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ABSTRACT
In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to 
spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns 
(macro-, meso- and microscale)  according to their degree of importance in structuring sandy-beach 
nematode assemblages. This review will provide a substantial background on current knowledge of sandy-
beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over 
decades, sandy beaches have been the scene of studies focusing on community and population ecology, both 
related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and 
biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. 
In other words, the physical factors are more important in structuring nematodes communities over large 
scale of distribution while biological interactions are largely important in finer-scale distributions. It has 
been accepted that biological interactions are assumed to be of minor importance because physical factors 
overshadow the biological interactions in sandy beach sediments; however, the most recent results from 
in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have 
shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides 
nematodes are very promising organisms used to understand the effects of pollution and climate changes 
although these subjects are less studied in sandy beaches than distribution patterns.
Key words: biodiversity, benthos, distribution patterns, food webs, climatic changes.
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INTRODUCTION

Sandy beaches are dynamic ecosystems driven by 
prominent physical processes that shape the habitat 
for different functional and taxonomic groups. The 
term “sandy beach” can be used to describe a wide 
range of environments, from high-energy open-

ocean beaches to sheltered estuarine sand flats 
(McLachlan 1983). Sandy beaches are, in general, 
dynamic environments occurring worldwide along 
ice-free coastlines, and located at the transition 
between the land and a waterbody such as oceans, 
seas or lakes. The beach sediment may be supplied 
by rivers or by the erosion of highlands adjacent 
to the coast, and the sea may also contribute to 
the sediment supply through input of biogenic 
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structures (animal skeletons, coral and shell 
fragments) (adapted from McLachlan and Brown 
2006). Here, the term sandy beach was used in a 
narrower context, applying only for high-energy 
open-ocean or pocket beaches ranging from the 
reflective to the dissipative extremes.

The sediment is mainly composed of quartz 
and/or carbonate sands of terrestrial and marine 
origin, respectively. Small amounts of feldspar, 
basalt and heavy minerals can also contribute to 
the sediment composition. Important features to 
characterize sediments are the grain size, the sorting 
coefficient and the angularity; all of them influence 
the porosity of sediments. The combination of 
permeability and penetrability determines the 
volume of water percolation, its drainage, and 
the oxygen penetration in sandy-beach sediments 
(McLachlan and Brown 2006). 

The sandy beach ecosystem can be divided 
horizontally into different zones consisting of 
the foredune, backshore, swash/shoreline, surf 
zone and nearshore (Defeo and McLachlan 
2005); vertically, it is represented by the pelagic 
and benthic systems. Sandy-beach endobenthic 
communities were largely neglected by ecologists 
until Remane (1933) initiated the first survey in 
Germany, with a focus on the benthic community. 
Today, sandy beaches are still less studied than most 
other coastal systems (Defeo and McLachlan 2011), 
and most research on intertidal sandy beaches has 
been concentrated on macrofauna and on birds 
(see Cornelius et al. 2001, Defeo and McLachlan 
2005, for a review). The less-prominent sandy-
beach meiofauna has received considerably less 
attention. For several years, meiofauna research on 
sandy beaches was dedicated to general surveys at 
higher taxonomic levels, and the first investigations 
focusing on the composition of sandy-beach 
nematode communities began only in the 1970s 
(Heip et al. 1985). More recent investigations 
have dealt with patterns of macro- (103m), meso- 
(m) and microscale (10-2m) distributions and are 

more often framed in a context of coastal zone 
management. The macroscale pattern consists of 
differences between beach types and latitudes, 
the mesoscale pattern refers to distribution and  
community structure alongshore and across shore 
transects and finally the microscale pattern is 
related to distance between millimeters and few 
meters (McLachlan and Brown 2006). These three 
patterns of distribution are used in the context of 
this review and we chose to focus on nematodes 
because they are the most dominant group of the 
meiofauna in soft sediments and are supposed to 
act as a link for the flux of energy since they can 
be the food source for macrofaunal organisms and 
fishes (Esteves and Genevois 2006).

Although nematodes act as important 
nutritional resources for macroscopic organisms, 
the functional role of these organisms in sandy 
beach ecosystem is not well established since this 
environment is supposed to support three partially 
unconnected food-webs: a discrete food web 
consisting of interstitial organisms, a microbial 
loop and a macroscopic food web (McLachlan and 
Brown 2006). The relative importance of these 
three food webs is conceptually different among 
beach types; for instance, on cold-temperate sandy 
beaches, a diverse interstitial food web dominates 
on high wave energy while nematodes and the 
macroscopic food web are more important in 
dissipative shores (Menn 2002).

Beaches are squeezed between rising sea level 
on the marine side and expanding human population 
and development on the landward side (Schlacher 
et al. 2008). Therefore, this ecosystem faces 
numerous threats coming from both directions. 
Pollution, mining, disruption of sand transport and 
tourism development are threats mainly originated 
in the terrestrial side (Brown and McLachlan 2002) 
while the vulnerability to the impacts of the climate 
change is more related to the processes occurring 
in the sea side, such as sea level increase, shore 
erosion, acidification and increase of sea water 
temperature (McGlone and Vuille 2012).
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The aim of this review is to summarize what 
is known for sandy-beach nematodes in terms of 
spatial distribution patterns, temporal variability, 
food webs, pollution, and climate change. We 
believe that this review will open a new niche for 
future researchers to fill gaps in the understanding 
of nematode ecology. 

MATERIALS AND METHODS

A bibliographic survey was done using Web 
of Science®, SCOPUS and Google Scholar 
considering works published until early 2015. Solely 
papers published in scientific journals and those 
with an ecological purpose related to meiofauna and 
nematode community from the intertidal region of 
sandy beaches were selected. Taxonomical articles 
and those ecological related to subtidal sampling 
design were largely excluded from the analysis. 
The selected studies were classified according 
to 1) type of benthic association (meiofauna or 
nematode), 2) pattern of distribution (macro-, 
meso- and microscale), 3) any other ecological 
approach including temporal variation, pollution, 
coastal management, colonization, natural impact, 
recreational activity, climate change and food web, 
4) number of sampled beaches (Table I).

RESULTS AND DISCUSSION

In order to provide an overview of world 
investigations for meiofauna and nematode 
sandy-beach ecology, we have summarized this 
information in a world map showing where the 
studies were conducted (Fig.1) followed by the 
adopted approach (Table I). Of the 87 meiofauna 
studies, approximately 50% deal with nematodes 
(Table I). Our discussion is based on the main topics 
included in the built table and it was subdivided in 
the following sections.

Patterns of Nematode Distribution

Since the first scheme of horizontal faunal zonation 
was published by Mortensen (1921), several 

attempts have been made to define well-demarcated 
zones in sandy-beach sediments, by using physical 
factors (Salvat 1964, Pollock and Hummon 1971, 
McLachlan 1980), macroinvertebrates (Dahl 1952, 
Salvat 1964, 1967, McLachlan and Jaramillo 1995, 
Defeo and McLachlan 2005, for a recent review) 
or meiofauna (Blome 1983, Rodriguez et al. 2001, 
Gheskiere et al. 2004, 2005a, Kotwicki et al. 2005a, 
Gingold et al. 2010, Maria et al. 2013b, c).

The pattern of nematode distribution in sandy 
beaches is explained in detail in the following 
subsections. The variables are discussed below in 
relation to sandy-beach nematode communities.

Macroscale distribution of nematode communities

This topic has received relatively little attention. 
Two studies concerning the macroscale latitudinal 
distribution of sandy-beach nematodes and their 
diversity suggest that the present pattern follows 
the trend of increasing diversity toward the tropics 
(Nicholas and Trueman 2005, Lee and Riveros 
2012). Macroscale nematode studies exploring 
the full range of beach types have not yet been 
undertaken, but the limited information available 
shows that nematode diversity is highest in coarse-
grained, intermediate sandy beaches (Gheskiere et 
al. 2005a) or in sheltered conditions (Hourston et al. 
2005, Urban-Malinga et al. 2005). It indicates that 
the a high diversity can be found in the full range 
of beach types, but the above mentioned references 
do not use the same methodological strategy 
what limited the interpretation of the results. A 
comprehensive understanding of the nematode 
diversity pattern among different beach types will 
be only possible when an equal sampling design 
would be adopted. For instance, the sampling 
design used to understand the distribution patterns 
of polychaetes in different beach types could be 
adopted (Di Domenico et al. 2008); in this study, it 
is indicated that reflective sandy beaches are more 
diverse than intermediate and dissipative ones.
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Mesoscale distribution of nematode communities

Concerning the horizontal zonation in across-shore 
transect on a single beach, granulometry, organic 
input, temperature and salinity are the key factors 
governing the horizontal nematode distribution 
(Platt 1977, Gheskiere et al. 2004, Urban-Maligna 
et al. 2005, Moreno et al. 2006, Maria et al. 
2012), whereas biological interactions between 
macro- and meiofauna and/or among meiofauna 
organisms have only an indirect effect (Maria et 
al. 2011b, 2012, 2013a). High diversity is often 
found where there is an optimal balance of these 
variables, i.e., physical and chemical conditions 
are intermediate (Gheskiere et al. 2004, Hourston 
et al. 2005, Gingold et al. 2010). However, some, 
more heterogeneous beaches display intertidal 
sandbars intercalated by depressions, which 
retain water when tides recedes, across their wide 
intertidal zone (Masselink et al. 2006); this habitat 
is therein called runnel and those beaches that bear 
it are so-called macrotidal ridge-and-runnel beach. 
On these beaches, for example De Panne Beach 
in Belgium, studied by Maria et al. (2013b), the 
two microhabitats (runnels and sandbars) contain 
different nematode communities, which are 
reflected in dissimilar across-shore zonation. Three 
nematode associations (upper, middle and lower 
beach) are much more evident in the sandbars 
than in the runnels. These three biological zones 
on the sandbars were in accordance with the tidal 
zonation previously observed by Gheskiere et al. 
(2004) in the same study are contradicting the 
previous knowledge that the horizontal nematode 
zonation may just persist for short intervals of 
time and under calm conditions (Nicholas and 
Hodda 1999). The main difference between the 
two most recent studies is that the latter excluded 
the runnel microhabitat. The inclusion of the 
runnels by Maria et al. (2013b) showed that the 
shift over three horizontal nematode communities 
found in the sandbar was interrupted by the runnel 

communities. These results contrast somewhat with 
the results of Gingold et al. (2010) for a macrotidal 
ridge-and-runnel beach in the Gulf of California, 
where both sandbars and runnels showed the same 
pattern of across-shore zonation. We can conclude 
that next to the horizontal mesoscale, the presence 
of runnels may influence the nematode zonation. 
Although both habitats (sandbars and runnels) 
are horizontally distributed over the sandy beach 
interface and did not show consistent differences in 
grain size or chlorophyll a content, they were not 
under the same horizontal gradient of air exposure 
during low tide. 

Based on these results, it is not so much the 
combination of a physical characteristic that de-
termines the nematode community structure, but 
rather the degree of variation of these physical fac-
tors that affect the nematode horizontal distribution 
in the intertidal zone.

Another uncommon way to analyze the 
mesoscale distribution of nematodes is to examine 
an along-shore transect in the intertidal zone. In this 
case, samples that are far from each other are more 
heterogeneous (Nicholas and Hodda 1999, Gingold 
et al. 2011); however, if the beach has different 
microhabitats along the across-shore transect, as 
in the case of a macrotidal ridge-and-runnel beach, 
the degree of patchiness is more accentuated in the 
microhabitat with calmer conditions (Gingold et al. 
2011). 

Microscale distribution

In relation to microscale vertical distribution, 
desiccation and oxygen availability are considered 
to be ultimate factors controlling the vertical 
distribution of the meiofauna (McLachlan 1978, 
Coull 1988, Maria et al. 2012). Oxygen is a 
significant limiting factor only in sheltered beaches. 
In this habitat, marine nematodes are restricted to 
the first centimeters of the sediment (McLachlan 
1978), while in more exposed conditions, 
nematodes can be distributed more deeply (Urban-
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Malinga et al. 2004). This phenomenon has led to 
the use of vertically undivided cores in meiofauna 
sandy-beach sampling, or the use of cores divided 
into large intervals of cm (i.e., larger than 1cm) 
(Blome 1983, Sharma and Webster 1983, Long 
and Ross 1999, Urban-Malinga et al. 2005). 
Moreover, samples are usually taken during low 
tide. This is a sampling strategy initially adopted 
for the macrofauna to avoid contamination by tidal 
migrants. It is however, also known that nematodes 
can migrate downward (Boaden and Platt 1971) or 
upward (McLachlan et al. 1977, Maria et al. 2012) 
in the sediment column at high tide. Therefore, 
to better understand the vertical distribution of 
nematodes, a finer-scale sampling scheme should 
be adopted, using cores subdivided into thin layers 
of a few centimeters, when dealing with protected 
and dissipative sandy beaches. Joint et al. (1982) 
has already demonstrated that nematodes showed 
different vertical distribution patterns at mm scale 
in an intertidal sandflat.

The relationship between the vertical 
distribution of sandy-beach nematodes and the 
tidal cycle was demonstrated by Boaden and 
Platt (1971) and McLachlan et al. (1977). These 
two studies were rather contradictory. The former 
authors showed that nematodes move down in 
the sediment, escaping from the upper layers and 
thus avoiding being washed away by the turbulent 
conditions. McLachlan et al. (1977) demonstrated 
that meiofauna living above the depth of the 
permanent water table undergoes vertical 
movements coupled with the tidal cycle, i.e., 
move up during submersion and vice-versa. Since 
the depth fluctuation of the groundwater level is 
directly linked to the different tidal stages (Urish 
and McKenna 2004), the upward movements of 
the meiofauna are closely linked to the tidal cycle. 
Indeed, the vertical distribution of many nematode 
species in the upper sediment layers of De Panne 
Beach during submersion was mainly explained 
by upward passive transport from deeper layers. 

Downward movements during emersion were 
explained by a combination of passive and active 
transport (Maria et al. 2012). Passive transport 
could be attributed to the drop in the underground 
water level, while active migration would occur to 
avoid harsh conditions created by drying of surface 
layers (McLachlan et al. 1977).

Although the investigation of the importance 
of the tidal cycle for the vertical distribution of the 
nematodes by Maria et al. (2012) was restricted 
to the upper five centimeters of the middle beach 
level, these results could be extrapolated to the 
other intertidal beach levels by combining the 
observations of the groundwater discharge in the 
beach sediments during the different tidal stages. 
The water table is very close to the sediment 
surface toward the low-water line during low tide. 
Therefore, here the vertical rise of the water table 
during the incoming tide would be more discrete 
than toward the high-water line. Consequently, 
upward passive transport of nematodes in the 
low intertidal beach would be less likely, so that 
nematodes would not dramatically modify their 
vertical distribution over the tidal cycle in this part 
of the beach. On the other hand, changes in the 
nematode vertical distribution over the tidal cycle 
would be more evident in the upper beach. 

Biological interactions may also affect 
the vertical distribution of nematodes in the 
sediment, and may occur among different sizes 
of organisms. The role of biological interactions, 
such as competition and predation, in regulating 
macrofauna zonation remains little known 
(McLachlan and Jaramillo 1995). From the point 
of view of the meiofauna, biological interactions 
were only suggested to be important for atidal 
beaches (Hulings and Gray 1976), but Maria et al. 
(2012) showed that the species-specific vertical 
distribution of nematodes over a tidal cycle is 
clearly driven by biological interactions. The 
importance of predation was evidenced by the 
predacious nematode Enoplolaimus litoralis. This 
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species was recorded in the layers just above the 
deposit-feeder Daptonema normandicum, which 
inhabited the subsurface 2-5-cm layers during 
submersion (Maria et al. 2012). The same pattern 
of predator-prey segregation was also observed in 
the coarsest sediments (<170µm and less than 5% 
silt) of a mudflat under high hydrodynamic stress, 
and was explained by food preferences (Steyaert et 
al. 2003). During exposure in De Panne Beach, E. 
litoralis was no longer restricted to the 1-3-cm layers 
as during submersion, but was found deeper in the 
sediment. This change may be the consequence of 
active migration, since another thoracostomopsid 
nematode, Enoploides longispiculosus, has shown 
high motility to actively catch deeper-living prey 
when the surface sediment was not water-saturated 
and the groundwater level was lowered (Steyaert 
et al. 2001). This migration took place during ebb 
tide, and also coincided with a low abundance of 
suitable prey species within the upper 5cm.

The importance of competition in driving 
the vertical distribution of species is confirmed to 
some extent by the vertical segregation of nema-
tode species in the sediment. Species with a more 
13C-enriched diet, such as Sigmophoranema rufum, 
were abundant in the upper two centimeters of the 
sediment, whereas species belonging to epistrate 
(2A) and non-selective feeder (1B) groups that ex-
ploit a more 13C-depleted diet showed higher den-
sities in the subsurface layers - 2 to 3 cm - (Maria 
et al. 2012). The importance of food competition 
between S. rufum and 1B/2A nematodes was sup-
ported by the results of an enrichment experiment, 
since the diatom uptake of epistrate nematodes was 
highest when the same food sources (diatoms) were 
offered to the nematode community. This may indi-
cate that 2A nematodes are better competitors (Ma-
ria et al. 2011a).

Nematode Communities in Beach Food Webs

Food webs in sandy beaches differ with the beach 
type, and particularly with the degree of coupling 

between the beach and the surf zone (McLachlan 
and Brown 2006). Two distinct ecosystems are 
recognized: (1) beaches with little or no surf zone 
(reflective beaches), which are dependent on food 
input from the sea; and (2) beaches with extensive 
surf zones (dissipative beaches), which have high 
primary production from the surf diatoms that 
shows a vertical migration from the sediment 
deep in the surf zone to the water (McLachlan and 
Brown 2006). This ecosystem may support three 
partially unconnected food webs: the interstitial 
food web, the microbial loop (which is restricted 
to the surfzone and has been little investigated), 
and the macroscopic food web (Heymans and 
McLachlan 1996). 

There are two studies that investigated the 
importance of nematodes in sandy beach food 
webs. Menn (2002) showed that a high wave energy 
beach has an impoverished food web due to a more 
diverse meiofauna while a less dynamic sandy 
beach showing a high dominance of nematodes 
in the meiofauna community can support a richer 
food web. 

The second study assessed the integrative 
food web of the middle part of De Panne Beach 
by means of stable isotope analyses (Maria et 
al. 2012). Vascular plants were not included as 
a possible food source, since they are important 
primary producers of the supralittoral zone of 
Belgian sandy beaches (Speybroeck et al. 2008) 
and were assumed to be of less importance for the 
middle beach of De Panne, where a concrete dike 
separates the dunes from the beach (Gheskiere et al. 
2004). Most of the meiobenthic species (nematodes 
and copepods) utilize more carbon-enriched food 
sources than the macrofaunal organisms, indicating 
that there was no competition for food between 
these two classes of organisms. Phytoplankton and 
suspended detritus seem to be more important food 
sources for macrobenthic organisms on dissipative 
and reflective sandy beaches (Bergamino et al. 
2011, Maria et al. 2012), while microphytobenthos 
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(MPB) is utilized as a carbon source by nematodes, 
copepods, turbellarians and a few macrofaunal 
species, such as two species of the amphipod 
Bathyporeia (Maria et al. 2012). Laboratory 
experiments also indicated a higher uptake of 
benthic diatoms by these organisms (Maria et al. 
2011a). Nonetheless, MPB is considered a limiting 
food source for sandy-beach organisms due to 
its low primary productivity, probably because 
of the strong hydrodynamic forces acting on the 
beach interface (McLachlan and Brown 2006); the 
preference for benthic over planktonic diatoms, as 
demonstrated by Maria et al. (2011a), leads to us 
to speculate that the absence of a diatom biofilm in 
sandy beaches, a condition extremely common on 
tidal flats, can be attributed to the rapid consumption 
of diatoms by benthic sandy-beach organisms.

Although some field investigations and 
experimental approaches demonstrated that 
nematodes may serve as food source for large 
organisms, such as shrimps and fishes (see Coull 
1990, for a revision), there was no explicit trophic 
link between macrofaunal and nematode species 
evidenced by isotopes analysis (Maria et al. 2012). 
It can be easily explained by the few numbers of 
species investigated in the study. 

Pollution 

A large set of features, including ease of sampling, 
omnipresence, high diversity, short generation time, 
and absence of a planktonic stage, make nematodes 
an excellent tool to evaluate the ecological condition 
of different environments (Giere 2009); however, 
very few studies have dealt with nematodes at 
lower taxonomic resolution (e.g. Fricke et al. 1981, 
Gheskiere et al. 2005b, Nanajkar and Ingole 2010). 
This may be related to the difficulty and tedium of 
species identification; therefore, pollution studies 
tend to use broader taxonomic categories and the 
two numerically dominant groups, nematodes and 
copepods, are the main focus of such studies.

As seen in Table I, the four pollution-related 
studies focusing on sandy-beach nematodes dealt 
with different subjects: oil, recreational activities, 
and sewage discharge. In terms of oil pollution, 
the nematode density was still similar to reference 
sites when the sediment of the polluted site was 
not mechanically removed (Fricke et al. 1981). 
This finding contradicts the expected pattern 
of reduction in density at sites where an oil spill 
occurred (Wormald 1976, Giere 1979, Danovaro 
et al. 1995, Kang et al. 2014), but other field and 
experimental studies have indicated that nematodes 
are insensitive to oil pollution (Boucher 1980, 
Warwick et al. 1988, respectively). On the other 
hand, a mechanical treatment of the oil-polluted 
sediment had more impact in the nematode density 
than the pollution by oil per se, and more individuals 
were found in the deeper layers (Fricke et al. 1981).

There is little controversy around the time 
required for meiofauna recovery in areas subjected 
to oil spills. Fricke et al. (1981) found that 
meiofauna had recovered six months after an oil 
spill on the coast of South Africa (SA), while this 
time period was not enough for meiofauna recovery 
in three beaches located on the coast of Galicia 
(GC) (Veiga et al. 2010a). The lack of a similar 
response here is probably related to the difference 
in the magnitude of the oil spill (31,000 tons in SA 
x 50,000 tons in GC), and the local hydrodynamics 
(exposed in SA and under intermediate conditions 
in GC). In situ experiments have shown that sandy-
beach meiofauna can recover their density and 
community composition one month after an oil 
spill when very small quantities of oil are spilled 
(Kang et al. 2014).

The discharge of domestic sewage onto sandy 
beaches is a common problem in coastal areas, 
especially in developing countries, where a large 
part of the population may develop coastal areas 
in an unregulated manner. Nanajkar and Ingole 
(2010), studying the impact of chronic sewage 
discharge on a tropical sandy beach, observed that 
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nematodes responded to the organic enrichment 
with an increase in density and dominance of 
one genus (Daptonema) in the areas closest to 
the sewage outflow. These authors believed that 
the non-selective deposit-feeding activity of 
Daptonema aided the bioremediation of the site.

From the point of view of beach management, 
this ecosystem has great socio-economic value 
as a recreational area and is therefore considered 
a key tourist destination during holiday periods. 
The recreational use of sandy beaches has a 
significant impact in terms of reduction of meio- 
and nematofauna diversity, which responds by 
shifting to a large number of species with small 
size, rapid growth and high rates of reproduction 
(r-strategists). Nevertheless, this reduction may 
only be associated with the upper beach, which 
can be mechanically cleaned daily (Gheskiere et 
al. 2005b). On the other hand, in intense trampling 
activity in the intertidal area leads the meiofauna 
to migrate downward to layers deeper than 5cm 
(Moellman and Corbisier 2003).

Climate Change

Concerns about global warming have dramatically 
increased and it is widely understood that sandy 
beaches will be drastically affected, especially by 
sea-level rise. To date, very few studies have dealt 
with this subject (e.g. Kont et al. 2003, Lock et al. 
2011, Mead et al. 2013). In terms of nematodes, 
only the study of Gingold et al. (2013) has concen-
trated on this group in sandy-beach environments. 
Laboratory microcosm experiments have shown 
that high temperatures lead to loss of important 
predacious and omnivorous nematodes that are im-
portant for the top-down control of the community, 
consequently leading to a change in the food web. 

Concerning sea-level rise, the nematode 
intertidal community will be immersed more often 
or will become permanently submersed; therefore, 
we can speculate that many intertidal species will 
be unable to withstand long periods submerged. 

This may eliminate many of these species and 
consequently reduce biodiversity in areas where 
the nematode biodiversity is presently very 
high. Besides, the rapid sea level rise will move 
beaches towards a more reflective morphodynamic 
state which is characterized by low meiofauna 
abundances (Yamanaka et al. 2010). In both cases, 
the reduction in nematode abundance may lead to a 
lost in ecosystem functioning. However, this topic 
requires further investigation.

CONCLUSIONS

Sandy beach ecosystems are one of the less studies 
coastal ecosystems; it can be easily exemplified by 
a simple search in the Web of Science which the 
number of studies in this environment correspond 
to 10% and 25% of those realized in estuaries 
and mangroves, respectively. The current state of 
knowledge shows us that over the decades, sandy 
beaches have been the scene of studies focusing on 
community and population ecology, both in relation 
to morphodynamic models. The combination of 
physical factors (e.g. grain size, tidal exposure 
and degree of drainage) and biological interactions 
(e.g. trophic relationships and competition) 
is responsible for the spatial distribution of 
nematodes. The degree of importance of these 
factors is related to the kind of distribution pattern 
analyzed; physical factors are more important in 
structuring nematodes communities over large 
scale of distribution (e.g. macro- and mesoscale) 
while biological interactions are largely important 
in finer-scale distributions. 

Although nematodes are the dominant meio-
fauna group and are largely used as indicator of 
environmental conditions it is of primordial im-
portance to understand the natural relationship be-
tween the environment and these organisms. There-
fore, to understand better the ecological processes 
driving the sandy-beach nematode community is 
necessary to increase the efforts in understanding 
latitudinal and beach type patterns also taking into 
account the environmental heterogeneity. 
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In terms of energy, nematodes are considered 
an important link between micro- and macrofaunal 
organisms; however, isotopic studies showed that 
there is a clear separation between the interstitial 
and macrofaunal food webs at least for temperate 
sandy beaches. 

Even though the nematode diversity is related 
to physical and biological interactions, it is also 
related to the degree of impact occurring in the 
environment; under disturbed conditions (i.e., 
organic pollution, oil pollution, beach cleaning or 
trampling) the diversity decreases and the density 
of some dominant species (especially deposit 
feeders) increases, the natural recovery depends on 
the amount and duration of the impact.

And last but not the least, the relationship 
between nematodes and climate change is a 
promising research area, which many aspects must 
still be evaluated for sandy-beach organisms, but a 
common believe is that the nematode density must 
decrease.

This review elucidates the current knowledge 
of sandy-beach nematodes and as this ecosystem 
is easily reached and occurs worldwide we should 
stimulate more and more studies that can provide 
a more comprehensive approach toward a better 
understanding of the physical and biological 
interactions among sandy-beach organisms. This is 
essential in order to understand the possible effects 
of key human pressures on the beach ecosystem. 
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RESUMO

Nessa revisão, reunimos o conhecimento existente 
sobre a ecologia dos nematódeos de praias arenosas, em 
relação à distribuição espacial, teias tróficas, poluição e 
mudanças climáticas. Tentamos discutir os padrões em 
escala especial (macro-, meso- e microescala) conforme 
o seu grau de importância na estruturação das associações 
de nematódeos em praia sarenosas. Esta revisão fornece 
uma base substancial sobre o conhecimento atual dos 
nematódeos de praias arenosas e poderá ser usada como 
um ponto de partida para futuras investigações nesse 
campo da Ciência. Por décadas, as praias arenosas 
têm sido objeto de estudos enfocando a ecologia de 
comunidade e populacional, ambas relacionadas aos 
modelos morfodinâmicos. A combinação dos fatores 
físicos (p. ex., tamanho do grão, nível de exposição às 
marés) e os fatores biológicos (p. ex., relações tróficas) é 
responsável pela distribuição espacial dos nematódeos. 
Em outras palavras, os fatores físicos são mais importantes 
na estruturação das comunidades de nematódeos em 
grandes escalas, enquanto que as interações biológicas 
são mais relevantes em escalas menores de distribuição. 
Tem sido aceito que as interações biológicas seriam de 
menor importância porque os fatores físicos ocultam as 
interações biológicas nos sedimentos de praias arenosas; 
no entanto, estudos experimentais mais recentes (in-
situ  e ex-situ) sobre o comportamento e os fatores 
biológicos (em microescala) têm mostrado resultados 
promissores para a compreensão dos mecanismos 
subjacentes aos processos e padrões em maior escala. 
Além disso, os nematódeos são organismos muito 
promissores para serem utilizados a fim de compreender 
os efeitos da poluição e das mudanças climáticas, ainda 
que esses dois tópicos sejam menos estudados em praias 
arenosas do que os padrões de distribuição.
Palavras-chave: biodiversidade, bentos, padrões de 
distribuição, teias tróficas, mudanças climáticas.
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