaCl solution at pH 4.5 and 298K with experimental data.

Figure 7b shows phase diagrams for two aqueous lysozyme solutions containing NaCl or NaI at
298K, calculated from first-order perturbation theory (Tavares et al. 2004c) using the potential of mean
force obtained from PB equation plus Hamaker contribution. These calculations are in good agreement
with recent experimental and theoretical results by Gögelein et al. (2008). For both cases, salt concentra-
tion is 0.3 M. Stable fluid-fluid (dashed line) and fluid-solid (solid lines) transitions appear for solutions
containing NaI. However, in 0.3 M NaCl, with its relatively small attractive potential, the fluid-fluid phase
transition is metastable, i.e., at a fixed temperature smaller than the fluid-fluid critical point, the equilib-
rium conditions (isochemical potential and isopressure equations) give two possibilities for phase coexis-
tence: solid-fluid and fluid-fluid. However, the chemical potentials obtained for solid-fluid calculations
are smaller than those for fluid-fluid. Therefore, the solid-fluid equilibrium is stable when compared
with fluid-fluid equilibrium. At all packing fractions, this system shows a stable fluid-solid phase transi-
tion. The metastable fluid-fluid transition for NaCl is represented by a dashed line. Symbols (squares)
are fluid-fluid critical points.

Therefore, important thermodynamic properties related to protein aggregation, essential in biotechnol-
ogy and pharmaceutical industries, can be obtained from the method shown here.

7 ION-SURFACE POTENTIAL OF MEAN FORCE FROM SIMULATIONS

Mean-field theories that include non-electrostatic interactions acting on ions near interfaces, as we have
discussed so far, have been found to accommodate many experimentally observed ion specific effects.
However, it is clear that this approach does not fully account for the liquid molecular structure and hydration
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(a) (b)

Fig. 7 – (a) Comparison of the theoretical second virial coefficient for lysozyme- lysozyme interactions (for three values of the

Hamaker constant equal to 5kB T0, 8kB T0 and 10kB T0) in NaCl solution at pH 4.5 with experimental data; (b) Phase diagrams

for two aqueous lysozyme solutions containing NaCl or NaI. For all cases, salt concentration is 0.3 M and T0 is 298K. Stable

fluid-fluid (dashed line) and fluid-solid (solid lines) transitions appear for solutions containing NaI. When the electrolyte is NaCl,

the stable transition is fluid-solid for all packing fractions. The metastable fluid-fluid transition for NaCl is represented by a dashed

line. Symbols (squares) are fluid-fluid critical points. (Lima et al. 2007c, 2008c).

effects. This has recently been improved by using parameterized ionic potentials deduced from recent
non-primitive model MD simulations in a generalized Poisson-Boltzmann equation (Horinek et al. 2008,
Lima et al. 2008a, b, Horinek and Netz 2007). We investigated how ion distributions and double layer
forces depend on the choice of the background salt. Here we consider ion distributions near a single charge
neutral hydrophobic colloidal particle.

For a mixed electrolyte in spherical coordinates, the Poisson equation is,

ε0

r2

d

dr

(
r2εw(r)

dφ

dr

)
= −e

[
cNa+(r) − cCl−(r) − cI −(r)

]
, (19)

where φ is the self-consistent electrostatic potential. Using the modified Boltzmann distribution, the ion
concentrations as functions of the radial distance ci (r) are given by Eq. (16). In Eq. (16), the NES potential
Ui experienced by the ions can be represented by the ionic potential of mean force (PMF) obtained from
molecular simulation. This PMF receives contributions from different sources. Here we consider, as
an illustrative example, ion distributions near a spherical gold nanoparticle covered with an uncharged
hydrophobic self-assembled monolayer (SAM). Horinek and Netz (2007) recently performed molecular
dynamics simulations that produced potential of mean force (PMF) acting on different ions near a SAM.
The PMF obtained includes image-charge effects, van der Waals interactions among ion, water, and substrate
and ion hydration. These PMFs are reproduced graphically in Figure 8 for Na+, Cl−, and I−. Since this
PMF is taken from infinite dilution of electrolyte, it contains the unscreened image charge effect. Therefore,
one has to be cautious when it is applied at finite electrolyte concentration. The unscreened self-image
term gives a too long-ranged influence on the density profiles.
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Fig. 8 – Potential of mean force for different ions near the SAM-water interface from molecular simulation (Horinek
and Netz 2007).

The inhomogeneous dielectric constant profile εw(r) used here has little influence on the final result
reported here and is given by Lima et al. (2008a). The boundary conditions come from the assumption
of global charge neutrality and that we have no charges at infinity. The electric field at the charge neutral
colloidal particle surface is: (

r2 dφ

dr

) ∣
∣
∣
∣
rc

= 0. (20)

Solving Eqs. (16), (19) and (20) combined with PMFs reproduced in Figure 8, we calculated the
electrostatic potential profile and the ion distributions (local concentrations). The ion distributions for the
three ions are shown in Figure 9 for 0.2 M total salt concentration. We observe an enhanced surface anion
concentration due to ion specific PMF that is largest for iodide ions. In Figure 10 we consider a system with
the same total salt concentration, but with pure NaCl. In this case, we observe a physisorption of chloride
ions. Comparing Figures 9 and 10, we notice that the physisorption of chloride is slightly reduced by the
presence of iodide ions competing for the surface.

Fig. 9 – Concentration profile of anions and cations (mixed salt with equal concentrations of NaCl and NaI) outside of an uncharged

hydrophobic colloidal particle with radius 10 nm at a total bulk concentration C0 = 0.2 M.
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Fig. 10 – Concentration profile of Cl− anions and Na+ cations outside of an uncharged hydrophobic colloidal particle with radius

10 nm at a bulk concentration C0 = 0.2 M of NaCl.

We have shown that there can be highly specific ion adsorption to colloidal particles. As shown by the
beautiful experiment performed by Lo Nostro and co-workers (Lagi et al. 2007), this may lead to anion
specific concentrations in dense phases. We propose that, in a system containing two phases (each phase
with finite volume), ions can be pushed into the phase with larger surface areas (dense phase) due to ion
specific adsorption. The same binding mechanism should also be present in any system where ions can
permeate inside a region with large surface adsorption area, such as lipids, proteins and/or polymers, and
bind to the surfaces in an ion specific way. This result should be of relevance for colloid science and cell
physiology.

CONCLUSIONS

The mean force between two colloidal particles in salt solutions has been calculated including both
electrostatic interactions and salt-specific NES potentials among small ions and between small ions and
macroions. Monte Carlo simulations and Modified Poisson-Boltzmann equation have been used to de-
termine effects of salt identity on the potential of mean force between two proteins or colloidal particles.
While our model relies on a solvent averaged model, the present results are qualitatively consistent with
specific-salt effects observed experimentally by numerous investigators, starting with Hofmeister for aque-
ous proteins over 100 years ago. Our calculations emphasize the importance of NES potentials between
ions and macroions. These specific forces, along with effects related to molecular solvation, may provide
a key toward understanding salt-type effects as observed for colloidal and protein solutions. Recently
theories using ionic dispersion potentials have been improved by using ion-surface PMF from simulations
that include explicit water molecules. We believe that we are now close to qualitative understanding of the
Hofmeister effect.
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RESUMO

Interações íon-específicas (dependentes do tipo de íon presente em solução) entre duas partículas coloidais são

calculadas usando a equação de Poisson-Boltzmann (PB) modificada e simulações de Monte Carlo (MC). As equa-

ções de PB apresentam bons resultados de perfis de concentração nas proximidades de um macro-íon, principalmente

para soluções salinas contendo íons monovalentes. Estas equações incluem não só interações eletrostáticas, mas

também potenciais de dispersão, que têm origem nas polarizabilidades de íons e proteínas, permitindo a predição

de propriedades íon-específicas de sistemas coloidais. Os resultados obtidos a partir da equação de PB modificada

são comparados com outros obtidos por simulação de MC e por equações integrais. Diagramas de fase e o segundo

coeficiente de virial são obtidos para diferentes sais e diferentes valores de pH e força iônica, em concordância com

efeitos de Hofmeister observados experimentalmente. Interações efetivas obtidas por dinâmica molecular entre cada

íon e uma superfície hidrofóbica foram incluídas na equação de PB, a fim de considerar a estrutura da água e efeitos

de hidratação. O método mostrou-se eficiente e adequado para descrever fenômenos onde a estrutura da água nas

proximidades da interface desempenha papel essencial. Propriedades termodinâmicas importantes, relacionadas com

a agregação de proteínas, essenciais em biotecnologia e indústrias farmacêuticas, podem ser obtidas pelo método aqui

apresentado.

Palavras-chave: estabilidade de colóides, série de Hofmeister, potencial de campo médio, proteínas.
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