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ABSTRACT

In this paper we show the existence of new families of convex and concave spatial central configurations
for the 5-body problem. The bodies studied here are arranged as follows: three bodies are at the vertices of
an equilateral triangle T , and the other two bodies are on the line passing through the barycenter of T that
is perpendicular to the plane that contains T .

Key words: central configurations, spatial configurations, 5-body problem, convex configuration, concave
configuration.

INTRODUCTION

Consider n punctual positive masses m1, . . . , mn with position vectors r1, . . . , rn . Usually ri ∈ Rd ,

d = 2, 3. The Newtonian n-body problem in celestial mechanics consists in studying the motion of theses

masses interacting amongst themselves through no other forces than their mutual gravitational attraction

according to Newton’s gravitational law (Newton 1687).

In this paper we denote the Euclidean distance between the bodies of masses mi and m j by ri j =

|ri − r j |. We take the inertial barycentric system, that is the origin of the inertial system is located at the

center of mass of the system, which is given by
∑n

j=1 m jr j/M , where M = m1 + . . . + mn is the total

mass. The configuration space is defined by {(r1, r2, . . . , rn) ∈ Rdn : ri 6= r j , i 6= j}.

At a given instant t = t0 the n bodies make a central configuration if there exists λ 6= 0 such that

r̈i = λri , for all i = 1, . . . , n. Two central configurations (r1, r2, . . . , rn), (r̄1, r̄2, . . . , r̄n) of the n bodies

are said to be related if we can pass from one to the other through a dilation and a rotation (centered at the

center of mass). So we can study the classes of central configurations defined by the above equivalence

relation.

In the 3-body problem the collinear solutions of Euler (Euler 1767) and the triangular equilateral

solutions of Lagrange (Lagrange 1873) are the first examples in which the bodies are in central config-

uration at any instant of time. The Euler collinear central configurations were generalized by Moulton
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in (Moulton 1910) who showed that, to given n masses, the number of collinear central configurations is

exactly n!/2. It is know that planar regular n-gons with n equal masses at the vertices are in a central

configuration. This is a generalization of Lagrange’s result.

The knowledge of central configurations allows us to compute homographic solutions (see Moeckel

1990); there is a relation between central configurations and the bifurcations of the hypersurfaces of con-

stant energy and angular momentum (see Smale 1970); if the n bodies are going to a simultaneous collision,

then the bodies tend to a central configuration (see Saari 1980). See also the following references (Hagihara

1970, Moulton 1910, Wintner 1941).

Some examples of spatial central configurations are a regular tetrahedron with arbitrary positive masses

at the vertices (Lehmann-Filhés 1891) and a regular octahedron with six equal masses at the vertices

(Wintner 1941).

There are also the stacked spatial central configurations, that is central configurations for the n-body

problem in which a proper subset of the n bodies is already on a central configuration. Double nested

spatial central configurations for 2n bodies were studied for two nested regular polyhedra in (Corbera and

Llibre 2008). More recently, the same authors studied central configurations of three regular polyhedra for

the spatial 3n-body problem in (Corbera and Llibre 2009). See also (Zhu 2005) in which nested regular

tetrahedrons are studied.

Recently Hampton and Santoprete (Hampton and Santoprete 2007) provided new examples of stacked

spatial central configurations for the 7-body problem in which the bodies are arranged as concentric three

and two dimensional simplexes. New classes of stacked spatial central configurations for the 6-body

problem that have four bodies at the vertices of a regular tetrahedron and the other two bodies on a line

connecting one vertex of the tetrahedron with the center of the opposite face are studied in (Mello et al.

2009a).

In this paper we study spatial central configurations for the 5-body problem that satisfy (see Fig. 1(a)

and 1(b)):

1. The position vectors r1, r2 and r3 are at the vertices of an equilateral triangle T ;

2. Let ρ be the line passing through the barycenter of T that is perpendicular to the plane that contains

T . The position vector r4 ∈ ρ is fixed and does not belong to the plane that contains T ;

3. The position vector r5 ∈ ρ, r5 6= r4.

This type of configuration is called concave if one body is located in the interior of the convex hull of the

other four bodies (see Fig. 1(a)), otherwise the configuration is called convex (see Fig. 1(b)). We say that

the configuration is concave of type 1 if the body 5 is in the interior of the convex hull of the bodies 1, 2, 3

and 4. On the other hand, if the body 4 is in the interior of the convex hull of the bodies 1, 2, 3 and 5, we

say that the configuration is concave of type 2.

In order to be more precise and without loss of generality, consider a coordinate system such that

r1 = (x, 0, 0), r2 = (−x/2, −
√

3x/2, 0), r3 = (−x/2,
√

3x/2, 0), r4 = (0, 0,
√

6/3) and r5 = (0, 0, y)

with x > 0 and y 6=
√

6/3. See Fig. 2. Thus, x is the radius of the circumscribed circle that contains

r1, r2, r3, and y is the signed height of the body 5 with respect to the plane that contains the triangle
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Fig. 1 – Spatial central configurations for the 5-body problem. Concave configuration (a). Convex configuration (b).

T . There is no special reason to take r4 at (0, 0,
√

6/3). With this choice, the length of the edge of the

regular tetrahedron is 1. Note that the body 5 is at the barycenter of T if and only if y = 0. Therefore,

the configuration is convex if and only if y ≤ 0, and the configuration is concave of type 1 (type 2,

respectively) if and only if 0 < y <
√

6/3 (y >
√

6/3, respectively).

Fig. 2 – Coordinates for the five bodies.

As far as we know, the spatial central configurations studied here are new and are, in a certain sense,

generalizations of the kite (planar) central configurations (Bernat et al. 2009, Yiming and Shanzhong

2002). See also (Mello et al. 2009b). Leandro in (Leandro 2003) also studied the central configurations

presented here from another point of view. More precisely, Leandro studied the finiteness and bifurca-

tions of this class of central configurations.
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The main results of this paper are the following ones.

THEOREM 1. Consider the position vectors

r1 = (x, 0, 0) , r2 =
(
−x/2, −

√
3x/2, 0

)
, r3 =

(
−x/2,

√
3x/2, 0

)

at the vertices of an equilateral triangle T , and the position vectors r4 =
(

0, 0,
√

6/3
)

, r5 = (0, 0, y) on

ρ, where ρ is the line passing through the barycenter of T and perpendicular to the plane that contains T ,

according to Fig. 2. In this way, the following statements hold.

1. There exists a minimum positive value x = xmin = (3
√

2 − 2
√

3)/3 such that if 0 < x ≤ xmin there

are no positions r1, . . . , r5 and positive masses m1, . . . , m5 such that these bodies are in a central

configuration according to Fig. 2;

2. There are two open intervals I1 =
(
(3

√
2 − 2

√
3)/3,

√
3/3

)
and I2 =

(√
3/3,

√
6/3

)
such that for

each x ∈ I1 ∪ I2 there is one non-empty segment of possible positions for r5 and positive masses

m1, . . . , m5 such that these bodies form a 1-parameter family of concave central configurations of

type 1;

3. There exists one distinguished and well-determined value x = x̄ for which there is just one position

for r5 such that these five bodies form a 2-parameter family of concave central configurations of type

1. Indeed this concave central configuration is exactly the well-known central configuration whose

four equal masses are at the vertices of a regular tetrahedron and the fifth mass is at the center of the

tetrahedron;

4. There exists one open interval I3 =
(√

3/3, (2
√

3 + 3
√

2)/3
)

such that for each x ∈ I3 there is one

non-empty segment of possible positions for r5 and positive masses m1, . . . , m5 such that these bodies

form a 1-parameter family of convex central configurations;

5. There exists one open and unbounded interval I4 =
(

4
√

3/3, +∞
)

such that for each x ∈ I4 there

is one non-empty segment of possible positions for r5 and positive masses m1, . . . , m5 such that these

bodies form a 1-parameter family of concave central configurations of type 2;

6. There exists one distinguished and well-determined value x = ˉ̄x for which there is just one position for

r5 such that these five bodies form a 2-parameter family of concave central configurations of type 2.

As in the above item 3, this concave central configuration is exactly the one whose four equal masses

are at the vertices of a regular tetrahedron and the fifth mass is at the center of the tetrahedron.

REMARK 2. Items 2, 3 and 4 of Theorem 1 are closely related with some results obtained by Leandro in

(Leandro 2003). However, the assumptions, statements and proofs presented here are different and much

simpler than those that appear in (Leandro 2003). Items 3 and 6 of Theorem 1 are not new. We have

included them here for completeness.

The proof of Theorem 1 is given in the next section. Concluding comments are presented in Section 3.
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PROOF OF THEOREM 1

The equations of motion of the n-body problem are given by

r̈i = −
n∑

j = 1

j 6= i

m j
ri − r j

r3
i j

, (1)

for i = 1, 2, . . . , n. In (1) the gravitational constant is taken equal to one.

From the definition of central configuration, equation (1) can be written as

λri = −
n∑

j = 1

j 6= i

m j
ri − r j

r3
i j

, (2)

for i = 1, 2, . . . , n. For the planar case, that is d = 2, simple computations allow us to write equation (2)

in the following form

fi j =
n∑

k = 1

k 6= i, j

mk (Rik − R jk) 1i jk = 0, (3)

for 1 ≤ i < j ≤ n, where Ri j = 1/r3
i j and 1i jk = (ri − r j ) ∧ (ri − rk). In fact, 1i jk is twice the oriented

area of the triangle formed by the bodies of masses mi , m j and mk . See the references (Hagihara 1970,

Mello et al. 2009b). These n(n − 1)/2 equations are called Dziobek or Laura-Andoyer equations.

The computation of spatial central configuration is very difficult if we begin with equation (2). Instead

of working with equation (2) we shall use another equivalent system of equations (see equation (6), p. 295

of (Hampton and Santoprete 2007) and the references therein)

fi jh =
n∑

k = 1

k 6= i, j, h

mk (Rik − R jk) 1i jhk = 0, (4)

for 1 ≤ i < j ≤ n, h = 1, . . . , n, h 6= i, j . Here, again, Ri j = 1/r3
i j and 1i jhk = (ri − r j ) ∧ (r j − rh) ∙

(rh − rk). Thus, 1i jhk gives six times the signed volume of the tetrahedron formed by the bodies of masses

mi , m j , mh and mk . These n(n − 1)(n − 2)/2 equations are also called here Dziobek equations.

For the proof of Theorem 1 we use Dziobek equations (4). For five bodies, system (4) is a set of 30

equations. From the distances between the bodies it follows that R12 = R13 = R23, R14 = R24 = R34 and

R15 = R25 = R35. Taking into account the symmetries, we have the following equalities among others:

11425 = −11435 = −12415 = 12435 = 13415 = −13425,

11523 = −11532 = −12513 = 12531 = 13512 = −13521,
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11524 = −11534 = −12514 = 12534 = 13514 = −13524.

Taking these symmetries into the Dziobek equations, the following 9 equations of (4) are trivially

satisfied f123 = 0, f124 = 0, f125 = 0, f132 = 0, f134 = 0, f135 = 0, f231 = 0, f234 = 0 and f235 = 0.

Again looking for symmetries, we have the following equivalence between the equations:

f145 = 0 ⇔ (R12 − R24) 11452(m2 − m3) = 0, (5)

f245 = 0 ⇔ (R12 − R14) 12451(m1 − m3) = 0, (6)

f345 = 0 ⇔ (R13 − R14) 13451(m1 − m2) = 0. (7)

As our classes of central configurations satisfy r4 6= r5, we have 11452 6= 0, 12451 6= 0 and 13451 6= 0.

From equations (5), (6) and (7), we have two cases to analyze: the masses m1 = m2 = m3 and r1, r2, r3

and r4 are at the vertices of a regular tetrahedron.

CASE 1. Consider r1, r2, r3 and r4 at the vertices of a regular tetrahedron. We have the following lemma.

LEMMA 3. Consider r1, r2, r3 and r4 at the vertices of a regular tetrahedron. Then, there exists just one

position for r5 at the center of the tetrahedron and positive masses m1 = m2 = m3 = m4 = m and m5 such

that these bodies form a 2-parameter family of concave central configurations of type 1.

PROOF. Due to symmetries, we have the following equivalences between equations of (4):

f142 = 0 ⇔ f241 = 0, f143 = 0 ⇔ f341 = 0, f243 = 0 ⇔ f342 = 0,

f152 = 0 ⇔ f251 = 0, f153 = 0 ⇔ f351 = 0, f253 = 0 ⇔ f352 = 0.

Hence the remaining 21 equations are reduced to 15 equations. From f142 = 0, f143 = 0 and f243 = 0 we

have m5 (R15 − R45) 11425 = 0, m5 (R15 − R45) 11435 = 0 and m5 (R25 − R45) 12435 = 0, respectively.

As 11425 6= 0, 11435 6= 0 and 12435 6= 0, it follows that R15 = R45 = R25. This implies that r5 must be

at the center of the tetrahedron. Adding this information into f152 = 0, f153 = 0 and f253 = 0, we have

(m3−m4) (R13 − R35) 11523 = 0, (m2−m4) (R12 − R25) 11532 = 0 and (m1−m4) (R12 − R15) 12531 = 0,

respectively. These last three equations are verified just when m1 = m2 = m3 = m4. By another side

m5 can assume any positive value. The remaining equations of (4) are trivially satisfied. The lemma

is proved. �

Define x̄ =
√

3/3. Thus, r1 = (
√

3/3, 0, 0), r2 = (−
√

3/6, −1/2, 0), r3 = (−
√

3/6, 1/2, 0),

r4 = (0, 0,
√

6/3) and r5 = (0, 0,
√

6/12). From Lemma 3, item 3 of Theorem 1 is proved. In the

remainder of the statements we omit this type of concave central configuration.

CASE 2. Consider m1 = m2 = m3 = m. It follows that equations (5), (6), (7), f154 = 0, f451 = 0,

f254 = 0, f452 = 0, f354 = 0 and f453 = 0 are satisfied, and

f142 = 0 ⇔ f143 = 0 ⇔ f241 = 0 ⇔ f243 = 0 ⇔ f341 = 0 ⇔ f342 = 0,

f152 = 0 ⇔ f153 = 0 ⇔ f251 = 0 ⇔ f253 = 0 ⇔ f351 = 0 ⇔ f352 = 0.
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In other words, the initial 30 equations were reduced to 2 equations, which are the following:

f142 = m (R13 − R34) 11423 + m5 (R15 − R45) 11425 = 0, (8)

f152 = m (R13 − R35) 11523 + m4 (R14 − R45) 11524 = 0. (9)

Equations (8) and (9) can be explicitly solved in the form m4 = m4(x, y, m) and m5 = m5(x, y, m),

respectively. In these equations, m can be understood as a parameter for the central configurations.

From equations (8) and (9) we have

m4

m
=

(R35 − R13) 11523

(R14 − R45) 11524
, (10)

m5

m
=

(R34 − R13) 11423

(R15 − R45) 11425
. (11)

We wish to find subsets of D = {x > 0, y ∈ R, y 6=
√

6/3} whose ratios of the masses m4/m

and m5/m are positive. For the study of the signs of the terms that appear in equations (10) and (11),

we have R35 − R13 = 0 if and only if (x, y) ∈ {x > 0, y = −
√

2x} ∪ {x > 0, y =
√

2x} (straight

lines), R14 − R45 = 0 if and only if (x, y) ∈ {x > 0, y =
√

6/3 −
√

9x2 + 6/3} ∪ {x > 0, y =
√

6/3 +
√

9x2 + 6/3} (hyperbolas), R34 − R13 = 0 if and only if (x, y) ∈ {x =
√

3/3}, R15 − R45 = 0

if and only if (x, y) ∈ {x > 0, y =
√

6(2 − 3x2)/12} (parabola), 11523 = 0 if and only if (x, y) ∈

{x > 0, y = 0}, 11524 = 0 if and only if (x, y) ∈ {x > 0, y =
√

6/3}, 11425 = 0 if and only if

(x, y) ∈ {x > 0, y =
√

6/3}. See Figs. 3 and 4.

Fig. 3 – The open regions H1,H2 andW .

CASE 2.1. Consider x > 0 and y = 0.
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LEMMA 4. Consider r5 = (0, 0, 0), that is y = 0. Then, there is no value x > 0 such that 5 bodies with

positive masses form a central configuration according to Fig. 2.

PROOF. From equation (9) we have

m (R13 − R35) 11523 + m4 (R14 − R45) 11524 = 0.

By assumption, 11523 = 0. As (R14 − R45) 6= 0 and 11524 6= 0; then, m4 = 0. This is a contradiction. �

CASE 2.2. Consider 0 < x ≤ (3
√

2 − 2
√

3)/3 and y 6=
√

6/3. We have the following lemma.

LEMMA 5. Consider 0 < x ≤ (3
√

2 − 2
√

3)/3. Then, there is no position for the body 5 on the line

ρ and positive masses mi , i = 1, . . . , 5 such that these bodies form a central configuration according

to Fig. 2.

PROOF. There are three cases to analyze: y < 0, 0 < y <
√

6/3 and y >
√

6/3.

Consider y < 0. From equation (8) we have

m (R13 − R34) 11423 + m5 (R15 − R45) 11425 = 0.

By assumption R13 − R34 < 0, R15 − R45 < 0, 11423 > 0 and 11425 > 0. Therefore, the coefficients of

the above equation have the same sign. This implies that m and m5 must have opposite signs.

Consider 0 < y <
√

6/3. By assumption R13 − R34 < 0, R13 − R35 > 0, R14 − R45 < 0, 11423 > 0,

11425 > 0, 11523 > 0, 11524 < 0, R15 − R45 < 0, if 0 < y <
√

6(2 − 3x2)/12 and R15 − R45 > 0, if
√

6(2 − 3x2)/12 < y <
√

6/3.

From equation (8) we have

m (R13 − R34) 11423 + m5 (R15 − R45) 11425 = 0.

If 0 < y <
√

6(2 − 3x2)/12, then the coefficients of the above equation have the same sign. Therefore,

the masses m and m5 have opposite signs. Now, from equation (9), we have

m (R13 − R35) 11523 + m4 (R14 − R45) 11524 = 0.

If
√

6(2 − 3x2)/12 < y <
√

6/3, then the coefficients of the above equation have the same sign. There-

fore, the masses m and m4 have opposite signs. If y =
√

6(2 − 3x2)/12, then R15 − R45 = 0 and this

implies that the mass m must be zero in equation (8).

Consider y >
√

6/3. From equation (8) we have

m (R13 − R34) 11423 + m5 (R15 − R45) 11425 = 0.

By assumption R13 − R34 < 0, R15 − R45 > 0, 11423 > 0 and 11425 < 0. Therefore, the coefficients of

the above equation have the same sign. This implies that m and m5 must have opposite signs. �
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From Lemma 5 item 1 of Theorem 1 is proved. The value xmin = (3
√

2 − 2
√

3)/3 is defined as the

x-coordinate of an intersection of the curves R35 − R13 = 0 and R15 − R45 = 0 (see Fig. 3).

CASE 2.3. Consider x > 0 and 0 < y <
√

6/3.

DefineH = H1 ∪H2 (see Fig. 3) where

H1 =

{
3
√

2 − 2
√

3

3
< x <

√
3

3
,

√
6(2 − 3x2)

12
< y <

√
2x

}

,

H2 =

{√
3

3
< x <

√
6

3
, 0 < y <

√
6(2 − 3x2)

12

}

.

For (x, y) ∈ H1 we have x > 0, 0 < y <
√

6/3, R35 − R13 > 0, R34 − R13 < 0, R15 − R45 < 0,

R14 − R45 < 0, 11523 > 0, 11524 < 0, 11423 > 0 and 11425 > 0. For (x, y) ∈ H2 we have x > 0,

0 < y <
√

6/3, R35 − R13 > 0, R34 − R13 > 0, R15 − R45 > 0, R14 − R45 < 0, 11523 > 0, 11524 < 0,

11423 > 0 and 11425 > 0.

It is simple to see that for (x, y) ∈ H the right-hand sides of equations (10) and (11) are positive and,

therefore, we have concave central configurations of type 1.

The orthogonal projections of the open sets H1 and H2 onto the x-axis give two open intervals by

I1 =
(
(3

√
2 − 2

√
3)/3,

√
3/3

)
and I2 =

(√
3/3,

√
6/3

)
, respectively. For each x∗ ∈ I1 ∪ I2 the straight

line x = x∗ intersects H1 ∪H2 in a non-empty segment. This proves item 2 of Theorem 1.

CASE 2.4. Consider x > 0 and y < 0.

In order to have convex central configurations, it is necessary that y < 0. Define the open set

W =W1 ∪W2 (see Fig. 3), where

W1 =

{√
3

3
< x ≤

√
2, −

√
2x < y <

√
6

3
−

√
9x2 + 6

3

}

,

W2 =

{
√

2 ≤ x <
2
√

3 + 3
√

2

3
, −

√
2x < y <

√
6(2 − 3x2)

12

}

.

For (x, y) ∈ W we have x > 0, y < 0, R35 − R13 > 0, R34 − R13 > 0, R15 − R45 > 0, R14 − R45 > 0,

11523 < 0, 11524 < 0, 11423 > 0 and 11425 > 0.

It is simple to see that, for (x, y) ∈ W , the right-hand sides of equations (10) and (11) are positive

and, therefore, we have convex central configurations.

The orthogonal projection of the open setW onto the x-axis gives one open interval

I3 =
(√

3/3, (2
√

3 + 3
√

2)/3
)

.

For each x∗ ∈ I3 the straight line x = x∗ intersects W in a non-empty segment. This proves item 4 of

Theorem 1.

CASE 2.5. Consider x > 0 and y >
√

6/3.
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Fig. 4 – The open region U .

Define the unbounded open set (see Fig. 4)

U =

{
4
√

3

3
< x,

√
6 +

√
9x2 + 6

3
< y <

√
2x

}

.

For (x, y) ∈ U we have x > 0, y >
√

6/3, R35 − R13 > 0, R34 − R13 > 0, R15 − R45 < 0, R14 − R45 > 0,

11523 > 0, 11524 > 0, 11423 > 0 and 11425 < 0.

It is simple to see that, for (x, y) ∈ U , the right-hand sides of equations (10) and (11) are positive

and, therefore, we have concave central configurations of type 2.

The orthogonal projection of the open set U onto the x-axis gives one open and unbounded interval

I4 = (4
√

3/3, +∞). For each x∗ ∈ I4 the straight line x = x∗ intersects U in a non-empty segment.

This proves item 5 of Theorem 1.

CASE 2.6. Consider r1, r2, r3 and r5 at the vertices of a regular tetrahedron. We have the following lemma.

LEMMA 6. If m1 = m2 = m3 = m5 = m and m4 are at r1 =
(

4
√

3/3, 0, 0
)

, r2 =
(
−2

√
3/3, −2, 0

)
,

r3 =
(
−2

√
3/3, 2, 0

)
, r4 =

(
0, 0,

√
6/3

)
and r5 =

(
0, 0, 4

√
6/3

)
, then these bodies form a 2-parameter

family of concave central configurations of type 2.

PROOF. By assumption, x = 4
√

3/3 and y = 4
√

6/3. For these values, we have R13 − R35 = 0 and

R14 − R45 = 0. Therefore, equation (9) is satisfied for all m4 > 0. As m5 = m, equation (8) can be

written as

m
[
(R13 − R34)11423 + (R15 − R45)11425

]
= 0.

With the above values of x and y, we have r13 = r15 = 4, r34 = r45 =
√

6, 11423 = −11425 = 8
√

2.

By a simple calculation, (R13 − R34)11423 + (R15 − R45)11425 = 0. It is simple to see that r1, r2, r3

and r5 are at the vertices of a regular tetrahedron, and r4 is at the center of this tetrahedron. �
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The proof of item 6 of Theorem 1 follows Lemma 6 in which ˉ̄x = 4
√

3/3. In short we have proved

Theorem 1.

CONCLUDING COMMENTS

In this paper it was shown the existence (and the nonexistence) of concave/convex spatial central config-

urations in the 5-body problem. The spatial central configurations studied here are generalizations of the

kite planar central configurations.

Some of the results presented here (see Remark 2) are closely related with the results presented

by Leandro in (Leandro 2003). However, the methods used in the two articles are different. The tech-

niques used here are very simple, and the use of the computer is not necessary in the proofs of the results

presented (see Theorem 1 and its proof). In this sense, the two articles are complementary.
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RESUMO

Neste artigo estudamos a existência de novas famílias de configurações centrais espaciais dos tipos côncavas ou

convexas para o problema de 5 corpos. Os corpos estudados aqui estão dispostos da seguinte maneira: três corpos

estão sobre os vértices de um triângulo equilátero T e os outros dois corpos estão sobre a reta que passa pelo baricentro

de T e é perpendicular ao plano que contém T .

Palavras-chave: configurações centrais, configurações espaciais, problema de 5 corpos, configuração convexa,

configuração côncava.
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