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ABSTRACT

In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to
spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns
(macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach
nematode assemblages. This review will provide a substantial background on current knowledge of sandy-
beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over
decades, sandy beaches have been the scene of studies focusing on community and population ecology, both
related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and
biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes.
In other words, the physical factors are more important in structuring nematodes communities over large
scale of distribution while biological interactions are largely important in finer-scale distributions. It has
been accepted that biological interactions are assumed to be of minor importance because physical factors
overshadow the biological interactions in sandy beach sediments; however, the most recent results from
in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have
shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides
nematodes are very promising organisms used to understand the effects of pollution and climate changes
although these subjects are less studied in sandy beaches than distribution patterns.
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INTRODUCTION

Sandy beaches are dynamic ecosystems driven by
prominent physical processes that shape the habitat
for different functional and taxonomic groups. The
term “sandy beach” can be used to describe a wide
range of environments, from high-energy open-
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ocean beaches to sheltered estuarine sand flats
(McLachlan 1983). Sandy beaches are, in general,
dynamic environments occurring worldwide along
ice-free coastlines, and located at the transition
between the land and a waterbody such as oceans,
seas or lakes. The beach sediment may be supplied
by rivers or by the erosion of highlands adjacent
to the coast, and the sea may also contribute to
the sediment supply through input of biogenic
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structures (animal skeletons, coral and shell
fragments) (adapted from McLachlan and Brown
2006). Here, the term sandy beach was used in a
narrower context, applying only for high-energy
open-ocean or pocket beaches ranging from the
reflective to the dissipative extremes.

The sediment is mainly composed of quartz
and/or carbonate sands of terrestrial and marine
origin, respectively. Small amounts of feldspar,
basalt and heavy minerals can also contribute to
the sediment composition. Important features to
characterize sediments are the grain size, the sorting
coefficient and the angularity; all of them influence
the porosity of sediments. The combination of
permeability and penetrability determines the
volume of water percolation, its drainage, and
the oxygen penetration in sandy-beach sediments
(McLachlan and Brown 2006).

The sandy beach ecosystem can be divided
horizontally into different zones consisting of
the foredune, backshore, swash/shoreline, surf
zone and nearshore (Defeo and McLachlan
2005); vertically, it is represented by the pelagic
and benthic systems. Sandy-beach endobenthic
communities were largely neglected by ecologists
until Remane (1933) initiated the first survey in
Germany, with a focus on the benthic community.
Today, sandy beaches are still less studied than most
other coastal systems (Defeo and McLachlan 2011),
and most research on intertidal sandy beaches has
been concentrated on macrofauna and on birds
(see Cornelius et al. 2001, Defeo and McLachlan
2005, for a review). The less-prominent sandy-
beach meiofauna has received considerably less
attention. For several years, meiofauna research on
sandy beaches was dedicated to general surveys at
higher taxonomic levels, and the first investigations
focusing on the composition of sandy-beach
nematode communities began only in the 1970s
(Heip et al. 1985). More recent investigations
have dealt with patterns of macro- (10’°m), meso-
(m) and microscale (10”m) distributions and are
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more often framed in a context of coastal zone
management. The macroscale pattern consists of
differences between beach types and latitudes,
the mesoscale pattern refers to distribution and
community structure alongshore and across shore
transects and finally the microscale pattern is
related to distance between millimeters and few
meters (McLachlan and Brown 2006). These three
patterns of distribution are used in the context of
this review and we chose to focus on nematodes
because they are the most dominant group of the
meiofauna in soft sediments and are supposed to
act as a link for the flux of energy since they can
be the food source for macrofaunal organisms and
fishes (Esteves and Genevois 2006).

Although nematodes act as important
nutritional resources for macroscopic organisms,
the functional role of these organisms in sandy
beach ecosystem is not well established since this
environment is supposed to support three partially
unconnected food-webs: a discrete food web
consisting of interstitial organisms, a microbial
loop and a macroscopic food web (McLachlan and
Brown 2006). The relative importance of these
three food webs is conceptually different among
beach types; for instance, on cold-temperate sandy
beaches, a diverse interstitial food web dominates
on high wave energy while nematodes and the
macroscopic food web are more important in
dissipative shores (Menn 2002).

Beaches are squeezed between rising sea level
on the marine side and expanding human population
and development on the landward side (Schlacher
et al. 2008). Therefore, this ecosystem faces
numerous threats coming from both directions.
Pollution, mining, disruption of sand transport and
tourism development are threats mainly originated
in the terrestrial side (Brown and McLachlan 2002)
while the vulnerability to the impacts of the climate
change is more related to the processes occurring
in the sea side, such as sea level increase, shore
erosion, acidification and increase of sea water
temperature (McGlone and Vuille 2012).
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The aim of this review is to summarize what
is known for sandy-beach nematodes in terms of
spatial distribution patterns, temporal variability,
food webs, pollution, and climate change. We
believe that this review will open a new niche for
future researchers to fill gaps in the understanding
of nematode ecology.

MATERIALS AND METHODS

A bibliographic survey was done using Web
of Science®, SCOPUS and Google Scholar
considering works published until early 2015. Solely
papers published in scientific journals and those
with an ecological purpose related to meiofauna and
nematode community from the intertidal region of
sandy beaches were selected. Taxonomical articles
and those ecological related to subtidal sampling
design were largely excluded from the analysis.
The selected studies were classified according
to 1) type of benthic association (meiofauna or
nematode), 2) pattern of distribution (macro-,
meso- and microscale), 3) any other ecological
approach including temporal variation, pollution,
coastal management, colonization, natural impact,
recreational activity, climate change and food web,
4) number of sampled beaches (Table I).

RESULTS AND DISCUSSION

In order to provide an overview of world
investigations for meiofauna and nematode
sandy-beach ecology, we have summarized this
information in a world map showing where the
studies were conducted (Fig.1) followed by the
adopted approach (Table I). Of the 87 meiofauna
studies, approximately 50% deal with nematodes
(Table I). Our discussion is based on the main topics
included in the built table and it was subdivided in
the following sections.

PATTERNS OF NEMATODE DISTRIBUTION

Since the first scheme of horizontal faunal zonation
was published by Mortensen (1921), several

attempts have been made to define well-demarcated
zones in sandy-beach sediments, by using physical
factors (Salvat 1964, Pollock and Hummon 1971,
McLachlan 1980), macroinvertebrates (Dahl 1952,
Salvat 1964, 1967, McLachlan and Jaramillo 1995,
Defeo and McLachlan 2005, for a recent review)
or meiofauna (Blome 1983, Rodriguez et al. 2001,
Gheskiere et al. 2004, 2005a, Kotwicki et al. 2005a,
Gingold et al. 2010, Maria et al. 2013b, ¢).

The pattern of nematode distribution in sandy
beaches is explained in detail in the following
subsections. The variables are discussed below in
relation to sandy-beach nematode communities.

Macroscale distribution of nematode communities

This topic has received relatively little attention.
Two studies concerning the macroscale latitudinal
distribution of sandy-beach nematodes and their
diversity suggest that the present pattern follows
the trend of increasing diversity toward the tropics
(Nicholas and Trueman 2005, Lee and Riveros
2012). Macroscale nematode studies exploring
the full range of beach types have not yet been
undertaken, but the limited information available
shows that nematode diversity is highest in coarse-
grained, intermediate sandy beaches (Gheskiere et
al. 2005a) or in sheltered conditions (Hourston et al.
2005, Urban-Malinga et al. 2005). It indicates that
the a high diversity can be found in the full range
of beach types, but the above mentioned references
do not use the same methodological strategy
what limited the interpretation of the results. A
comprehensive understanding of the nematode
diversity pattern among different beach types will
be only possible when an equal sampling design
would be adopted. For instance, the sampling
design used to understand the distribution patterns
of polychaetes in different beach types could be
adopted (Di Domenico et al. 2008); in this study, it
is indicated that reflective sandy beaches are more
diverse than intermediate and dissipative ones.
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Mesoscale distribution of nematode communities

Concerning the horizontal zonation in across-shore
transect on a single beach, granulometry, organic
input, temperature and salinity are the key factors
governing the horizontal nematode distribution
(Platt 1977, Gheskiere et al. 2004, Urban-Maligna
et al. 2005, Moreno et al. 2006, Maria et al.
2012), whereas biological interactions between
macro- and meiofauna and/or among meiofauna
organisms have only an indirect effect (Maria et
al. 2011b, 2012, 2013a). High diversity is often
found where there is an optimal balance of these
variables, i.e., physical and chemical conditions
are intermediate (Gheskiere et al. 2004, Hourston
et al. 2005, Gingold et al. 2010). However, some,
more heterogeneous beaches display intertidal
sandbars intercalated by depressions, which
retain water when tides recedes, across their wide
intertidal zone (Masselink et al. 2006); this habitat
is therein called runnel and those beaches that bear
it are so-called macrotidal ridge-and-runnel beach.
On these beaches, for example De Panne Beach
in Belgium, studied by Maria et al. (2013b), the
two microhabitats (runnels and sandbars) contain
different nematode communities, which are
reflected in dissimilar across-shore zonation. Three
nematode associations (upper, middle and lower
beach) are much more evident in the sandbars
than in the runnels. These three biological zones
on the sandbars were in accordance with the tidal
zonation previously observed by Gheskiere et al.
(2004) in the same study are contradicting the
previous knowledge that the horizontal nematode
zonation may just persist for short intervals of
time and under calm conditions (Nicholas and
Hodda 1999). The main difference between the
two most recent studies is that the latter excluded
the runnel microhabitat. The inclusion of the
runnels by Maria et al. (2013b) showed that the
shift over three horizontal nematode communities
found in the sandbar was interrupted by the runnel

communities. These results contrast somewhat with
the results of Gingold et al. (2010) for a macrotidal
ridge-and-runnel beach in the Gulf of California,
where both sandbars and runnels showed the same
pattern of across-shore zonation. We can conclude
that next to the horizontal mesoscale, the presence
of runnels may influence the nematode zonation.
Although both habitats (sandbars and runnels)
are horizontally distributed over the sandy beach
interface and did not show consistent differences in
grain size or chlorophyll a content, they were not
under the same horizontal gradient of air exposure
during low tide.

Based on these results, it is not so much the
combination of a physical characteristic that de-
termines the nematode community structure, but
rather the degree of variation of these physical fac-
tors that affect the nematode horizontal distribution
in the intertidal zone.

Another uncommon way to analyze the
mesoscale distribution of nematodes is to examine
an along-shore transect in the intertidal zone. In this
case, samples that are far from each other are more
heterogeneous (Nicholas and Hodda 1999, Gingold
et al. 2011); however, if the beach has different
microhabitats along the across-shore transect, as
in the case of a macrotidal ridge-and-runnel beach,
the degree of patchiness is more accentuated in the
microhabitat with calmer conditions (Gingold et al.
2011).

Microscale distribution

In relation to microscale vertical distribution,
desiccation and oxygen availability are considered
to be ultimate factors controlling the vertical
distribution of the meiofauna (McLachlan 1978,
Coull 1988, Maria et al. 2012). Oxygen is a
significant limiting factor only in sheltered beaches.
In this habitat, marine nematodes are restricted to
the first centimeters of the sediment (McLachlan
1978), while in more exposed conditions,
nematodes can be distributed more deeply (Urban-
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Malinga et al. 2004). This phenomenon has led to
the use of vertically undivided cores in meiofauna
sandy-beach sampling, or the use of cores divided
into large intervals of cm (i.e., larger than 1cm)
(Blome 1983, Sharma and Webster 1983, Long
and Ross 1999, Urban-Malinga et al. 2005).
Moreover, samples are usually taken during low
tide. This is a sampling strategy initially adopted
for the macrofauna to avoid contamination by tidal
migrants. It is however, also known that nematodes
can migrate downward (Boaden and Platt 1971) or
upward (McLachlan et al. 1977, Maria et al. 2012)
in the sediment column at high tide. Therefore,
to better understand the vertical distribution of
nematodes, a finer-scale sampling scheme should
be adopted, using cores subdivided into thin layers
of a few centimeters, when dealing with protected
and dissipative sandy beaches. Joint et al. (1982)
has already demonstrated that nematodes showed
different vertical distribution patterns at mm scale
in an intertidal sandflat.

The relationship between the vertical
distribution of sandy-beach nematodes and the
tidal cycle was demonstrated by Boaden and
Platt (1971) and McLachlan et al. (1977). These
two studies were rather contradictory. The former
authors showed that nematodes move down in
the sediment, escaping from the upper layers and
thus avoiding being washed away by the turbulent
conditions. McLachlan et al. (1977) demonstrated
that meiofauna living above the depth of the
permanent water table undergoes vertical
movements coupled with the tidal cycle, i.e.,
move up during submersion and vice-versa. Since
the depth fluctuation of the groundwater level is
directly linked to the different tidal stages (Urish
and McKenna 2004), the upward movements of
the meiofauna are closely linked to the tidal cycle.
Indeed, the vertical distribution of many nematode
species in the upper sediment layers of De Panne
Beach during submersion was mainly explained
by upward passive transport from deeper layers.

An Acad Bras Cienc (2016) 88 (3 Suppl.)

Downward movements during emersion were
explained by a combination of passive and active
transport (Maria et al. 2012). Passive transport
could be attributed to the drop in the underground
water level, while active migration would occur to
avoid harsh conditions created by drying of surface
layers (McLachlan et al. 1977).

Although the investigation of the importance
of the tidal cycle for the vertical distribution of the
nematodes by Maria et al. (2012) was restricted
to the upper five centimeters of the middle beach
level, these results could be extrapolated to the
other intertidal beach levels by combining the
observations of the groundwater discharge in the
beach sediments during the different tidal stages.
The water table is very close to the sediment
surface toward the low-water line during low tide.
Therefore, here the vertical rise of the water table
during the incoming tide would be more discrete
than toward the high-water line. Consequently,
upward passive transport of nematodes in the
low intertidal beach would be less likely, so that
nematodes would not dramatically modify their
vertical distribution over the tidal cycle in this part
of the beach. On the other hand, changes in the
nematode vertical distribution over the tidal cycle
would be more evident in the upper beach.

Biological interactions may also affect
the vertical distribution of nematodes in the
sediment, and may occur among different sizes
of organisms. The role of biological interactions,
such as competition and predation, in regulating
macrofauna zonation remains little known
(McLachlan and Jaramillo 1995). From the point
of view of the meiofauna, biological interactions
were only suggested to be important for atidal
beaches (Hulings and Gray 1976), but Maria et al.
(2012) showed that the species-specific vertical
distribution of nematodes over a tidal cycle is
clearly driven by biological interactions. The
importance of predation was evidenced by the
predacious nematode Enoplolaimus litoralis. This
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species was recorded in the layers just above the
deposit-feeder Daptonema normandicum, which
inhabited the subsurface 2-5-cm layers during
submersion (Maria et al. 2012). The same pattern
of predator-prey segregation was also observed in
the coarsest sediments (<170pm and less than 5%
silt) of a mudflat under high hydrodynamic stress,
and was explained by food preferences (Steyaert et
al. 2003). During exposure in De Panne Beach, E.
litoralis wasno longer restricted to the 1-3-cm layers
as during submersion, but was found deeper in the
sediment. This change may be the consequence of
active migration, since another thoracostomopsid
nematode, Enoploides longispiculosus, has shown
high motility to actively catch deeper-living prey
when the surface sediment was not water-saturated
and the groundwater level was lowered (Steyaert
et al. 2001). This migration took place during ebb
tide, and also coincided with a low abundance of
suitable prey species within the upper Scm.

The importance of competition in driving
the vertical distribution of species is confirmed to
some extent by the vertical segregation of nema-
tode species in the sediment. Species with a more
PC-enriched diet, such as Sigmophoranema rufum,
were abundant in the upper two centimeters of the
sediment, whereas species belonging to epistrate
(2A) and non-selective feeder (1B) groups that ex-
ploit a more “C-depleted diet showed higher den-
sities in the subsurface layers - 2 to 3 cm - (Maria
et al. 2012). The importance of food competition
between S. rufum and 1B/2A nematodes was sup-
ported by the results of an enrichment experiment,
since the diatom uptake of epistrate nematodes was
highest when the same food sources (diatoms) were
offered to the nematode community. This may indi-
cate that 2A nematodes are better competitors (Ma-
ria et al. 2011a).

NEMATODE COMMUNITIES IN BEACH FOOD WEBS

Food webs in sandy beaches differ with the beach
type, and particularly with the degree of coupling

between the beach and the surf zone (McLachlan
and Brown 2006). Two distinct ecosystems are
recognized: (1) beaches with little or no surf zone
(reflective beaches), which are dependent on food
input from the sea; and (2) beaches with extensive
surf zones (dissipative beaches), which have high
primary production from the surf diatoms that
shows a vertical migration from the sediment
deep in the surf zone to the water (McLachlan and
Brown 2006). This ecosystem may support three
partially unconnected food webs: the interstitial
food web, the microbial loop (which is restricted
to the surfzone and has been little investigated),
and the macroscopic food web (Heymans and
McLachlan 1996).

There are two studies that investigated the
importance of nematodes in sandy beach food
webs. Menn (2002) showed that a high wave energy
beach has an impoverished food web due to a more
diverse meiofauna while a less dynamic sandy
beach showing a high dominance of nematodes
in the meiofauna community can support a richer
food web.

The second study assessed the integrative
food web of the middle part of De Panne Beach
by means of stable isotope analyses (Maria et
al. 2012). Vascular plants were not included as
a possible food source, since they are important
primary producers of the supralittoral zone of
Belgian sandy beaches (Speybroeck et al. 2008)
and were assumed to be of less importance for the
middle beach of De Panne, where a concrete dike
separates the dunes from the beach (Gheskiere et al.
2004). Most of the meiobenthic species (nematodes
and copepods) utilize more carbon-enriched food
sources than the macrofaunal organisms, indicating
that there was no competition for food between
these two classes of organisms. Phytoplankton and
suspended detritus seem to be more important food
sources for macrobenthic organisms on dissipative
and reflective sandy beaches (Bergamino et al.
2011, Maria et al. 2012), while microphytobenthos
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(MPB) is utilized as a carbon source by nematodes,
copepods, turbellarians and a few macrofaunal
species, such as two species of the amphipod
Bathyporeia (Maria et al. 2012). Laboratory
experiments also indicated a higher uptake of
benthic diatoms by these organisms (Maria et al.
2011a). Nonetheless, MPB is considered a limiting
food source for sandy-beach organisms due to
its low primary productivity, probably because
of the strong hydrodynamic forces acting on the
beach interface (McLachlan and Brown 2006); the
preference for benthic over planktonic diatoms, as
demonstrated by Maria et al. (2011a), leads to us
to speculate that the absence of a diatom biofilm in
sandy beaches, a condition extremely common on
tidal flats, can be attributed to the rapid consumption
of diatoms by benthic sandy-beach organisms.

Although some field investigations and
experimental approaches demonstrated that
nematodes may serve as food source for large
organisms, such as shrimps and fishes (see Coull
1990, for a revision), there was no explicit trophic
link between macrofaunal and nematode species
evidenced by isotopes analysis (Maria et al. 2012).
It can be easily explained by the few numbers of
species investigated in the study.

POLLUTION

A large set of features, including ease of sampling,
omnipresence, high diversity, short generation time,
and absence of a planktonic stage, make nematodes
an excellent tool to evaluate the ecological condition
of different environments (Giere 2009); however,
very few studies have dealt with nematodes at
lower taxonomic resolution (e.g. Fricke et al. 1981,
Gheskiere et al. 2005b, Nanajkar and Ingole 2010).
This may be related to the difficulty and tedium of
species identification; therefore, pollution studies
tend to use broader taxonomic categories and the
two numerically dominant groups, nematodes and
copepods, are the main focus of such studies.

An Acad Bras Cienc (2016) 88 (3 Suppl.)

As seen in Table I, the four pollution-related
studies focusing on sandy-beach nematodes dealt
with different subjects: oil, recreational activities,
and sewage discharge. In terms of oil pollution,
the nematode density was still similar to reference
sites when the sediment of the polluted site was
not mechanically removed (Fricke et al. 1981).
This finding contradicts the expected pattern
of reduction in density at sites where an oil spill
occurred (Wormald 1976, Giere 1979, Danovaro
et al. 1995, Kang et al. 2014), but other field and
experimental studies have indicated that nematodes
are insensitive to oil pollution (Boucher 1980,
Warwick et al. 1988, respectively). On the other
hand, a mechanical treatment of the oil-polluted
sediment had more impact in the nematode density
than the pollution by oil per se, and more individuals
were found in the deeper layers (Fricke et al. 1981).

There is little controversy around the time
required for meiofauna recovery in areas subjected
to oil spills. Fricke et al. (1981) found that
meiofauna had recovered six months after an oil
spill on the coast of South Africa (SA), while this
time period was not enough for meiofauna recovery
in three beaches located on the coast of Galicia
(GC) (Veiga et al. 2010a). The lack of a similar
response here is probably related to the difference
in the magnitude of the oil spill (31,000 tons in SA
x 50,000 tons in GC), and the local hydrodynamics
(exposed in SA and under intermediate conditions
in GC). In situ experiments have shown that sandy-
beach meiofauna can recover their density and
community composition one month after an oil
spill when very small quantities of oil are spilled
(Kang et al. 2014).

The discharge of domestic sewage onto sandy
beaches is a common problem in coastal areas,
especially in developing countries, where a large
part of the population may develop coastal areas
in an unregulated manner. Nanajkar and Ingole
(2010), studying the impact of chronic sewage
discharge on a tropical sandy beach, observed that
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nematodes responded to the organic enrichment
with an increase in density and dominance of
one genus (Daptonema) in the areas closest to
the sewage outflow. These authors believed that
the non-selective deposit-feeding activity of
Daptonema aided the bioremediation of the site.

From the point of view of beach management,
this ecosystem has great socio-economic value
as a recreational area and is therefore considered
a key tourist destination during holiday periods.
The recreational use of sandy beaches has a
significant impact in terms of reduction of meio-
and nematofauna diversity, which responds by
shifting to a large number of species with small
size, rapid growth and high rates of reproduction
(r-strategists). Nevertheless, this reduction may
only be associated with the upper beach, which
can be mechanically cleaned daily (Gheskiere et
al. 2005b). On the other hand, in intense trampling
activity in the intertidal area leads the meiofauna
to migrate downward to layers deeper than Scm
(Moellman and Corbisier 2003).

CLIMATE CHANGE

Concerns about global warming have dramatically
increased and it is widely understood that sandy
beaches will be drastically affected, especially by
sea-level rise. To date, very few studies have dealt
with this subject (e.g. Kont et al. 2003, Lock et al.
2011, Mead et al. 2013). In terms of nematodes,
only the study of Gingold et al. (2013) has concen-
trated on this group in sandy-beach environments.
Laboratory microcosm experiments have shown
that high temperatures lead to loss of important
predacious and omnivorous nematodes that are im-
portant for the top-down control of the community,
consequently leading to a change in the food web.
Concerning sea-level rise, the nematode
intertidal community will be immersed more often
or will become permanently submersed; therefore,
we can speculate that many intertidal species will
be unable to withstand long periods submerged.

This may eliminate many of these species and
consequently reduce biodiversity in areas where
the nematode biodiversity is presently very
high. Besides, the rapid sea level rise will move
beaches towards a more reflective morphodynamic
state which is characterized by low meiofauna
abundances (Yamanaka et al. 2010). In both cases,
the reduction in nematode abundance may lead to a
lost in ecosystem functioning. However, this topic
requires further investigation.

CONCLUSIONS

Sandy beach ecosystems are one of the less studies
coastal ecosystems; it can be easily exemplified by
a simple search in the Web of Science which the
number of studies in this environment correspond
to 10% and 25% of those realized in estuaries
and mangroves, respectively. The current state of
knowledge shows us that over the decades, sandy
beaches have been the scene of studies focusing on
community and population ecology, both in relation
to morphodynamic models. The combination of
physical factors (e.g. grain size, tidal exposure
and degree of drainage) and biological interactions
(e.g. trophic relationships and competition)
is responsible for the spatial distribution of
nematodes. The degree of importance of these
factors is related to the kind of distribution pattern
analyzed; physical factors are more important in
structuring nematodes communities over large
scale of distribution (e.g. macro- and mesoscale)
while biological interactions are largely important
in finer-scale distributions.

Although nematodes are the dominant meio-
fauna group and are largely used as indicator of
environmental conditions it is of primordial im-
portance to understand the natural relationship be-
tween the environment and these organisms. There-
fore, to understand better the ecological processes
driving the sandy-beach nematode community is
necessary to increase the efforts in understanding
latitudinal and beach type patterns also taking into
account the environmental heterogeneity.
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In terms of energy, nematodes are considered
an important link between micro- and macrofaunal
organisms; however, isotopic studies showed that
there is a clear separation between the interstitial
and macrofaunal food webs at least for temperate
sandy beaches.

Even though the nematode diversity is related
to physical and biological interactions, it is also
related to the degree of impact occurring in the
environment; under disturbed conditions (i.e.,
organic pollution, oil pollution, beach cleaning or
trampling) the diversity decreases and the density
of some dominant species (especially deposit
feeders) increases, the natural recovery depends on
the amount and duration of the impact.

And last but not the least, the relationship
between nematodes and climate change is a
promising research area, which many aspects must
still be evaluated for sandy-beach organisms, but a
common believe is that the nematode density must
decrease.

This review elucidates the current knowledge
of sandy-beach nematodes and as this ecosystem
is easily reached and occurs worldwide we should
stimulate more and more studies that can provide
a more comprehensive approach toward a better
understanding of the physical and biological
interactions among sandy-beach organisms. This is
essential in order to understand the possible effects
of key human pressures on the beach ecosystem.
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RESUMO

Nessa revisdo, reunimos o conhecimento existente
sobre a ecologia dos nematddeos de praias arenosas, em
relagdo a distribuicao espacial, teias troficas, poluicao e
mudangas climaticas. Tentamos discutir os padroes em
escala especial (macro-, meso- e microescala) conforme
o seu grau de importancia na estruturacao das associagdes
de nematddeos em praia sarenosas. Esta revisdo fornece
uma base substancial sobre o conhecimento atual dos
nematddeos de praias arenosas e podera ser usada como
um ponto de partida para futuras investigagdes nesse
campo da Ciéncia. Por décadas, as praias arenosas
tém sido objeto de estudos enfocando a ecologia de
comunidade e populacional, ambas relacionadas aos
modelos morfodindmicos. A combinagdo dos fatores
fisicos (p. ex., tamanho do gro, nivel de exposi¢ao as
marés) e os fatores biologicos (p. ex., relagdes troficas) ¢
responsavel pela distribui¢do espacial dos nematddeos.
Emoutraspalavras, os fatores fisicos sdo mais importantes
na estruturagdo das comunidades de nematédeos em
grandes escalas, enquanto que as interagdes biologicas
sdo mais relevantes em escalas menores de distribuicdo.
Tem sido aceito que as interagdes bioldgicas seriam de
menor importancia porque os fatores fisicos ocultam as
interagdes bioldgicas nos sedimentos de praias arenosas;
no entanto, estudos experimentais mais recentes (in-
situ e ex-situ) sobre o comportamento ¢ os fatores
biolégicos (em microescala) tém mostrado resultados
promissores para a compreensdo dos mecanismos
subjacentes aos processos ¢ padroes em maior escala.
Além disso, os nematédeos sdo organismos muito
promissores para serem utilizados a fim de compreender
os efeitos da polui¢do e das mudangas climaticas, ainda
que esses dois topicos sejam menos estudados em praias
arenosas do que os padrdes de distribuigdo.

Palavras-chave: biodiversidade, bentos, padrdes de
distribuigo, teias troficas, mudangas climaticas.
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