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ABSTRACT
Parkinson’s disease is characterized by the death of dopaminergic neurons, mainly in the substantia nigra, 
and causes serious locomotor dysfunctions. It is likely that the oxidative damage to cellular biomolecules is 
among the leading causes of neurodegeneration that occurs in the disease. Selenium is an essential mineral 
for proper functioning of the brain, and mainly due to its antioxidant activity, it is possible to exert a special 
role in the prevention and in the nutritional management of Parkinson’s disease. Currently, few researchers 
have investigated the effects of selenium on Parkinson´s disease. However, it is known that very high or 
very low body levels of selenium can (possibly) contribute to the pathogenesis of Parkinson’s disease, 
because this imbalance results in increased levels of oxidative stress. Therefore, the aim of this work is 
to review and discuss studies that have addressed these topics and to finally associate the information 
obtained from them so that these data and associations serve as input to new research.
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INTRODUCTION

The influence of diet on the prevention, etiology and 
treatment of various diseases is well established, 
as exemplified by several recent studies (Barnard 
et al. 2014, Chiva-Blanch et al. 2014, Elenberg 
and Shaoul 2014, Kondo et al. 2014, Squitti et 
al. 2014). Among the nutrients obtained from the 
diet, it is known that selenium (Se) is important 
for healthy human metabolism and that it is 

involved in the pathophysiology of many diseases, 
such as cancer, type-2 diabetes, viral diseases, 
cardiovascular disease, muscle disorders, male 
infertility, and neurological disorders, among 
others (Rayman 2012, Hatfield et al. 2014, Roman 
et al. 2014). Little is known about the role of Se in 
pathologies that affect the central nervous system. 
However, Se has important antioxidant functions 
(Maldonado et al. 2012, Liu et al. 2013, Li et al. 
2014) and neuroprotective actions (Lu et al. 2014, 
Naziroğlu et al. 2014, Şenol et al. 2014, Yang et al. 
2014). Therefore, Se in imbalance levels could be 
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significantly involved in the pathophysiology of 
neurodegenerative diseases.

One of the most common neurodegenerative 
disorders in the population worldwide is Parkin-
son’s disease (PD), which primarily affects the el-
derly (Pringsheim et al. 2014). The factors that con-
tribute to a delay or acceleration of the progression 
of PD are not completely established. Evidence has 
shown that cellular oxidative damage is one of the 
major possible causes of PD (Seet et al. 2010, Dias 
et al. 2013, Hwang 2013, LeWitt et al. 2013, Gaki 
and Papavassiliou 2014).

Considering that Se has antioxidant activity and 
oxidative damages are most likely involved in the 
pathogenesis of PD, studying the role of the mineral 
on this disease is a promising direction, especially 
because an association between Se and PD has been 
poorly investigated. Therefore, the aim of this work 
is to investigate and discuss the possible effects of 
Se on PD based on experimental and theoretical 
studies. Thus, according to relevancy, review and 
hypothesis articles were also used in this study. In 
the first part of this review, we present the roles 
of Se in the maintenance of human health and in 
nervous system homeostasis, as well as a brief 
discussion regarding the appropriate levels of Se 
that should be consumed to maintain human health. 
The second part describes the pathophysiology 
and biomarkers of PD, their relationships with 
oxidative stress, and the roles of diet and specific 
micronutrients in the disease. Finally, in the third 
part of this review, the potential influence of Se on 
PD is discussed, with an emphasis on the role of 
Se in the locomotor system and brain dysfunction.

SELENIUM

In 1817, Se was discovered by Swedish chemist 
Jöns Jacob Berzelius (Boyd 2011), and currently, 
it is known that Se is a trace element that is in-
dispensable for the maintenance of human health 
and affects body metabolism in normal and patho-
logical situations (Rayman 2012). However, many 

aspects of Se still need to be clarified, including 
the optimal levels of Se that should be consumed 
to achieve its beneficial effects and avoid the detri-
mental effects, as well as the role of this nutrient in 
the treatment and prevention of neurodegenerative 
diseases such as PD. These topics will be covered 
in the following section.

Dietary Sources and Nutritional 
Recommendations

Se is an essential nutrient, and the human diet is a 
natural source for obtaining it in relevant amounts. 
The dietary sources of Se are quite diverse, includ-
ing meat, milk, eggs and vegetables (Lemire et al. 
2010). The amount of Se present in most vegetables 
depends on the amount of the mineral present in the 
soil in which the plant was cultivated. Therefore, 
plants grown in soils rich in Se have high mineral 
levels, whereas the opposite is also true (Combs 
2001, Mehdi et al. 2013). It was recently demon-
strated that in monsoonal China, precipitation has 
an important effect on the distribution of Se in soil 
(Blazina et al. 2014). This fact demonstrates that 
populations living in specific regions of the world 
are susceptible to high or low consumption of Se, 
and the amounts vary according to environmen-
tal conditions that modify the mineral content of 
the soil where they live. This influence is greatest 
where the importation of food from various loca-
tions is lower, because it makes the consumption of 
local foods greater, to the detriment of food from 
various geographical and environmental origins.

Among the foods considered as sources of 
Se, the Brazil nut is rich in this nutrient. Accord-
ing to Cominetti et al. (2012), a single Brazil nut 
may have up to 290 μg of Se (about 5-fold the daily 
dietary requirement). Therefore, this food can be 
used to increase levels of this mineral in the blood 
(Stockler-Pinto et al. 2010). This information is 
clinically important because it demonstrates that 
the inclusion of controlled amounts of Brazil nuts 
in the diet can be a way to supplement the mineral 
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in patients with specific needs of Se. Thus, the use 
of non-food supplements of this mineral is not re-
quired. However, it is important to mention that in 
Brazil, the Brazil nut is not widespread in the food 
culture of all regions of the country. Additionally, 
the Brazil nut is an expensive product, which be-
comes an obstacle for people wishing to acquire it.

The recommendations for daily Se intake are 
relatively easy to be achieved through a balanced 
diet according to the gender and age of each in-
dividual. For adult men and women, 55 μg of Se/
day is considered the ideal amount to be consumed. 
This recommendation remains unchanged for the 
elderly people and is lower for children. Quantities 
greater than 400 μg of Se/day (recommendation for 
adults) are not indicated by threatening intoxica-
tion (IOM 2000). Cases of Se poisoning are not 
common but can cause signs such as hair and body 
hair alterations, nails and skin abnormalities, garlic 
breath (Stockler-Pinto et al. 2010), lethargy, and 
amyotrophic lateral sclerosis (Vinceti et al. 2014).

In addition to food sources of Se to increase 
body levels of the mineral, other factors must 
be considered, such as the bioavailability of the 
nutrient. The bioavailability of Se will depend on 
various factors, such as the mineral absorption rate 
that varies according to the type of food consumed 
and the interaction with other nutrients (Navarro-
Alarcon and Cabrera-Vique 2008, Gad and Abd 
El-Twab 2009, Thiry et al. 2013). The organic 
forms of Se are more bioavailable than inorganic 
Se (Daniels 1996, Rayman et al. 2008). Therefore, 
in individuals requiring the supplementation of 
the mineral, using Se supplementation in organic 
form (for example: wheat Se, selenomethionine 
or high-Se-yeast) seems to be more advantageous 
than using supplements containing Se in inorganic 
form (selenate or selenite) (Rayman et al. 2008). 
Furthermore, there is evidence that Se consumed 
through food is better absorbed than Se from mineral 
supplements. Approximately 80% of dietary Se can 
be absorbed, which varies according to the type of 

food source of the mineral (Navarro-Alarcon and 
Cabrera-Vique 2008). An in vitro study using three 
types of supplements of Se (Se-enriched yeast, 
selenate-based food supplement and selenite-based 
food supplement) showed that 14% (from selenate 
supplement) was the highest rate of bioavailability 
achieved (Thiry et al. 2013). Notwithstanding, 
the bioavailability of Se either via food or via 
supplements deserves further studies.

Biological Roles of Selenium

Se deficiency has been associated with some dis-
eases such as Keshan disease (a cardiomyopa-
thy that affects people living in regions with soil 
poor in Se) (Loscalzo 2014). Se deficiencies are 
also related to genomic instability (Arigony et al. 
2013). Additionally, Se is able to perform epigen-
etic changes through DNA methylation and histone 
modifications (Speckmann and Grune 2015). Com-
plex pathological situations such as infection by 
human immunodeficiency virus (Ellwanger et al. 
2011, Sudfeld et al. 2014) and cancer (Yakubov et 
al. 2014) also appear to be influenced by body lev-
els of Se. In this context, the antioxidant function 
of Se (Maldonado et al. 2012, Arigony et al. 2013, 
Liu et al. 2013, Li et al. 2014) involves protecting 
from and slowing the development of diseases that 
involve oxidative damage to cellular components.

The biological activity attributed to Se is ex-
ercised through selenoproteins, which are pro-
teins that have a selenocysteine residue in the ac-
tive site (Hatfield et al. 2014). The selenoproteins 
play varied and important activities in the body, 
such as selenium transport (Burk and Hill 2009), 
endoplasmic reticulum homeostasis (Shchedrina 
et al. 2011), immunomodulation, regulation of 
apoptosis (Roman et al. 2014), and control of the 
cellular redox state (Arigony et al. 2013). There 
are currently twenty-five selenoproteins identified 
in humans, which include Selenoprotein P (SelP), 
Selenoprotein W (SelW), Selenoprotein H (SelH), 
Selenoprotein M (SelM), Selenoprotein R (SelR), 
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Selenoprotein N (SelN), Selenoprotein S (SelS) 
and the selenoproteins from the families of Iodo-
thyronine deiodinase (DIOs), Thioredoxin reduc-
tase (TrxRs) and Glutathione peroxidase (GPxs). 
All are involved in metabolic functions to prevent 
and/or combat diseases (Roman et al. 2014). Al-
though all these selenoproteins have an important 
role in cellular homeostasis, the families of anti-
oxidant enzymes should be highlighted. The family 
of GPxs should be particularly focused because the 
inappropriate activity of GPxs has been reported 
as a factor that strongly correlates with the nutri-
tional deficiency of Se, which contributes to oxida-
tive stress and therefore the emergence of diseases, 
including neuronal disorders (Mehdi et al. 2013, 
Pillai et al. 2014). Among the eight enzymes de-
scribed in this family, five (GPx1, GPx2, GPx3, 
GPx4 and GPx6) are selenoproteins, and they are 
involved in the detoxification of hydrogen perox-
ide and lipid hydroperoxides, among other types of 
reactive species. In these reactions, the tripeptide 

GSH is used as a reducing agent (Lei et al. 2007, 
Brigelius-Flohé and Maiorino 2013, Smeyne and 
Smeyne 2013). It is important to mention that in the 
GPxs family, GPx5, GPx7 and GPx8 are non-Se 
congeners (Brigelius-Flohé and Maiorino 2013). A 
brief demonstration of the activity of Se-dependent 
glutathione peroxidase is shown in Figure 1. 

The action of selenoproteins is related to diet. 
Se ingested through food is incorporated into sele-
noproteins, and the activity of these proteins de-
pends on the levels of Se ingested (Weeks et al. 
2012, Zhang et al. 2013). This information suggests 
that quantities of Se ingested through food can in-
fluence the activity of glutathione peroxidase, in 
addition to blood levels of the mineral (Cominetti 
et al. 2012, Giacosa et al. 2014). If the level of Se 
in the body is low, the cells cannot synthesize sele-
noproteins properly (Ferguson et al. 2012). If the 
activity level of selenoproteins with antioxidant 
action is sufficient to combat the level of oxidiz-
ing agents generated by the body or by the envi-
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Figure 1 - Detoxification of hydrogen peroxide (H2O2) and lipid peroxides (LOOH) by Se-
dependent glutathione peroxidase. Glutathione peroxidase activity requires two molecules of 
the tripeptide GSH, which is restored by the enzyme glutathione reductase.
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ronment, the oxidative stress is avoided. However, 
if there is an imbalance between the activity of 
antioxidant enzymes and the levels of oxidizing 
agents, oxidative stress will occur, which will result 
in damage to cellular biomolecules (Othman and 
El Missiry 1998, Brenneisen et al. 2005, Rahmanto 
and Davies 2012, Song et al. 2014, Yakubov et al. 
2014). These events are schematically summarized 
in Figure 2. Therefore, it is important to mention 

that individuals who are exposed to environmental 
stimuli or have lifestyles that exacerbate oxidative 
stress should be aware of Se dietary recommen-
dations, and this information must be a prominent 
topic in dietary planning for these individuals 
(Thomson 2004). To date, there is no specific di-
etary requirement defined for individuals with high 
oxidative stress levels, and future studies are need 
to set such levels.
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Figure 2 - Main events that influence the antioxidant activity of Se. The Se antioxidant activ-
ity occurs through selenoproteins, which are influenced by Se levels obtained through diet. 
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Potential Noxious Effects of Selenium Overload

It is important to mention that despite Se influence 
on the metabolism of various human diseases by its 
antioxidant action, the role of this mineral cannot 
always be protective or combat injury inherent 
to a pathological condition. Se may not often act 
protectively or even beneficially, as demonstrated 
by Maraldi et al. (2011) in a test performed in 
vitro using human neuron cells and by Estevez et 
al. (2012), who showed that a high dose of Se can 
induce oxidative stress in cholinergic neurons of 
Caenorhabditis elegans. Recent results indicated 
that the supplementation of 200 μg of Se/day 
(from L-selenomethionine) is not recommended 
for preventing prostate cancer (Kristal et al. 2014). 
This information calls attention to the importance 
of not considering the mineral only as a protective 
agent when introduced into a research protocol. 
Depending on the quantities used, type of Se 
chosen and experimental conditions, Se could have 
detrimental effects, similar to those mentioned 
above.

Adequate Selenium Levels for Preventing Diseases

Studies that investigated the effect of Se on various 
parameters related to health or disease in humans 
have used various approaches. These studies used 
food questionnaires (Lemire et al. 2011, Vieira 
Rocha et al. 2014), measured mineral levels in 
plasma (Zhao et al. 2013) and breast-milk (Flax et 
al. 2014), and incorporated supplements (Kristal et 
al. 2014, Sudfeld et al. 2014). Regarding the use 
of Se supplements in research with adult humans, 
additional doses up to 200 μg of Se/day may be 
appropriate. This value represents an amount of 
mineral approximately 4 times higher than the 
recommended value (can be used to evaluate the 
effects of high doses of the mineral) but much less 
than the amount that could pose a risk to health 
(IOM 2000, Ellwanger et al. 2011, Yakubov et 
al. 2014). Clinically, Se supplementation may be 

important for individuals from populations that live 
in geographical areas where the mineral is not easily 
consumed through diet or have genetic variations 
that alter the metabolism of the mineral (Pitts et al. 
2014). Methodological approaches using various 
animal models (Li et al. 2013, Lu et al. 2014) or 
cell cultures (Lamarche et al. 2004, Maraldi et al. 
2011) are useful for answering questions related to 
the effects of Se on health/disease but cannot be 
investigated by testing in humans due to ethical and 
methodological reasons.

Selenium and the Nervous System

Se is also essential for proper brain function (Sch-
weizer et al. 2004, Cardoso et al. 2015). Several 
studies have demonstrated that this mineral influ-
ences various pathologies affecting the central ner-
vous system. In elderly patients, low levels of Se 
in plasma are related to a reduction in neurological 
activity, such as coordination (Shahar et al. 2010). 
Se may also influence behavioral development 
(Watanabe and Satoh 1994) and psychological as-
pects, such as mood (Benton 2002) and cognition 
(Steinbrenner and Sies 2013). Se in the form of 
organic compounds could act as an antipsychotic 
(Machado et al. 2006).

In addition to influencing the functioning of 
the brain and various diseases of the central nervous 
system, Se has neuroprotective effects demonstrated 
by several experimental approaches (Lu et al. 2014, 
Naziroğlu et al. 2014, Şenol et al. 2014, Yang et 
al. 2014). This information supports the concept 
that Se has a key role in the development and/or 
progression of neurodegenerative diseases, acting 
as a neuroprotective agent. However, considering 
the complexity of these diseases and the various 
influences that Se can play, the mechanisms by 
which this mineral acts in these diseases still need 
to be investigated. More studies are also needed 
to understand the specific roles of selenoproteins 
and the effects of Se intake on neurodegenerative 
diseases (Steinbrenner and Sies 2013). Therefore, 
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a better understanding of the role of Se in the 
pathogenic mechanisms of PD is important.

PARKINSON’S DISEASE

PD was first described by James Parkinson in 1917 
(for historical aspects of the disease, see the review 
published by Goetz (2011)). Currently, PD is the 
second most common neurodegenerative disease 
in the world, and Alzheimer’s disease is the most 
frequent (De Lau and Breteler 2006). PD primarily 
affects the elderly, occurring in approximately 1% 
of the population over 60 years (Nussbaum and 
Ellis 2003, De Lau and Breteler 2006) but can also 
occur less frequently in younger individuals (Lees 
et al. 2009, Mehanna et al. 2014).

Geographically, the distribution of the disease 
in the world slightly varies. A recent study reported 
that among individuals aged between 70 and 79 
years, PD is more prevalent in Australia and coun-
tries of Europe and North America compared with 
individuals from Asia (Pringsheim et al. 2014). 
Differences among sexes were also observed. The 
prevalence and health impact of PD is higher in 
men (Lubomski et al. 2014). In addition to physical 
and psychological harm caused to patients, PD has 
a great economic impact due to the high medical 
costs of preventing and combating the disease and 
loss of workforce. Approximately 14 billion dol-
lars were spent combating it in the United States of 
America alone in 2010 (Kowal et al. 2013).

PD neuropathology is characterized by the de-
generation of dopaminergic neurons that commu-
nicate to the substantia nigra pars compacta of the 
midbrain to the striatum and affect neurons of the 
nigrostriatal pathway. The cells linking the substan-
tia nigra to the putamen are the most affected. The 
presence of cytoplasmic inclusions known as Lewy 
Bodies are also part of PD neuropathology (Dauer 
and Przedborski 2003, Lees et al. 2009, Dickson 
2012). Other brain structures may also be affected 
in the disease. For example, evidence obtained by 
neuroimaging exams indicate that the cerebellum 

of patients suffering from PD is hyperactive (Yu et 
al. 2007), but the role of the cerebellum and other 
structures in this disease is still poorly understood 
and should be further studied.

Diagnosis and Biological Markers of Parkinson´s 
Disease

There is no specific biochemical test to indicate the 
presence of PD. The diagnosis is made primarily 
from signs and clinical features presented by the 
patient (Nussbaum and Ellis 2003, Lees et al. 
2009) and can only be confirmed at postmortem 
examination (Nussbaum and Ellis 2003). Recently 
it was demonstrated that quantify the expression of 
α-synuclein in skin biopsies have the potential to be 
used as an additional tool for the diagnosis of PD 
(Rodríguez-Leyva et al. 2014). Some of the clinical 
signs used to establish the diagnosis of PD are 
tremor at rest, postural instability, muscular rigidity, 
and difficulty in initiating movements (akinesia) or 
continuing them (bradykinesia), among others that 
affect movement (Lees et al. 2009, Mazzoni et al. 
2012).

Because there are no specific laboratory tests 
to diagnose the disease, the search for biomarkers 
for the presence of PD is extremely important, and 
several markers related to oxidative stress have 
been suggested to be diagnostic of PD. LeWitt et 
al. (2013) reported that the 3-Hydroxykynurenine 
from cerebrospinal fluid might be useful for this 
purpose. The oxidized DJ-1 protein has also 
been suggested as a potential biomarker for PD 
(Saito 2014). Kouti et al. (2013) demonstrated 
the potential for the use of nitric oxide and 
peroxynitrite levels as biomarkers to monitor the 
progression of the disease. Additionally, in a recent 
study, Ide et al. (2015) noted that the levels of 
vitamin C in lymphocytes could be used to monitor 
the progression of PD. In seeking biomarkers, it 
is important to remember that determining the 
susceptibility genes for PD will help discover 
which molecules serve as potential biomarkers for 
disease (Labbé and Ross 2014).
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The involvement of genetic factors in the onset 
of PD is quite relevant. In a recent meta-analysis 
conducted by Nalls et al. (2014), six new risk loci for 
PD were described: SIPA1L2, INPP5F, MIR4697, 
GCH1, VPS13C and DDRGK1. In meta-analysis 
studies, Dai et al. (2014) reported that TNF-1031 
polymorphism is a possible risk factor for PD, and 
Wang et al. (2014) concluded that the null geno-
type of GSTT1 is also related to increased risk of 
the development of PD, at least in Caucasians. The 
roles of the genes parkin, DJ-1 and PINK-1 in the 
susceptibility to PD (Hauser and Hastings 2013) 
should be highlighted, as well as the LRRK2 gene 
(Martin et al. 2014). Genetic mutations affecting 
the PINK1 and LRRK2 proteins are related to mi-
tochondrial dysfunction and the formation of reac-
tive oxygen species (Zuo and Motherwell 2013), 
which are events involved in PD pathophysiology.

Oxidative Stress and Other Molecular 
Dysfunctions in Parkinson´s Disease

Although genetic factors are very important in the 
pathogenesis of PD, it is believed that the interaction 
between genetic and environmental factors 
determines whether the disease develops (Chai and 
Lim 2013, Searles Nielsen et al. 2013, Smeyne and 
Smeyne 2013, Pringsheim et al. 2014). It is known, 
for example, that occupational and environmental 
exposure to pesticides (such as paraquat and 
rotenone) can trigger PD (McCormack et al. 2002, 
Tanner et al. 2011, Wang et al. 2011, Kamel 2013, 
Baltazar et al. 2014). This factor exemplifies how 
environmental factors associated with oxidative 
stress should not be overlooked in investigating the 
causes of PD and should be considered together 
with the genetic characteristics of each individual. 
However, the interactions between these two 
factors are not well established.

Oxidative stress seems to be crucial for PD 
development (Dias et al. 2013, Hwang 2013, 
LeWitt et al. 2013, Gaki and Papavassiliou 2014, 
Kirbas et al. 2014). Additionally, DNA damage 

(Giovannelli et al. 2003), deficiency in the repair 
of these damages (Jeppesen et al. 2011, Canugovi 
et al. 2013), lipid peroxidation (Sanders and 
Greenamyre 2013) and mitochondrial dysfunction 
(Yan et al. 2013) are other important events in the 
physiopathology of PD. Neuroinflammation also 
appears to have an involvement in the etiology 
(Niranjan 2014) and progression of this disease 
(Taylor et al. 2013).

Biomarkers indicated that oxidative damage 
is increased in patients suffering from PD, rein-
forcing the relationship between this injury and the 
disease (Seet et al. 2010). A treatment against the 
oxidative stress in PD is still not established, but 
to be effective, this molecular insult should be a 
target of treatment in the early stages of the disease 
(Celardo et al. 2014). However, it is interesting to 
note there is doubt whether oxidative stress is a 
cause or a consequence of the loss of dopaminergic 
neurons in PD (Sanders and Greenamyre 2013), so 
further studies on this aspect should be conducted. 
As cited by Tsang and Chung (2009), a detailed 
understanding of how oxidative stress influences 
the pathophysiology of PD will help develop better 
strategies to treat the disease. 

Mitochondrial dysfunction is another impor-
tant molecular event associated with PD (Yan et al. 
2013). More specifically, oxidative stress related to 
the impairment of complex I of the mitochondrial 
respiratory chain and mitochondrial DNA muta-
tions are mentioned as causal factors of the disease 
(Subramaniam and Chesselet 2013). Müller et al. 
(2013) demonstrated a relationship between the 
presence of Lewy bodies and mitochondrial DNA 
damage. In this context, the results of the study 
conducted by Sanders et al. (2014) support the use 
of mitochondrial DNA damage as a biomarker for 
the vulnerability of dopaminergic neurons in PD. 
However, this aspect should be better character-
ized, and further studies investigating the role of 
mitochondria in PD are needed.
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New insights into the pathophysiology of the 
PD have been described. Recently, Janda et al. 
(2012) and Zhang et al. (2015) have discussed 
the association between defects in the process of 
autophagy and PD. Wen et al. (2014) reported the 
involvement of proteins that induce cell cycle reentry 
(CDK5/RKIP/ERK pathway) causing neuronal 
death in PD. Brenner (2014) hypothesized that the 
deterioration of melanin in the cells of the substantia 
nigra may be possible involved in the development 
and progression of PD. The relationship between 
PD and nucleolar stress has also been discussed 
(Parlato and Liss 2014). The suggestions of the 
involvement of all these molecular processes in 
PD leads to further discussion on the causes and 
factors that are involved in disease progression, 
and therefore, possible new therapeutic targets are 
hitherto unimagined. However, more experimental 
investigations using robust methodology are 
needed to support these new findings.

The dopamine replacement by using 
Levodopa has been widely used for three decades 
in the treatment of PD (Dexter and Jenner 2013). 
Levodopa reduces lymphocyte DNA damage in 
these individuals (Cornetta et al. 2009). However, 
it is important to highlight that despite the existence 
of treatment, currently there is still no cure for the 
disease (Dexter and Jenner 2013).

Although dopamine can act as an antioxidant 
(Yen and Hsieh 1997), there is evidence that this 
neurotransmitter contributes to the generation of 
neuronal toxicity. In dopaminergic cells, normal do-
pamine metabolism involving the tyrosine hydroxy-
lase enzyme is responsible for producing oxygen 
radicals that damage biomolecule cells (Adams Jr et 
al. 2001). This fact helps to explain the high oxida-
tive stress generated in the dopaminergic neurons.

Diet, Micronutrients and the Prevention of 
Parkinson´s Disease

In elderly patients, the relationship between oxi
dative stress and nutritional status has been well 

established (Moreira et al. 2014), but the influence 
of nutrition, specifically in PD, has been poorly 
explored. It is likely that an imbalance in the 
consumption of macronutrients seems to be a 
predisposing factor for the disease, and it has been 
reported in a meta-analysis conducted by Chen et 
al. (2014) that overweight is a possible risk factor 
of PD. In this context, it was suggested that in men, 
the consumption of milk and cheese could increase 
the risk for development of PD, although these data 
still need to be confirmed by future studies using 
strong methodologies (Jiang et al. 2014). Kamel 
et al. (2014) showed that high consumption of n-3 
polyunsaturated fatty acids (PUFAs) associated 
with low consumption of saturated fats could 
help reduce the risk for developing PD. The 
authors described that a diet poor in PUFAs or 
with high amounts of saturated fat might increase 
the susceptibility to neurotoxic agents associated 
with the pathogenesis of PD. However, Dong et 
al. (2014) reported a positive association between 
n-6 PUFAs intake and the risk for developing 
PD, but this is a weak association that needs to be 
confirmed in future studies. The same authors cited 
that n-3 PUFAs have anti-inflammatory effects and 
n-6 PUFAs have pro-inflammatory effects. This 
information could justify the results from these two 
studies, but the relationship between PUFAs and 
PD cannot be fully understood and deserves to be 
studied in detail.

The intake of micronutrients could also 
be a factor influencing the pathophysiology of 
the disease. Recently, Stelmashook et al. (2014) 
described that the imbalance of copper and zinc 
can influence the mechanisms of pathogenesis of 
PD. High intake of non-heme iron associated with 
low vitamin C intake may represent a higher risk 
for PD (Logroscino et al. 2008). Some authors 
report a beneficial use of the micronutrients in 
PD. The administration of folates and vitamins 
B6 and B12 could be used in a supplemental way 
and associated with the conventional treatment 
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to delay the progression of the disease and/or 
improve the quality of life of the patients with 
PD (Dorszewska et al. 2014). The use of these 
nutrients could contribute to healthy nutritional 
status of patients and would help in combating the 
molecular events that lead to disease, but these 
supplementation strategies using various nutrients 
should be clinically investigated and elaborated 
very carefully. Additionally, vitamin D could have 
a neuroprotective effect, influencing the symptoms 
and possibly the development and progression of 
the disease (Peterson 2014). The influence of food 
and specific micronutrients in PD is still unclear. 
These results reinforce the idea that the relationship 
between nutrition and PD is complex and requires 
more studies in people to clarify these aspects. 
However, the food and nutrition management in 
patients suffering from PD is very important so that 
they can achieve or maintain a healthy nutritional 
status. This goal will ensure adequate intake of 
micronutrients (especially those antioxidants as 
Se), preserving other aspects of health that will 
allow people to lead a healthy, normal life.

THE INFLUENCE OF SELENIUM 
ON PARKINSON’S DISEASE

Recently, our research group experimentally 
investigated the role of Se in an experimental 
model of PD in rats and induced by the herbicide 
paraquat (Ellwanger et al. 2015). This work has 
helped to test the hypothesis that Se could aid in 
preventing PD if used previously to the emergence 
of disease or perhaps on patients suffering from 
early stages of PD. This hypothesis was initially 
presented in a work published by Cadet in the 
1980s (Cadet 1986), who proposed the use of 
Se associated with vitamin E. To the best of our 
knowledge, this type of supplementation had not 
been investigated (Se alone or Se plus vitamin E in 
paraquat-induced models). Our findings indicated 
that Se protected against bradykinesia (locomotor 

damage) and DNA damage in lymphocytes of 
rats in the tested animal model of PD induced 
by paraquat. A study performed by Khan (2010) 
in an animal model of PD in mice demonstrated 
that Se also reversed, at least partially, the toxic 
effects (dopamine depletion) caused by 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), that 
has the 1-methyl-4-phenylpyridinium (MPP+) 
as active metabolite, a molecule very similar to 
paraquat (Dauer and Przedborski 2003). This 
protective effect of Se on dopamine in animal 
models of PD is further strengthened by the results 
of the work conducted by Zafar et al. (2003) who 
used the 6-hydroxydopamine (6-OHDA) to induce 
the model in rats. Additionally, a report of a test 
using embryonic stem cell transplantation in brains 
of rats submitted to a model of 6-OHDA-induced 
PD described that Se can also protect against 
inflammation generated in this therapy (Tian et 
al. 2012). Although the results of these studies are 
quite relevant, it is important to note that these 
authors investigated the effects of the mineral in 
experimental models of the disease, which differ 
in several aspects from PD that occurs naturally. 
Therefore, further studies are needed to extrapolate 
the results to humans. In all experimental studies 
cited above, the Se used in the tests was sodium 
selenite, an inorganic form of Se. However, the 
Se used in other experimental strategies varies 
in terms of chemical structure, which further 
complicates the extrapolation of results to humans. 
In this context, it is important to mention that the 
type of Se used in future pharmacological therapies 
should be considered, and the potential therapeutic 
use of organoselenium compounds should be 
further explored (Nogueira and Rocha 2011). For 
example, ebselen, an organic form of Se, has a 
known strong antioxidant function (Miorelli et al. 
2008) and therefore has the potential to combat 
oxidative stress that occurs in PD. Thereby, studies 
investigating the antioxidant potential of ebselen 
are encouraged.
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Selenium and the Locomotor System

Because locomotor damage is a main feature of 
PD, it is interesting to analyze the results obtained 
from studies that evaluated the influence of Se on 
various aspects of the locomotor system. High 
levels of Se in the human organism protect the 
motor function in individuals exposed to mercury 
(Lemire et al. 2011), whereas the serum levels of 
Se appear to also be associated with the walking 
speed in elderly (≥65 years) women in a positive 
way (Alipanah et al. 2009). In the treatment of 
Restless Leg Syndrome, a human disorder based on 
the dopamine system that causes limb movements 
and could be associated with PD (Gao et al. 2010, 
Rahimdel et al. 2012), a daily dose of 50 µg of Se 
improved symptoms (Rahimdel et al. 2012). In 
animal models, Yeo et al. (2008) reported that Se 
(sodium selenite) protects the locomotor system 
of rats submitted to damage to the spinal cord. 
This protection of locomotion was also obtained 
by Zafar et al. (2003) and by our research group 
(Ellwanger et al. 2015), both using other animal 
models (PD models) and evaluating various aspects 
of locomotion, as previously mentioned. The 
administration of physiological doses of sodium 
selenite may contribute to the physical performance 
of rats, as assessed by levels of glycogen in liver 
after a swimming test (Akil et al. 2011). However, 
a recent study by Marcondes Sari et al. (2014) did 
not find changes in locomotor function evaluated 
by open-field test in mice that received p-chloro-
selenosteroid. It is difficult to compare the studies 
that evaluated the effects of Se on locomotion, 
because there are few experimental approaches and 
they differ. Therefore, it is not possible to obtain 
consistent conclusions or extrapolate them to the 
locomotor effects observed in patients with PD.

Selenium Imbalance and Brain Dysfunction

Selenoproteins are also essential to brain function 
(Chen and Berry 2003), and the depletion of these 

proteins seems to be related to the pathophysiology 
of PD (Zhang et al. 2010). This mechanism suggests 
that analyzing the results of studies that investigated 
the interaction between Se and selenoproteins and 
its relation with the brain and PD is also relevant. In 
this context, the roles of glutathione peroxidase and 
selenoprotein P are briefly discussed in this review.

Rats deficient in Se have lower glutathione 
peroxidase (a Se-dependent enzyme) activity in 
the brain (Sanchez et al. 2003). Additionally, the 
reduction of the antioxidant defenses in the brain 
caused by Se deficiency is attributed to the decrease 
of glutathione peroxidase activity (Castaño et al. 
1997). Kim et al. (1999) observed that dietary Se 
(sodium selenite) attenuated the neurotoxicity in 
mice treated with methamphetamine evaluated by 
dopamine depletion in the striatum and substantia 
nigra. The authors also attributed this neurotoxicity 
prevention principally to the activity of glutathione 
peroxidase. These data were supported by evidence 
that neurotoxicity (high oxidative stress) induced by 
methamphetamine can be mitigated by maintaining 
glutathione peroxidase activity through the 
use of Se (Imam and Ali 2000, Barayuga et al. 
2013). These results demonstrate that glutathione 
peroxidase plays a key role in protecting against 
the degeneration of dopaminergic neurons, and 
therefore could be involved in the physiopathology 
of PD (Smeyne and Smeyne 2013).

Selenoprotein P is also critical to neuronal 
functioning (Peters et al. 2006) and the normal 
level of Se in the brain (Burk et al. 2014). The 
deletion of this protein causes inadequate uptake 
of Se by the brain, as demonstrated by Hill et al. 
(2003) in a study using mice. More recently, other 
studies using animals showed that the deletion 
of selenoprotein P causes the degeneration of the 
brain cells (Caito et al. 2011, Byrns et al. 2014). 
By examining post mortem brain tissue from PD 
patients, Bellinger et al. (2012) demonstrated 
that selenoprotein P expression decreased in the 
substantia nigra of these individuals compared 
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with controls. However, the authors also described 
that the protein was increased relative to the total 
number of cells. All this evidence indicates that 
Se may influence neurodegeneration by altering 
the activity of selenoproteins, such as glutathione 
peroxidase and selenoprotein P. In other words, 
the concept that Se has an indirect action in 
the protection process in addition to its non-
selenoprotein antioxidant function is reinforced 
(Imam and Ali 2000, Hart et al. 2013).

Se deficiencies can modify the functioning 
of dopaminergic neurons (Watanabe et al. 1997), 
which are the main cells that are affected in PD. 
Paradoxically, Se deficiency may increase the ac-
tivity of tyrosine hydroxylase and dopamine pro-
duction (Romero-Ramos et al. 2000). These data 
suggest that the deficiency of the mineral can trig-
ger compensatory activity by dopamine produc-
tion in response to a situation in which its depletion 
(due to Se deficiency) is previously established. In 
a study conducted in the 1990s by Aguilar et al. 
(1998), no differences in cerebrospinal fluid levels 
of Se were observed between PD patients and con-
trol subjects. Qureshi et al. (2006) reported an in-
creased cerebrospinal Se level in PD patients com-
pared to controls. Zhao et al. (2013) also reported 
higher Se levels in PD patients compared with 
control individuals, but the study evaluated plasma 
levels of the mineral. Additionally, reduced Se was 
not found in people with PD if the nutrient was 
measured in lymphocytes (Mischley et al. 2012) 
or by serum levels (Aguilar et al. 1998, Younes-
Mhenni et al. 2013). However, low serum levels of 
Se in individuals with PD compared with controls 
were reported by Nikam et al. (2009). Ultimately, 
according to the results obtained by the cited stud-
ies, it is not possible to make a direct relationship 
between Se status and PD after the disease has al-
ready been established. This finding highlights that 
the use of the mineral for preventing disease could 
be a promising strategy.

Paradoxically, increased deaths due to PD 
have been reported in men who lived in an area 

where the drinking water was rich in inorganic Se 
(Vinceti et al. 2000). These data were reinforced 
by the findings of a study in which PD patients 
consumed Se-rich foods with higher frequency 
than control subjects (Ayuso-Peralta et al. 1997). 
These data highlight that Se in high amounts is 
prooxidant (Letavayová et al. 2006, Brozmanová 
et al. 2010). Currently, cultural habits that favor 
the consumption of some specific Se-rich food 
or their easy availability may be responsible for 
excessive consumption of the mineral. The results 
of these studies also demonstrate the augmented 
complexity of investigating the effects of Se 
from food consumption, in which synergism and 
antagonism between nutrients occur, compared 
with seeking correlations between disease and 
levels of the mineral or studying controlled intake 
of the mineral through supplements. More studies 
evaluating the relationship between PD and the 
consumption of Se through food are needed, 
especially to provide technical and scientific 
information for the elaboration of better diets for 
the elderly population.

Finally, from the information presented and 
discussed here, the probable/hypothetical relation-
ship between the nutritional status of Se and PD is 
summarized in a schematic model presented in Fig-
ure 3. The events shown in this hypothetical model, 
as well as the relationship between them, repre-
sent the evidence most strongly established in the 
literature. As described in this review, new events 
and interactions have also been suggested and dis-
cussed by several authors but were not included 
in the model because more research is needed to 
confirm and further characterize their roles in the 
pathophysiology of PD.

CONCLUSIONs

Despite being a mineral required in low amounts 
for the human body, an adequate level of Se 
might improve several aspects of human health. 
Se deficiencies are rarely reported, making it 
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appear that it is a situation of little importance. 
However, subclinical deficiencies may impact 
cellular metabolism and cause changes that 
can lead to various diseases, possibly including 

neurodegenerative conditions, if accumulated and 
associated with other environmental and genetic 
factors. Moreover, Se in excess is also associated 
with pathological situations. Therefore, we stress 

Balanced  
diet 

Unbalanced  
diet 

Adequate Se  
status 

Inadequate (low or 
high) Se status 

Locomotor impairment: 
 

- Tremor at rest; 
- Muscular rigidity; 

- Postural instability; 
- Akinesia; 

- Bradykinesia, among 
others. 

ELDERLY 
PERSON 

Death of dopaminergic 
neurons 

Brain 

Substantia nigra 

Parkinson’s 
disease 

Mitochondrial 
disfunction 

High lipidic 
peroxidation 

Low DNA 
repair 

High DNA 
damage 

Figure 3 - Probable (hypothetical) relationship between nutritional status of Se and events 
that culminate in PD. Elderly individuals are susceptible to dietary imbalances that may cause 
inadequate nutritional Se. Inadequate levels of Se (high or low) in the brain cause co-interacted 
events that culminate in the death of dopaminergic neurons in the substantia nigra; however, 
adequate levels of Se protect against these events. The neuronal death of dopaminergic neurons 
leads to PD, which affects the locomotor system. This locomotor impairment can cause damage 
to the lives of individuals affected by disease as well as inadequate diet. 
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the importance of maintaining Se consumption in 
the recommended doses by IOM (2000) (55 - 400 
µg/day for adults), either through food or through 
supplements (if they are needed). This information 
is especially important for nutritionists and other 
health professionals who work with the nutritional 
management of subjects who are healthy as well 
as subjects with pathological conditions. People 
who live in geographical regions where the soil is 
rich or poor in mineral levels should receive more 
attention in regard to the quantities of Se ingested.

Among neurodegenerative diseases that could 
be physiologically affected by Se levels, PD is 
prominent. Evidence has shown that PD is most 
likely the result of an association between envi-
ronmental and genetic factors. People who have 
genetic characteristics associated with high dis-
ease risk should avoid environmental/occupational 
exposure to pesticides and should maintain a diet 
with adequate levels of antioxidants (including Se) 
and attitudes that can slow and prevent the onset of 
disease. Although the death of dopaminergic neu-
rons has been described as a main cause of PD, 
new studies have shown that several other molecu-
lar events may be involved in the pathogenesis of 
the disease. This fact demonstrates that the causal 
events of PD are still unclear and should be further 
studied.

Studies in humans and in experimental 
models suggest that Se could be involved in the 
pathophysiology of PD and that the mineral, if 
used in appropriate doses, could protect against this 
disease. This effect is mainly due to the antioxidant 
characteristics of Se and its ability to fight the 
molecular events that culminate in neuronal 
death. However, the results of some studies have 
not supported these findings. These conclusions 
underscore the importance of conducting studies 
that aim to explore and establish the role of Se in 
PD in more detail. Accordingly, it will be possible 
to confirm or not the beneficial effects of using 
Se for the prevention or in the dietary treatment 

of PD. However, in the elderly, it is clear that a 
proper diet for age and proper Se intake according 
to recommendations is essential not only for the 
prevention of PD but for several other diseases, 
whether neurodegenerative or not. Lastly, based 
on the evaluation and discussion of the studies 
presented in this review, it can be suggested that 
continued investigations into the influence of Se on 
PD are important.

RESUMO

A doença de Parkinson é caracterizada pela morte dos 
neurônios dopaminérgicos, principalmente na substân-
cia negra, e causa sérias disfunções locomotoras. É pro-
vável que o dano oxidativo às biomoléculas celulares es-
teja entre as principais causas da neurodegeneração que 
ocorre nessa doença. O selênio é um mineral essencial 
para o adequado funcionamento do encéfalo e, princi-
palmente devido a sua atividade antioxidante, é possível 
que exerça um papel especial na prevenção e no manejo 
nutricional da doença de Parkinson. Atualmente, poucos 
pesquisadores têm investigado os efeitos do selênio so-
bre a doença de Parkinson. Entretanto, sabe-se que ní-
veis corporais muito altos ou muito baixos de selênio 
podem (possivelmente) contribuir para a patogênese da 
doença de Parkinson, uma vez que esse desbalanço re-
sulta no aumento dos níveis de estresse oxidativo. Dessa 
forma, o objetivo deste trabalho é revisar e discutir os 
estudos que abordaram esses tópicos e então associar as 
informações obtidas através deles para que esses dados 
e associações sejam usadas para o estabelecimento de 
novas pesquisas.

Palavras-chave: neurodegeneração, nutrição, estresse oxi-
dativo, doença de Parkinson, selênio.
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