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ABSTRACT

In this study, a multiphysical description of fluid transport through osteo-articular porous media is pre-
sented. Adapted from the model of Moyne and Murad, which is intended to describe clayey materials
behaviour, this multiscale modelling allows for the derivation of the macroscopic response of the tissue
from microscopical information. First the model is described. At the pore scale, electrohydrodynamics
equations governing the electrolyte movement are coupled with local electrostatics (Gauss-Poisson equa-
tion), and ionic transport equations. Using a change of variables and an asymptotic expansion method, the
macroscopic description is carried out. Results of this model are used to show the importance of couplings
effects on the mechanotransduction of compact bone remodelling.
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1 INTRODUCTION

Osteo-articular media, such as bone tissues or cartilage, are complex saturated porous tissues composed of

a solid matrix, cells and a fluid phase. The movement of the fluid phase within the spaces of the solid matrix

is referred to as interstitial fluid flow. Although much is suspected about the role of fluid movement on

biological activities such as growth, adaptation and repair mechanisms, relatively little is known about flow

characteristics under in vivo conditions. The behaviour of osteo-articular tissue is governed by different

effects due to many driving forces (hydraulic, biochemical, electrical, mechanical, etc.). For instance, the

measurements of streaming potentials are commonly used to validate poroelastic models of bone (Salzstein

et al. 1987, Salzstein and Pollack 1987, Cowin et al. 1995). In parallel, the role of electro-chemical

phenomena in tissue remodelling and growth has been put into relief (Frank and Grodzinsky 1987a, b,

Pollack 2001, Knothe Tate 2003, Sharma et al. 2007, Lemaire et al. 2008).

In this study, a multiphysical description of fluid transport through compact bone tissue is presented.

Thanks to this modelling, it is possible to estimate the in vivo electro-chemical part of the fluid stimulation
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of the cells. Our approach is based on several previous works carried out under the aegis of Moyne and

Murad (2002, 2006, Murad and Moyne 2006, 2008) and Lemaire et al. (2002, 2007, Lemaire 2004). All of

these works aim at studying the hydro-mechanical behaviour of expansive clayey materials. Since the solid-

fluid interface of these media presents a negative surface charge, many electro-physical phenomena, such

as osmotic swelling, streaming potentials or electro-osmosis, may occur. Osteo-articular tissues present

the same kind of electrical property. Indeed, bone matrix and cell membranes present negative surface

potentials because of the presence of fatty acids and adsorbed species. In this paper, we intend to use

the approach of Moyne and Murad to study interstitial fluid velocities in compact bone as it was done a

few years ago (Lemaire et al. 2006). Nevertheless, we recently pointed out the necessity to improve the

microscopical description of the living tissue (Lemaire et al. 2008) and proposed to add a parameter to

describe the influence of a sub-microscopical structure corresponding to the fiber matrix surrounding the

cells.

First the model is carried out. The two-scale saturated porous medium is composed by fluid and solid

phases. This solid phase includes the cells and the bone matrix, whereas the fluid phase corresponds to

the interstitial fluids. Typically, in compact bone, the microscale refers to the size of the micropores (the

canaliculi, whose radius is ∼ 10−8 m), whereas the macroscale corresponds to the osteon radius (10−4 m).

The multiscale structure of compact bone is detailed in Section 4.1.

At the pore scale, electro-hydrodynamics equations governing the electrolyte movement are coupled

with local electrostatics (Gauss-Poisson equation) and ionic transport equations. In particular, the fluid

movement at the microscale is described thanks to a Brinkman equation. Indeed, in living tissues, the

micropores that contain the cells are partially filled by a pericellular fibrous network. This network generates

supplementary viscous effects. Thus, since a classical Stokesian approach cannot take into account this

sub-microscopical friction effect, a Brinkman-like term is added thanks to a permeability parameter K f .

Using the change of variables proposed by Moyne and Murad (2002) and an asymptotic expansion method

(Auriault 1991b), a macroscopic description of the fluid flow is derived.

The efficiency of this model is, then, presented in a biological application dealing with the mechan-

otransduction of bone remodelling. Indeed, after having briefly introduced the multi-scale structure of

compact bone, the key role of interstitial fluid movements in the vicinity of the mechano-sensitive cells of

bone is discussed, and the importance of osmotic and electro-osmotic coupled phenomena at this scale is

clearly demonstrated.

2 MICROSCOPICAL EQUATIONS IN THE FLUID PHASE

The material is seen as an uniformly negatively charged porous medium that can be represented by a periodic

cell (representative elementary volume). This medium is saturated by a continuum dielectric aqueous

solution with binary monovalent symmetric electrolytes. Obviously, the chemical species of osteo-articular

fluids are not only monovalent ions. For instance, the presence of proteins and the special role of calcium

in bone activity could be taken into account with a more detailed chemical description. Nevertheless, the

scope of this work is focused on studying electro-chemical effects governing fluid transport within the

framework of continuum mechanics. Thus, the nature of the ionic species does not matter too much since

the steric and hydration effects are neglected and ions are treated as point charges. Moreover, to simplify
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the approach, the chemical exchanges among the different phases of the medium are not taken into account.

Hence, the surface charge of the medium remains constant. In what follows, we begin by presenting the

microscopic phenomena that govern electric potential distribution, ion transport and fluid flow.

2.1 ELECTROSTATICS

Neglecting magnetic effects, the electric potential φ in the fluid satisfies the Gauss-Poisson equation:

∇ ∙ ∇φ = −
F

εε0
(n+ − n−), (1)

where ∇∙ is the divergence operator, ∇ the gradient operator, F the Faraday’s constant, ε0 the vacuum

permittivity, ε the relative dielectric constant of the solvent, and, n+ and n− the cationic and anionic molar

concentrations, respectively.

Boundary conditions are obtained by writing the electric flux continuity at the pore’s walls. Noting σ

the surface charge density and n the normal unit vector exterior to the the fluid domain, we have:

∇φ ∙ n =
σ

εε0
. (2)

2.2 IONS TRANSPORT

The convection-diffusion equations of Nernst-Planck that governs the ion transport are:

∂n±

∂t
+ ∇ ∙ (n±v) = ∇ ∙

[
D±(∇n± ± n±∇φ̄)

]
, (3)

where t is the time, D+ and D− are the water-ions diffusion coefficients for cations and anions, respectively.

The vector v is the fluid velocity. The reduced electric potential φ̄ = Fφ/RT is introduced with the help

of absolute temperature T and ideal gas constant R.

Boundary conditions are written considering the impervious property of the pore’s walls. Noting n the

normal unit vector exterior to the the fluid domain, we have:

−D±
(
∇n± ± n±∇φ̄

)
∙ n = 0. (4)

2.3 MODIFIED BRINKMAN EQUATION

In all the studies cited in the introduction, the movement of the incompressible and Newtonian electrolyte

solution was described by a modified Stokes equation treating electro-viscous effects due to Coulombic

forces and neglecting inertial terms. In order to model living materials, this description has to be improved.

Indeed, electron photomicrographs of the compact bone volume presented by You et al. (2004) showed

the presence of micro-elements forming a fibrous pericellular matrix partially occupying the pore space.

The purely Stokesian treatment of the fluid movement within the pore is then inadequate, since it does

not take into account the friction effect generated by the fibers. These elements, which belong to a lower

structural level, are known to slow down the fluid flow at a macroscopic scale (Gururaja et al. 2005). Our

microscopical modelling of the electrolyte solution movement has then to be changed to express the action
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of this supplementary damping force. Following the arguments of Brinkman (1947), a dissipative new term

is added to the modified Stokes equation:

−∇ p + μ f ∇ ∙ ∇v −
μ f

K f
v = F(n+ − n−)∇φ, (5)

where p is the hydraulic pressure, μ f is the fluid dynamic viscosity and K f is an intrinsic permeability

parameter quantifying the damping effect due to the fibrous matrix.

Although the Brinkman equation is semi-empirical in nature, it has been validated by detailed numerical

tests of the Stokes equation in regions near the interface among dissimilar regions (Martys et al. 1994).

Furthermore mass conservation equation is written as:

∇ ∙ v = 0. (6)

Boundary conditions at the interface are no-slip conditions:

v = 0. (7)

2.4 AN ALTERNATIVE FORMULATION IN THE FLUID PHASE

An original approach of this multiphysical treatment of interstitial fluid flow within charged porous media

consists in introducing a change of variables to separate microscopic variables that may vary at the pore’s

scale, and macroscopic variables that only vary at the macroscopic scale. This change of variables is detailed

elsewhere (Moyne and Murad 2003, Lemaire et al. 2002, 2006). Its principle consists in building at each

location of the fluid phase an equivalent virtual bulk (bulk’s fields are indexed b) which is at thermodynamical

equilibrium (in terms of electro-chemical potentials μ), and conserves the electro-neutrality condition:

μ±
b = μ± = ±Fφ + RT ln(n±) = ±Fψb + RT ln(n±

b ), (8)

n+
b = n−

b = nb. (9)

Consequently, bulk’s and real fields are linked as follows:

φ = ψb + ϕ, (10)

n± = nb exp(∓ϕ̄), (11)

pb = p − π = p − 2RT nb(cosh ϕ̄ − 1), (12)

where π is Donnan osmotic pressure.

The electric potential is, thus, decomposed into a bulk electric potential ψb playing a similar role as

the streaming potential, and another potential ϕ corresponding to the double-layer potential (see Eq. (10)).

When the quantity ϕ is reduced to ϕ̄ = Fϕ/RT , this later potential rules the Boltzmann distributions of the

ionic species given by (11). The bulk concentration, which verifies the electro-neutrality condition (9), also

appears in these ionic distributions. Finally, the bulk pressure can be expressed by subtracting the Donnan

osmotic pressure π from the hydraulic pressure p (see Eq. (12)).
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As a consequence, the problem can be reformulated in terms of bulk variables. Equation (1) is rephrased

to obtain the Poisson-Boltzmann equation:

∇ ∙ ∇(ψ̄b + ϕ̄) =
1

L2
D

sinh ϕ̄, (13)

where the streaming potential has been reduced ψ̄b = Fψb/RT .

The Debye length L D =
√
εε0 RT/(2F2nb), which characterizes the thickness of the diffuse double

layers, is here introduced. Furthermore, the new form of the Nernst-Planck equation (3) is:

∂

∂t

(
nb exp(∓ϕ̄)

)
+ ∇ ∙

(
nb exp(∓ϕ̄)v

)
= ∇ ∙

(
D± exp(∓ϕ̄)(∇nb ± nb∇ψ̄b)

)
. (14)

Finally, the modified Brinkman equation (5) is reformulated:

μ f ∇ ∙ ∇v −
μ f

K f
v − ∇ pb − 2RT (cosh ϕ̄ − 1)∇nb + 2RT nb sinh ϕ̄ ∇ψ̄b = 0. (15)

In this expression, the different terms governing the fluid transport can be identified: i) the effect of

the viscous shearing stresses acting on a volume element of fluid; ii) the effect of the damping force of the

fibrous matrix; iii) the hydraulic driving effect due to the gradient of bulk pressure; iv) the osmotic driving

effect due to the gradient of bulk concentration; v) the electro-osmotic driving effect due to the gradient of

bulk electric potential. We can notice that the change of variables does not change the mass conservation

equation (6).

The boundary conditions (2) and (4) are finally reformulated in terms of bulk variables:

∇(ψ̄b + ϕ̄) ∙ n =
Fσ

εε0 RT
, (16)

−D± exp(∓ϕ̄)(∇nb ± nb∇ψ̄b) ∙ n = 0. (17)

No-slip conditions for the velocity (7) are not modified by the change of variables.

3 HOMOGENIZATION PROCEDURE

The aim of this section is to propagate the microscopic phenomena presented in term of bulk variables to the

upper scale. This change of scale is carried out within the general framework of periodic homogenization

(Auriault 1991a). Thus, the bounded macroscopic medium is assumed to be made by a repeated microscopic

cell. The microscopic length ` characterizing the cell defines the length-scale for which the microscopic

heterogeneities are relevant. At the macroscopic length-scale L of the porous medium, these heterogeneities

are no more significant. The ratio η = `/L corresponds to the perturbation parameter. To obtain a

macroscopic equivalent description, the influence of the inhomogeneities of the microscopic scale has to

decay asymptotically as the ratio η decreases. As a consequence, this ratio has to be very small when

compared with one.

3.1 NON-DIMENSIONAL WRITING OF THE MICROSCOPIC PROBLEM

The first step of the periodic homogenization procedure consists in writing the microscopic equations in a

non-dimensional fashion. Thus, we have to divide all the quantities q appearing in equations describing
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the microscale by reference values:

q ′ =
q

qr
. (18)

The subscript “r” and the prime are respectively assigned to the reference values that are used to

normalize each quantity and to the resulting non-dimensional quantity. For instance, the reference length

Lr is chosen to be on the order of the macroscopic medium length, i.e., Lr ≡ L . In compact bone,

this macroscopic length corresponds typically to the osteon radius (10−4 m). This reference length is

used to obtain the non-dimensional writing of spatial derivative operators. Moreover, the reference values

corresponding to constant quantities are these quantities themselves.

3.1.1 Micro/macro coordinates and spatial operator

Microscopic and macroscopic coordinates x and X respectively associated with the microscopic cell and the

overall dimension of the medium are introduced. The associated reference lengths are xr ≡ ` and Xr ≡ L

(Lemaire et al. 2006). As a consequence, choosing the reference characteristic length Lr on the order of

the macroscopic medium length, i.e. Lr ≡ L , the spatial differential operator ∇ is transformed as:

∇ =
1

L
∇′ =

1

`
∇′

x +
1

L
∇′

X , (19)

where ∇x and ∇X are the differential operators referring to the microscopic and macroscopic coordinates,

respectively. Thus, we have finally:

∇′ = η−1∇′
x + ∇′

X . (20)

3.1.2 Poisson-Boltzmann equation

To transform Eq. (13), the chosen reference electric potential φr corresponds to the surface potential of the

pore walls. For instance, in bone tissues, this electric potential can be approximated by the values of the

zeta potential measured in bone tissue by Berreta and Pollack (1986): φr = −3.55 mV. As a consequence,

the non-dimensional number representing the reduced reference potential φ̄r = Q = Fφr/RT is scaled

to O(η0), where O(�) is big-oh notation that is used to describe the asymptotic behaviour of the function.

This implies that ψ̄ ′
b ≡ ψ̄b and ϕ̄′ ≡ ϕ̄.

Moreover, the bulk concentration plays a role in the definition of the Debye length. It is, then, necessary

to propose a reference value for this concentration. Following Moyne and Murad’s arguments (Moyne and

Murad 2002), local electroneutrality leads to a 1/` faster variation of the ionic concentrations, in comparison

with the changes of the pore’s surface charge density σ . Thus, these authors proposed to express the

reference concentration as nr ≡ σ/F`. Moreover, the condition of electrical flux continuity at the interface

provides that σ ≡ εε0φr/` and reference concentration is rewritten as nr ≡ εε0φr/F`2. According to these

scaling laws, we have L Dr ≡ `. As a consequence, the Poisson-Boltzmann Eq. (13) is rephrased in:

η2∇′ ∙ ∇′(ψ̄ ′
b + ϕ̄′) =

1

L ′2
D

sinh ϕ̄′. (21)

Furthermore, the electrical flux continuity condition (16) is transformed in:

η∇′(ψ̄ ′
b + ϕ̄′) ∙ n = Q . (22)
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Using local electro-neutrality, this number can be interpreted as the ratio between the electrical and thermal

energies Q = Fσ`/εε0 RT .

3.1.3 Nernst-Planck equations

The temporal differential-operator is scaled thanks to the reference time tr = L2/Dr , where Dr =

max(D+, D−) and max is the function that returns the maximum value. Thus, the Nernst-Planck Eq. (14)

is rewritten as:
∂

∂t ′

(
n′

b exp(∓ϕ̄′)
)
+ Pe∇

′ ∙
(
n′

b exp(∓ϕ̄′)v′
)

= ∇′ ∙
(
D′

± exp(∓ϕ̄′)
(
∇′n′

b ± n′
b∇

′ψ̄b
′
)
)
, (23)

where the Péclet number is defined by Pe = vr L/Dr . The quantity vr is a reference velocity.

Different cases can be viewed depending on the nature of the main driving effect (Auriault and Adler

1995). If diffusion is predominant, the Péclet number is small Pe = O(η). If convection at the large scale

is predominant, the Péclet number is important Pe = O(η−1). Finally, if convection and diffusion are

equivalent, we have Pe = O(1).

The impervious condition (17) is also rephrased:

−D′
± exp(∓ϕ̄′)(∇n′

b ± n′
b∇ψ̄b

′
) ∙ n = 0. (24)

3.1.4 Modified Brinkman equation

We introduce the Reynolds number Re = pr L/μ f vr and the number De = RT nr/pr , which measures

the importance of the osmotic effects related to the pressure effects. The intrinsic permeability K f , which

quantifies the friction effect generated by the fibers, has to be reduced by a squared length. The order

of magnitude of this permeability can be calculated thanks to the model of Tsay and Weinbaum (1991)

adapted by Weinbaum et al. (1994). Thus, physiologically significant values of this parameter lay between

5.9 × 10−18 m2 and 2.0 × 10−17 m2 (Lemaire et al. 2008). Consequently, we choose to reduce the

permeability parameter with the squared microscopic length `2. The modified Brinkman equation is, then,

rewritten in its non-dimensional form:

1

Re
μ′

f ∇
′ ∙ ∇′v′ −

1

η2 Re

μ′
f

K ′
f

v′ = ∇′ p′
b + De2R′T ′(cosh ϕ̄′ − 1)∇′n′

b − De2R′T ′n′
b sinh ϕ̄′∇′ψ̄ ′

b . (25)

Moreover, the mass conservation equation (6) is written in its non-dimensional form:

∇′ ∙ v′ = 0. (26)

Finally, the no-slip condition (7) at the solid-fluid interface is rephrased:

v′ = 0. (27)

3.2 ASYMPTOTIC EXPANSIONS

Each quantity q is expressed as a function depending on both the scales q = q(x, X). Moreover, it is

written in terms of asymptotic expansion of the small parameter η:

q(x, X) =
∞∑

i=0

q[i](x, X)ηi . (28)
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For constant quantities, we can notice that q[i](x, X) = 0 for i > 0 and, thus, q(x, X) = q[0] = q.

These asymptotic expansions are introduced in the previous equations. Using the decomposition of the

spatial derivative operator (see Eq. (20)) in the previous equations, we collect the different powers of η.

3.2.1 Developments of the Boltzmann terms

Combining the asymptotic expansion of the double-layer potential ϕ̄′ = ϕ̄′
[0] + ϕ̄′

[1]η + ϕ̄′
[2]η

2 + O(η3)

with a Taylor development at the origin of the exponential function, the Boltzmann term exp(∓ϕ̄) is

expanded at the second order:

exp(∓ϕ̄′) = exp(∓ϕ̄′
[0])

(
1 ∓ ϕ̄′

[1]η +
( ϕ̄′2

[1]

2
∓ ϕ̄′

[2]

)
η2

)
+ O(η3). (29)

Hence, the expansions of hyperbolic cosine and sine functions at the first order are, respectively:

cosh(ϕ̄′) = cosh(ϕ̄′
[0])+ ϕ̄′

[1] sinh(ϕ̄′
[0])η + O(η2) , (30)

sinh(ϕ̄′) = sinh(ϕ̄′
[0])+ ϕ̄′

[1] cosh(ϕ̄′
[0])η + O(η2) . (31)

3.2.2 Poisson-Boltzmann equation

At the zeroth order, the Poisson-Boltzmann equation gives:

∇′
x ∙

(
∇′

x ϕ̄
′
[0] + ∇′

x ψ̄
′
b[0]

)
=

1

L ′
D[0]

1

L ′
D[0]

sinh ϕ̄′
[0]. (32)

The corresponding boundary condition at the zeroth order is obtained from the equation (22):

∇′
x

(
ψ̄ ′

b[0]
+ ϕ̄′

[0]

)
∙ n = Q. (33)

3.2.3 Nernst-Planck equation

To study the Nernst-Planck equations, the Péclet’s number has to be scaled in regards to the transport

process. For the case of transport within cortical bone’s lacuno-canalicular system, the reference length

corresponds to the osteon’s radius and typical values of velocities have been calculated by Rémond et al.

(2008). Comparing to the order of magnitude of classical diffusion coefficients in water, the main part of

ionic transport is diffusive and the Péclet’s number is small. Thus, Pe = O(η) and the asymptotic expansion

of the Nernst-Planck equation is carried out. Collecting the terms at the second order, we have:

∇′
x ∙

(
D′

± exp(∓ϕ̄′
[0])

(
∇′

x n′
b[0]

± nb′
[0]

∇′
x ψ̄

′
b[0]

))
= 0. (34)

At the first order, we obtain:

∇′
X ∙

(
D′

± exp(∓ϕ̄′
[0])

(
∇′

x n′
b[0]

± n′
b[0]

∇′
x ψ̄

′
b[0]

))
+ ∇′

x ∙
(

D′
± exp(∓ϕ̄′

[0])
(
∇′

X n′
b[0]

+∇′
x n′

b[1]
± n′

b[0]

(
∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]

)
± n′

b[1]
∇′

x ψ̄
′
b[0]

∓ ϕ̄′
[1]∇

′
x n′

b[0]
− ϕ̄′

[1]n
′
b[0]

∇′
x ψ̄

′
b[0]

))
= 0. (35)
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Finally, the ionic transport gives at the zeroth order:

∂

∂t
(n′

b[0]
exp(∓ϕ̄′

[0]))+ ∇′
x ∙ (n′

b[0]
exp(∓ϕ̄′

[0])v
′
[0]) =

∇′
X ∙ (D′

± exp(∓ϕ̄′
[0])(∇

′
X n′

b[0]
+ ∇′

x n′
b[1]

∓ ϕ̄′
[1]∇

′
x n′

b[0]
))+ ∇′

x ∙ (D′
± exp(∓ϕ̄′

[0])(∇
′
X n′

b[1]
+ ∇′

x n′
b[2]
))

∓ ∇′
x ∙ (D′

± exp(∓ϕ̄′
[0])ϕ̄

′
[1](∇

′
X n′

b[0]
+ ∇′

x n′
b[1]
))+ ∇′

x ∙ (D′
± exp(∓ϕ̄′

[0])(
ϕ̄′

[1]

2
∓ ϕ̄′

[2])∇
′
x n′

b[0]
)

± ∇′
X ∙ (D′

± exp(∓ϕ̄′
[0])n

′
b[0]
(∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]
))± ∇′

x ∙ (D′
± exp(∓ϕ̄′

[0])n
′
b[1]
(∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]
))

± ∇′
x ∙ (D′

± exp(∓ϕ̄′
[0])n

′
b[0]
(∇′

X ψ̄
′
b[1]

+ ∇′
x ψ̄

′
b[2]

+ (
ϕ̄′

[1]

2
∓ ϕ̄′

[2])∇
′
x ψ̄

′
b[0]
))

± ∇′
X ∙ (D′

± exp(∓ϕ̄′
[0])(n

′
b[1]

∓ ϕ̄′
[1]n

′
b[0]
)∇′

x ψ̄
′
b[0]
)± ∇′

x ∙ (D′
± exp(∓ϕ̄′

[0])n
′
b[2]

∇′
x ψ̄

′
b[0]
)

− ∇′
x ∙ (D′

± exp(∓ϕ̄′
[0])ϕ̄

′
[1](n

′
b[0]
(∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]
)+ n′

b[1]
∇′

x ψ̄
′
b[0]
)).

(36)

Moreover, the impervious boundary condition (24) gives, respectively, at the first and zeroth orders:

−D′
± exp(∓ϕ̄′

[0])(∇
′
x n′

b[0]
± n′

b[0]
∇′

x ψ̄
′
b[0]
) ∙ n = 0, (37)

−D′
± exp(∓ϕ̄′

[0])[∇
′
X n′

b[0]
+ ∇′

x n′
b[1]

± n′
b[0]
(∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]
)± n′

b[1]
∇′

x ψ̄b[0]

∓ϕ̄′
[1](∇

′
x n′

b[0]
± n′

b[0]
∇′

x ψ̄
′
b[0]
)] ∙ n = 0. (38)

3.2.4 Brinkman equation

Two non-dimensional numbers have been introduced in the Brinkman equation (25). It is, then, necessary

to estimate their order of magnitude. On the one hand, the Reynolds number Re = pr L/μ f vr , which

compares inertial and viscous effects, is quantified using the scaling law proposed by Auriault (1991a).

The orders of magnitude of the reference velocity vr and pressure pr of the fluid are based on classical

dimensional analysis of Darcy law, which leads to vr ≡ `2 pr/μ f L . Consequently, we have the order of

magnitude of the Reynolds number Re ≡ O(η−2). On the other hand, according to Derjaguin et al. (1987),

electrical stresses counterbalance the osmotic pressure effects. This argument leads to an estimation of the

non-dimensional number De. Indeed, since electrical and pressure effects have the same order of magnitude,

we have De ≡ O(1). Using these scaling laws in the Brinkman problem, the collection of terms at the first

and zeroth orders gives:

0 = ∇′
x p′

b[0]
+ 2R′T ′

(
cosh ϕ̄′

[0] − 1
)
∇′

x n′
b[0]

− 2R′T ′n′
b[0]

sinh ϕ̄′
[0]∇

′
x ψ̄

′
b[0]
, (39)

μ′
f ∇

′
x ∙ ∇′

x v′
[0] −

μ′
f

K ′
f

v′
[0] = ∇′

X p′
b[0]

+ ∇′
x p′

b[1]
+ 2R′T ′

(
cosh ϕ̄′

[0] − 1
)(

∇′
X n′

b[0]
+ ∇′

x n′
b[1]

)

−2R′T ′n′
b[0]

sinh ϕ̄′
[0]

(
∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]

)
− 2R′T ′n′

b[1]
sinh ϕ̄′

[0]∇
′
x ψ̄

′
b[0]

+2R′T ′ϕ̄′
[1]

(
sinh ϕ̄′

[0]∇
′
x n′

b[0]
− n′

b[0]
cosh ϕ̄′

[0]∇
′
x ψ̄

′
b[0]

)
. (40)

The corresponding no-slip boundary condition (27) gives that all the terms in the asymptotic expansion

of the velocity are zero at the wall. Finally, the asymptotic expansion of the continuity equation (26) gives
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at the first and zeroth orders:

∇′
x ∙ v′

[0] = 0, (41)

∇′
X ∙ v′

[0] + ∇′
x ∙ v′

[1] = 0. (42)

3.3 SLOW VARIABLES OF THE PROBLEM

The set of previous equations is used to separate variables that only vary at the macroscopic scale (slow

variables) from those which possibly vary at the microscopic scale (fast variables).

For frequent geometries of pores such as parallel platelets (clayey materials, gels) or parallel cylindric

channels (filters, bones, Kozeny-Carman materials), it is possible to make the cartesian or cylindric coor-

dinates correspond to the macro and microscopic coordinates. The example of the tubular geometry of the

canaliculi is used hereafter (see Section 4.1). When considering such a situation, the slow variables useful

for the model can be easily deduced. First, using the impervious condition (37) in equation (34), we show

that the zeroth order terms of bulk concentration and potential do not vary at the microscopic scale. Taking

into account this result in the first order of the Brinkman equation (39), we also obtain that the zeroth order

term of the bulk pressure is a slow variable. Finally, bulk variables are only slow ones:

∇′
x n′

b[0]
= ∇′

x ψ̄
′
b[0]

= ∇′
x p′

b[0]
= 0. (43)

This result shows the interest of working with bulk variables, since they only depend on the

macroscopic coordinate.

To obtain this result for any geometry of the porous network, it is necessary to adopt another approach

as proposed by Moyne and Murad (2002) to avoid the miscomprehension that appears by combining

equations (34) and (37).

3.4 CONSEQUENCES ON PREVIOUS EQUATIONS

Considering that the slow variables do not vary at the microscale through equality (43), equations (32) to

(40) can be simplified as follows:

∇′
x ∙ ∇′

x ϕ̄
′
[0] =

1

L ′
D[0]

1

L ′
D[0]

sinh ϕ̄′
[0], (44)

∇′
x ϕ̄

′
[0] ∙ n = Q, (45)

∇′
x ∙

(
D′

± exp(∓ϕ̄′
[0])

(
∇′

X n′
b[0]

+ ∇′
x n′

b[1]
± n′

b[0]
(∇′

X ψ̄b[0] + ∇′
x ψ̄b[1])

)
= 0, (46)

∂

∂t
(n′

b[0]
exp(∓ϕ̄′

[0]))+ ∇′
x ∙ (n′

b[0]
exp(∓ϕ̄′

[0])v
′
[0]) =

∇′
X ∙ (D′

± exp(∓ϕ̄′
[0])(∇

′
X n′

b[0]
+ ∇′

x n′
b[1]
))+ ∇′

x ∙ (D′
± exp(∓ϕ̄′

[0])(∇
′
X n′

b[1]
+ ∇′

x n′
b[2]
))

∓∇′
x ∙ (D′

± exp(∓ϕ̄′
[0])ϕ̄

′
[1](∇

′
X n′

b[0]
+ ∇′

x n′
b[1]
))± ∇′

X ∙ (D′
± exp(∓ϕ̄′

[0])n
′
b[0]
(∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]
))

±∇′
x ∙ (D′

± exp(∓ϕ̄′
[0])n

′
b[1]
(∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]
))± ∇′

x ∙ (D′
± exp(∓ϕ̄′

[0])n
′
b[0]
(∇′

X ψ̄b[1] + ∇′
x ψ̄

′
b[2]
))

−∇′
x ∙ (D′

± exp(∓ϕ̄′
[0])ϕ̄

′
[1](n

′
b[0]
(∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]
))), (47)
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−D′
±

[
exp(∓ϕ̄′

[0])
(
∇′

X n′
b[0]

+ ∇′
x n′

b[1]
± n′

b[0]

(
∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]

))]
∙ n = 0, (48)

μ′
f ∇

′
x ∙ ∇′

x v′
[0] −

μ′
f

K ′
f

v′
[0] = ∇′

X p′
b[0]

+ ∇′
x p′

b[1]

+2R′T ′
(

cosh ϕ̄′
[0] − 1

)(
∇′

X n′
b[0]

+ ∇′
x n′

b[1]

)
− 2R′T ′n′

b[0]
sinh ϕ̄′

[0]

(
∇′

X ψ̄
′
b[0]

+ ∇′
x ψ̄

′
b[1]

)
. (49)

3.5 CLOSURE PROBLEMS

The next step consists in deriving the macroscopic description from the previous equations. If the Poisson-

Boltzmann and the ionic transport equations can be treated similarly as proposed by Moyne and Murad

(2002), the derivation of the macroscopic Darcy law is slightly different.

3.5.1 Local Poisson-Boltzmann equation

Because of the scaling factor in the Poisson-Boltzmann equation, this equation is purely expressed at the

microscopical scale. If the Debye length is small compared to the pore size, this equation can, thus, be

linearized thanks to the Debye-Hueckel approximation:

∇′
x ∙ ∇′

x ϕ̄
′
[0] =

1

L ′
D[0]

1

L ′
D[0]

ϕ̄′
[0] . (50)

3.5.2 Ionic transport

The macroscopic transport equations can be obtained by solving the closure problems of Nernst-Planck

equations. To apply the homogenization procedure of the Taylor dispersion problem proposed by Auriault

and Adler (1995), the change of variables proposed by Moyne and Murad (2002) is used to rephrase

equations (46), (47) and (48). Indeed, to avoid working with the electro-migration term in the Nernst-Planck

model, these authors proposed to consider auxiliary concentrations n±
f to recover classical convection-

diffusion equations, and suggested the following change of variables using the streaming potential ψ that

coincides with our bulk potential ψb:

n′±
f = n′

b exp(±ψ̄ ′) . (51)

The expansion of these auxiliary concentrations can be obtained from the development (29):

n′±
f =

∞∑

i=0

n′
f[i]η

i = n′
b[0]

exp(±ψ̄ ′
[0])+ exp(±ψ̄ ′

[0])
(
n′

b[1]
± n′

b[0]
ψ̄ ′

[1]

)
η

+ exp(±ψ̄ ′
[0])

(
n′

b[2]
± n′

b[1]
ψ̄ ′

[1] + n′
b[0]

( ψ̄ ′2
[1]

2
± ψ̄ ′

[2]

))
η2 + O(η3).

(52)

As a consequence, equation (46) becomes:

0 = ∇′
x ∙ (D′

± exp(∓ϕ̄′
[0])

(
∇′

X n′
f[0]

+ ∇′
x n′

f[1]

)
, (53)

with the associated boundary condition derived from equation (48):

−D′
± exp(∓ϕ̄′

[0])
(
∇′

X n′
f[0]

+ ∇′
x n′

f[1]

)
∙ n = 0. (54)
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These two last equations form the closure problem for n′
f[1]

as obtained by Moyne and Murad (2002),

whose solution is presented by Auriault and Adler (1995).

Moreover, when rephrasing equation (47) in terms of fictitious concentrations and using the mass

conservation equation (41), we have:

∂

∂t

(
n′

f[0]
exp(∓ϕ̄′

[0])
)
+ v′

[0] ∙ ∇′
x

(
n′

f[0]
exp(∓ϕ̄′

[0])
)

= ∇′
X ∙

[
D′

± exp(∓φ̄′
[0])(∇

′
X n′

f[0]
+ ∇′

x n′
f[1]
)
]

+∇′
x ∙

[
D′

± exp(∓φ̄′
[0])(∇

′
X n′

f[1]
+ ∇′

x n′
f[2]
)∓ φ̄′

[1](∇
′
X n′

f[0]
+ ∇′

x n′
f[1]
)
]
.

(55)

Again, this equation is similar to the one treated by Moyne and Murad (2002) and can be rewritten as

proposed by these authors.

3.5.3 Derivation of a macroscopic Darcy law

To rewrite the Brinkman equation (49), its linearity property is used. Thus, the fluid velocity is splitted into

three terms: v′ = v′
P +v′

C +v′
E , where v′

P , v′
C and v′

E are respectively associated with the Poiseuille, osmotic

and electro-osmotic flows. Brinkman equation is, then, decomposed into three independent equations with

similar no-slip conditions at the canaliculus wall and cell membrane:

μ′
f ∇

′
x ∙ ∇′

x v′
α[0]

−
μ′

f

K ′
f

v′
α[0]

= F ′
α(∇

′
X G ′

α[0]
+ ∇′

x G ′
α[1]
), (56)

where the subscript α = P,C or E stands respectively for the Poiseuille, osmotic and electro-osmotic

effects. The quantities Gα and Fα are expressed for α = P,C, E by:

G ′
P = p′

b, F ′
P = 1, (57)

G ′
C = n′

b, F ′
C = 2R′T ′(cosh ϕ̄′

[0] − 1), (58)

G ′
E = ψ̄ ′

b, F ′
E = −2R′T ′n′

b[0]
sinh ϕ̄′

[0]. (59)

Following the linearity arguments of Auriault and Adler (1995), the velocity v′
α[0]

has the form:

v′
α[0]

= −κ ′
α∇

′
X G ′

α[0]
, for α = P,C, E, (60)

where κ ′
α is the second order tensor associated with the permeability at the pore’s scale corresponding to

the α driving gradient.

Introducing this expression of v′
α[0]

into equation (56) yields G ′
α[1]

in the form:

G ′
α[1]

= −β ′
α ∙ ∇′

X G ′
α[0]

+ g′
α[1]
, for α = P,C, E, (61)

where g′
α[1]

is an arbitrary function of the macroscopic variable X and β ′
α is an auxiliary `-periodical

vector-valued function satisfying the cell problem:

∇′
xβ

′
α −

μ′
f

F ′
α

∇′
x ∙ ∇′

xκ
′
α +

μ′
f

F ′
αK ′

f

κ ′
α − I = 0, for α = P,C, E, (62)

where I is the second order identity tensor.
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Noting < . > the average over the representative unit cell, the seepage velocity due to the α driving

effect is given by:

< v′
α[0]

>= −K′
α∇

′
X G ′

α[0]
, for α = P,C, E, (63)

where the second order permeability tensor K′
α =< κ ′

α > is introduced. Moreover, integrating over the

unit cell the continuity equation (42), we finally obtain the upscaled version of the Brinkman equation:

∇′
X ∙ (K′

α∇
′
X G ′

α[0]
) = 0, for α = P,C, E . (64)

Thus, for each of the three driving effects, equation (62) has to be solved to determine the permeability

K′
α. In parallel, the macroscopic flow can be determined from equation (64).

Hence, the averaged macroscopic fluid flow can be described through a modified Darcy law of the

form:

< v′
[0] >=< v′

P[0]
> + < v′

C[0]
> + < v′

E[0]
>= −K′

P∇′
X p′

b[0]
− K′

C∇′
X n′

b[0]
− K′

E∇′
X ψ̄b[0] . (65)

4 APPLICATION OF THE MODEL TO COMPACT BONE

In this section, we propose to illustrate the interest of this model in the scope of bone remodelling.

4.1 THE STRUCTURE OF COMPACT BONE

Compact bone presents a well organised structure composed of mineralized cylinders called osteons. These
osteons, which are a few hundred micrometers in diameter, are centered on Haversian canals whose diameters
are on the order of 40 − 100 μm (Cowin 2001). Osteons run primarily in the longitudinal axis of the bone.
These macrochannels contain the vasculature, the nerves and interstitial fluid.

Moreover, there are other extravascular pores in the solid matrix of the bone. For instance, lacunæ are
ellipsoidal cavities with diameters of 10 − 30 μm occupied by osteocyte cells. The canaliculi are small
cylindric channels whose diameter is on the order of 0.1 μm. They form a network connecting lacunæ
and the Haversian vascular canals. Cytoplasmic osteocyte cell process occupies the central zone of each
canaliculus, so that the interstitial fluid pathway corresponds to an annular geometry. As introduced in
Figure 1, the canaliculus scale will be referred to as the microscale hereafter, whereas the macroscopic
length will correspond to the osteon. We introduce a cylindrical coordinate system to describe the geometry
of the annular space perfused by the fluid in the canaliculi. The radial and longitudinal coordinates r and
z are, thus, identified with the microscopic and macroscopic coordinates x and X , respectively. Since
canaliculi are mainly oriented in the radial direction of the osteon, the longitudinal coordinate z at the
canalicular scale corresponds to the radial direction at the osteon scale.

Furthermore, electron photomicrographs of the lacuno-canalicular system presented by You et al.
(2004) showed the presence of nano-elements forming a fibrous pericellular matrix in the annular space of
the canaliculi. Even if this fibrous matrix obviously disturbs the interstitial fluid movement, its influence
on the tissue behaviour is not yet well understood. According to physiological arguments, Lemaire et
al. (2008) quantified its friction effect thanks to a very low permeability parameter K f laying between
5 × 10−18 m2 and 5 × 10−17 m2.
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Fig. 1 – Multiscale structure of the cortical bone; the microscale corresponds to the radius of the canaliculi, whereas the macroscale

refers to the osteon radius.

4.2 DEBYE-HUECKEL APPROXIMATION

To solve the local electrical problem, the Debye-Hueckel approximation (see Eq. (50)) is used since the
surface potential remains small (less than 25mV) and the pores are large enough in comparison with the
Debye length. The analytical solution of this equation in a cylindrical geometry is given by Lemaire et al.
(2006).

4.3 COUPLED PERMEABILITY PARAMETERS AT THE PORE SCALE

The coupled Darcy law is now derived in the context of compact bone. Considering that the fluid velocity
develops in the longitudinal direction of the pores and only depends on the canalicular radial coordinate r ,
we have three problems to solve, after projecting equation (56) on z-axis:

μ f

(
d2uα
dr2

+
1

r

duα
dr

)
−
μ f

K f
uα = Fα

dGα

dz
, for α = P,C, E, (66)

where u is the longitudinal component of the fluid velocity. From these equations, the permeability at the
pore scale κα(r) can be calculated.

The spatial variation of the three velocities at the pore scale is shown in Figure 2 through plotting
the permeability parameters at the pore scale κα(r) for α = P, E,C . The model parameters used to plot
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these graphs are presented in Table I. To underline the effect of the fibers, the Stokesian case (K f −→ ∞)
is also plotted.
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Fig. 2 – Profile of the local permeability parameters κα , for α = P, C, E, at the pore’s scale considering Poiseuille effect (on the

top), Osmotic effect (on the left), Electro-osmotic effect (on the right) for various values of the fibers permeability parameter K f

expressed in m2: K f −→ ∞ (bold solid line), K f = 5 × 10−17 (thin solid line), K f = 5 × 10−18 (bold dashed line).

Quantitatively, the presence of the pericellular matrix does slow down the fluid flow. Within the
realistic range of pericellular permeability values, the fluid velocity is scaled down by a factor of 1 000
(K f = 5 × 10−18 m2) to 100 (K f = 5 × 10−17 m2) in comparison with the one associated with a clear
fluid-filled canaliculus.

Nevertheless, the decreases in velocity are not the same when comparing hydraulic and electro-chemical
effects. Near the walls of the pore, the action of the negative double layer potential tends to maintain the
electro-chemical effects. In the central zone, this electric potential action disappears and these effects are
less significant. In parallel, the hydraulic local permeability κP , which only depends on the geometry and
the fluid viscosity, is not affected by these local electric fluctuations.

4.4 CONSEQUENCES FOR THE MECHANOTRANSDUCTION

Mechanotransduction signals for bone remodelling are linked to fluid flow (Weinbaum et al. 1994, Jacobs
et al. 1998, Burger et al. 2003). In particular, cells buried in the lacuno-canalicular porosity of the bone
matrix are sensitive to shear stresses induced by fluid flow. In classical model, the only considered fluid
shear effect is that due to the hydraulic driving force. Therefore, it would be interesting to quantify the
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TABLE I
Parameters of the model.

geometry

Canaliculus radius Rc = 130 nm
Process radius Rm = 52 nm
Osteon radius Lc = 33 μm

fluid parameters
Ionic concentration nb = 0.01 M

Dielectric permittivity ε = 75.34
Dynamic viscosity μ f = 0.65 × 10−3 Pl

pore parameters
Surface potential φr = −20 mV

Pericellular permeability K f ∈ [5 × 10−18, 5 × 10−17] m2

macroscopic driving gradients (dGα/dz)
Hydraulic effect (P) 10 000 Pa/Lc

Chemical effect (C) 0.05 M/Lc

Electric effect (E) 10 mV/Lc

coupled fluid shear stresses acting on the cell process membrane. Typically, the in vivo shear stress values
that initiate endothelial cell response are of a one or two Pascals. The order of magnitude of the shear stress
calculated by Weinbaum et al. (1994) in cortical bone fits well with this value.

In order to evaluate this physical parameter, we approximate the macroscopic driving gradients thanks
to literature values of Table I. With our model, the shear effect τP generated by Poiseuille effect is similar
to the one generated by electro-osmosis τE (around 0.5 Pa) and is three times lower than the chemical shear
stress τC (around 1.5 Pa).

As a result, it is worth considering the coupled effects in the description of the fluid movement at the
canaliculus scale. It is all the more true when studying the mechanotransduction of bone remodelling.

CONCLUSION

Following the Moyne and Murad approach, a two-scale modelling of coupled phenomena governing osteo-
articular materials has been carried out. The difficulty to propose suitable in vivo experimental studies
explains the strong need for sophisticated theoretical models that can describe the behaviour of living
media. Through the results of our model, we propose a possible way to understand how the electro-
chemical phenomena play a key role in the mechanotransduction of the bone remodelling. Contrary to
classical models describing fluid flows in the bones, the coupled Darcy law developed in this study is able
to quantify appreciable electrokinetics phenomena. This study has to be continued by introducing possible
exchanges of ionic species between the fluid and cells to better describe cell activity.
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RESUMO

Neste estudo uma descrição multifísica do transporte de fluidos em meios porosos osteo articulares é apresentada.

Adaptado a partir do modelo de Moyne e Murad proposto para descrever o comportamento de materiais argilosos a

modelagem multiescala permite a derivação da resposta macroscópica do tecido a partir da informação microscópica.

Na primeira parte o modelo é apresentado. Na escala do poro as equações da eletro-hidrodinâmica governantes

do movimento dos eletrolitos são acopladas com a eletrostática local (equação de Gauss-Poisson) e as equações de

transporte iônico. Usando uma mudança de variáveis e o método de expansão assintótica a derivação macroscópica é

conduzida. Resultados do modelo proposto são usados para salientar a importância dos efeitos de acoplamento sobre

a transdução mecânica da remodelagem de ossos compactados.

Palavras-chave: biomecânica, multiescala, homogeneização, tecidos osteo articulares, efeitos de acoplamento.
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