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ABSTRACT
Accurate forest inventory is of great economic importance to optimize the entire supply chain management 
in pulp and paper companies. The aim of this study was to estimate stand dominate and mean heights 
(HD and HM) and tree density (TD) of Pinus taeda plantations located in South Brazil using in-situ 
measurements, airborne Light Detection and Ranging (LiDAR) data and the non- k-nearest neighbor (k-
NN) imputation. Forest inventory attributes and LiDAR derived metrics were calculated at 53 regular 
sample plots and we used imputation models to retrieve the forest attributes at plot and landscape-levels. 
The best LiDAR-derived metrics to predict HD, HM and TD were H99TH, HSD, SKE and HMIN. The 
Imputation model using the selected metrics was more effective for retrieving height than tree density. The 
model coefficients of determination (adj.R2) and a root mean squared difference (RMSD) for HD, HM and 
TD were 0.90, 0.94, 0.38m and 6.99, 5.70, 12.92%, respectively. Our results show that LiDAR and k-NN 
imputation can be used to predict stand heights with high accuracy in Pinus taeda. However, furthers 
studies need to be realized to improve the accuracy prediction of TD and to evaluate and compare the cost 
of acquisition and processing of LiDAR data against the conventional inventory procedures. 
Key words: forest inventory, LiDAR metrics, k-NN Imputation, Remote Sensing.
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INTRODUCTION

Light Detection and Ranging (LIDAR) is an 
optical remote sensing technology which measures 
properties of scattered light to find range and/
or other information of a distant target. LiDAR 

measurements is usually acquired at airborne 

level and is usually also referred to Airborne 

laser scanning (ALS). It has been widely used in 

mapping the Earth’s surface and especially in forest 

applications due its capacity to retrieve three-

dimensional information of the vegetation (Yao et 

al. 2014). 
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The resulted cloud points acquired by a LiDAR 
system allows the reconstruction of the vertical 
structure of forests at different strata that cannot 
be obtained from any other remote sensing system. 
Indeed, several LiDAR-derived metrics can be 
derived out from these point clouds (McGaughey 
2015). These metrics can be used indirectly to 
predict several other parameters of the forests using 
either regression or classification approaches to 
spatially represent these selected attribute over large 
areas (Dubayah and Drake 2000). Applications and 
advantages of LiDAR technology can be seeing 
over both natural and planted forest worldwide 
(Nilsson 1996, Næsset 1997, Næsset and Bjerknes 
2001, Popescu et al. 2003, Popescu 2007). 

Pine plantations are the most important long 
fiber source for pulp and paper production in South 
Brazil. It covers nowadays an area of 1.59 million 
hectares, accounting for approximately 20.54% of 
the country’s total reforested area (Ibá 2015). Most 
of the pine plantations are concentrated in South 
Brazil, with 34.1 and 42.4% of the total reforested 
area located in Paraná and Santa Catarina States  
(Ibá 2015). Pinus taeda L., also known as loblolly 
pine, is the most planted forest specie in these 
regions. It has high economic importance due to 
its high volumetric increment in the colder regions 
of the southern plateau (Kohler et al. 2014). It has 
fast growing rates presenting increments up to 50 
m3·ha-1·year-1 (Ibá 2015).

Usually, forest companies conduct their own 
permanent forest inventory in planted forest at 
annual basis in order to monitor the forest growth, 
to identify problematic conditions during initial 
growth stages, and to predict the optimal harvesting 
time. Important attributes describing the state of the 
current stand that affect thinning decisions includes 
both stand height and tree density. On the other 
hand, stand height is a useful information wefor 
both dominant heights and site index determination. 
Whereas on the other hand, tree density is a key 
information for thinning management. Initially, 

the seedlings are planted using a higher density 
configuration and afterwards thinning is conducted 
in order to proportionate primary and secondary 
growths, respectively. 

Therefore, accurate forest inventory is of great 
economic importance to optimize the entire supply 
chain management in pulp and paper companies 
(Falkowski et al. 2008, Silva et al. 2016a). Although 
the use of LiDAR technology is relatively new in 
Brazil, different investigations have been made to 
evaluate the ability of airborne LiDAR for forest 
inventories studies. They were mostly restricted to 
natural forest environments and/or Eucalyptus spp. 
plantations (e.g., Packalén et al. 2011, Carvalho 
et al. 2015, Silva et al. 2015, 2017a). As far as 
we know, Zandoná et al. (2008) were the first 
and only authors to use airborne LiDAR data 
for forest inventory purposes in a Pinus taeda 
plantation located in South Brazil. In their study, 
they derived individual tree height and crown area 
measurements using an individual tree approach 
to model the diameter at the breast height (DBH). 
However, early studies using both individual and 
plot based approaches also have demonstrated 
the potential of airborne LiDAR data to quantify 
forest attributes in conifer and deciduous forests 
in Northern Hemisphere (e.g., Nilsson 1996, 
Næsset 1997, Næsset and Bjerknes 2001, Popescu 
et al. 2003, Roberts et al. 2005, Popescu 2007). 
Therefore, a better understanding of how airborne 
LiDAR data can be used to extract forest attributes 
from planted forest of Pinus taeda in South Brazil 
is still necessary. 

Currently, the most common approach to 
retrieve forest attributes from LiDAR data has been 
the area-based approach in which forest properties 
for an area of interest are inferred based on the 
relationship between field measurements and the 
LiDAR-derived metrics (Nilsson 1996, Næsset 
1997, Hudak et al. 2006, Silva et al. 2017b). These 
relationships are usually linear multiple regression 
models, which afterwards, can be applied to the 
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m or 2.5 x 2.5 m grid configuration, resulting in an 
average tree density of 1,667 and 2,000 trees per 
ha, respectively. 

The climate of the region is characterized 
as warm and temperate (Cfa) (Köppen and 
Geiger 1928), with annual average precipitation 
approximately of 1378 mm and the annual average 
temperature of 18.4 ºC. The topography in the study 
ranges from mildly to very hilly with elevation 
ranging of 618 m to 905 m. The Pinus taeda stands 
are on the plateau where the topography is relatively 
flat. The plantations are managed by Klabin S.A., a 
pulp and paper company.

FIELD DATA COLLECTION 

A total of 53 rectangular plots of approximately 
500 - 620 m2 each were established across the 
four plantations for stand measurement ranging in 
ages from three to nine years old. All plots were 
georeferenced with a geodetic GPS with differential 
correction capability (Trimble Pro-XR), and in each 
sample plot, individual trees were measured for 
DBH (diameter at breast height) and a subsample 
(15%) of trees for tree height (Ht). For trees in 
the plot that were not directly measured for Ht, 
the inventory team of Klabin S.A. predict heights 
from hypsometric equations. The hypsometric 
models were adjusted according to Curtis (1967), 
employing as independent variables DBH, and as 
dependent variables the Ht, following the model 
below (Eq. 1). 

ln (Ht) = β0+ β * 1 e
DBH

  + 
  	  (Eq.1)

where: ln(Ht) is the logarithm of tree height (m); 
and  are the intercept and the slope of the model; 
DBH is the diameter at breast height (1.30 m) and  
is the random error of the model. The coefficients 
of the hypsometric models were not available, 
however, according to the company, the adj.R2 
and Syx% of the models ranged from 0.96 to 0.98 

entire LiDAR dataset for predicting forest attributes 
at stand level. 

One emerging method for forest attribute 
modeling from LiDAR data is the k-nearest neighbor 
(k-NN) imputation. It is a nonparametric machine 
learning method which has widely been used to 
predict forest inventory attributes in un-inventoried 
areas at either plot- or stand-levels (Falkowski et al. 
2010, Hudak et al. 2014, Racine et al. 2014, Silva 
et al. 2016b). The non-parametric k-NN imputation 
method uses a set of predictor feature variables 
(X) to match each target pixel to a number (k) of 
most similar (nearest neighbors or NN) reference 
pixels for which values of response variables (Y) 
are known (McRoberts 2012). It allows estimating 
a variable of interest through a weighted average of 
the known variables of the k-nearest neighbouring 
plots. The weighted average could be done using 
either an inverse distance weighting or the square of 
the inverse distance (McRoberts 2009). Examples 
of forest applications using k-NN imputation, 
including mathematical formulation may be found 
in Hudak et al. (2008), Racine et al. (2014), and 
Fekety et al. (2014).

Therefore, the aim of this study was to 
evaluate the use of airborne LiDAR data and k-NN 
imputation for predicting and mapping stand-
level forest variables, which included mean height 
(henceforth HM), dominant height (HDOM) and 
stem density (TD). This work is based on the 
hypothesis that LiDAR data and k-NN analysis can 
produce precise and accurate inferences of HM, 
HDOM and TD in Pinus taeda plantations in South  
Brazil. 

MATERIALS AND METHODS

STUDY AREA DESCRIPTION 

The study area consisted of four Pinus taeda stands 
located within the Telêmaco Borba municipality 
in the State of Paraná, Southern Region of Brazil 
(Fig. 1). The trees were planted using a 3.0 x 2.0 
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and 5.1 to 6.5, respectively, according to the farm 
location.

The mean height (HM; m), dominant height 
(HDOM; m) and tree density (TD; N/ha) were 
summarized for each sample plot, and the summary 
statistics of HM, HDOM, and TD per stand ages 
are presented in Table I.

LIDAR DATA ACQUISITION AND DATA 
PROCESSING

LiDAR data were obtained by a o Harrier 68i 
sensor mounted on a CESSNA 206 aircraft. The 
characteristics and precision of the LiDAR data 
are listed in Table II. LiDAR data processing 
consisted of several steps that ingested the LiDAR 
point cloud data and provided two major outputs: 
the digital terrain model (DTM), and the LiDAR-
derived canopy structure metrics. All of the 

Figure 1 - Location of study area. The circles indicate the location of the Pinus taeda plantations.

TABLE I
Characteristics of the Pinus taeda plantations. The values 

are based on in-situ measured sample plots (n=53). 
Standard deviation values are given in brackets.

Ages
(I)

Pinus taeda 
Plot 
(N)HM (m) HDOM (m) TD (N/ha)

3 ≤ I < 5 6.72[0.29] 7.59[0.59] 1298[86] 19

5 ≤ I < 7 9.91[0.73]  11.05[1.10] 1361[159] 18

7 ≤ I < 9 11.61[0.79] 12.87[1.05] 1266[243] 16

Average 9.28[2.14] 10.36[2.45] 1413[215] ---

LiDAR processing phase was performed using the 
US Forest Service FUSION/LDV 3.42 software 
(McGaughey 2015).

Initially the catalog function in FUSION/LDV 
was used to generated a descriptive report of the 
point cloud, which was used to identify the LiDAR 
coverage extent and outliers. When detected 



An Acad Bras Cienc (2017) 90 (1)

	 ESTIMATING STAND HEIGHT AND TREE DENSITY IN Pinus taeda L. FROM LIDAR	 299

outliers, we removed them using the ClipData tool. 
A filtering algorithm based on Kraus and Pfeifer 
(1998) and available in the Groundfilter function 
was applied to differentiate between ground and 
vegetation points. DTMs were generated using the 
classified ground points with a spatial resolution of 
one meter using GridSurfaceCreate. Afterwards, 
the ClipData function was applied to normalize 
heights and to assure that the z coordinate for each 
point corresponded to the height above ground 
and not the orthometric elevation of the single 
point. The PolyClipdata function was then used 
to subset of the LiDAR points within each of the 
53 measured sample plots, and the Cloudmetrics 
tool was applied to compute the LiDAR-derived 
metrics using all the available returns of the point 
cloud. Finaly, the GridMetrics function were used 
to generate the same LiDAR metrics computed in 
CloudMetrics, but now within grid cells of 5 m 
spatial resolution, across the landscape. The list of 
the LiDAR metrics used in this are presented in the 
Table III. 

LIDAR METRICS SELECTION AND IMPUTATION 
MODELING DEVELOPMENT

The LiDAR metrics selection was performed 
through two major steps. First, Pearson’s correlation 
(r) was used to identify highly correlated predictor 
variables (r > 0.9) as presented in Hudak et al. 

TABLE II
Airborne LiDAR system characteristics.
Parameter Value

Scan angle (°) 60º
Footprint (m) 0,33m
Flight speed (km/h) 234,00 km h-1

Horizontal accuracy 10cm
Elevation accuracy 15cm
Operating altitude 666,17 m
Scan frequency 300 kHz
Pulse density 4 pulse m-²

IMU=Inertial measurement unit; GPS=Global Positioning 
System.

TABLE III
LiDAR-derived canopy height metrics considered as 

potential candidate variables for predictive imputation 
models (McGaughey 2015).

Variable Description

HMIN Height Minimum

HMAX Height Maximum

HMEAN Height Mean

HMAD Height median absolute deviation

HSD Height standard deviation

HSKE Height skewness 

HKURT Height kurtosis 

HCV Height coefficient of variation 

HMODE Height mode

H01TH Height 1st percentile 

H05TH Height 5th percentile 

H10TH Height 10th percentile 

H15TH Height 15th percentile 

H20TH Height 20th percentile 

H25TH Height 25th percentile 

H30TH Height 30th percentile 

H35TH Height 35th percentile 

H40TH Height 40th percentile

H45TH Height 45th percentile 

H50TH Height 50th percentile 

H55TH Height 55th percentile 

H60TH Height 60th percentile 

H65TH Height 65th percentile

H70TH Height 70th percentile 

H75TH Height 75th percentile 

H80TH Height 80th percentile 

H90TH Height 90th percentile

H95TH Height 95th percentile 

H99TH Height 99th percentile 

COV Canopy Cover (Percentage of first return 
above 1.30m)
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(2012), Silva et al. (2014, 2017c). If a given group (2 
or more) of LiDAR metrics were highly correlated, 
we retained only one metric by excluding the others 
that were most highly correlated with the remaining 
metrics. Second, the varSelection function from the 
yaImpute (Crookston and Finley 2008) package in 
the R statistical software (R Development Core 
Team 2015) was used to select the most important 
not highly correlated metrics for the imputation 
modeling. The varSelection function computes the 
generalized root mean square distance (grmsd) as 
variables are added to an k-NN imputation model. 
By adding variables, the varSelection function 
keeps variables that strengthen imputation and 
exclude variables that weaken the imputation the 
least (Crookston and Finley 2008). 

In this study, k-NN imputation was conducted 
using the yai and impute.yai, both also from in 
the yaImpute package in the R. Many imputation 
methods can be used for associating target and 
reference observations, however, recent studies 
have shown that the Random Forest (Breiman 
2001) approach generally produces better results 
compared to other imputation methods (Hudak 
et al. 2008, Nelson et al. 2011, Waske et al. 
2012). Therefore, for this study we used Random 
Forest based k-nearest neighbours (RF-kNN) to 
characterize the relationships between predictor 
(LiDAR-derived metrics) and response (HM, 
HDOM and STP) variables used for NN (k=1) 
imputation. 

MODEL ASSESSMENT 

The precision of the model predictions was evaluated 
in terms of adjusted coefficient of determination 
(adj.R²), Root Mean Square Difference (RMSD) 
and BIAS (both absolute and relative):

( )2

1
ˆn

i ii
y y

RMSD
n

=
−

= ∑
	 (Eq.2)

( )
1

ˆ1 n

i i
i

Bias y y
n =

= −∑ 	 (Eq.3)

where n is the number of plots,  is the observed 
value for plot i, and  is the predicted value for 
plot i. The RMSD is analogous to the RMSE 
used to assess regression model accuracy (Stage 
and Crookston 2007). The relative RMSD (%) 
and Bias (%) were calculated by dividing the 
absolute values (Eqs. 2 and 3) by the mean of the 
response variable and multiplied by 100. Ninety-
five percent confidence intervals (CI) for the line of 
best fit were also plotted to determine whether the 
relationship between observed and imputed values 
was significantly different. The acceptable model 
precision was set up a relative RMSD and Bias of 
≤ 15% to have a model precision equal or higher 
to the conventional forest inventory in the P. taeda 
plantations in Brazil. We also performed a cross 
validation on the RF k-NN imputation model with 
bootstrapping simulations using 1000 iterations. 
For each iteration we built an imputation model 
from randomly selected of 53 observations with 
replacement. The remaining observations (out 
of bag) were used to validate the model and to 
compute the RMSD and Bias. After all iterations, 
the average and stand deviation of the RMSD and 
Bias were computed.     

Finally, we used the AsciiGridPredict function 
also from the yaImpute package in R (Crookston 
and Finley 2008) to apply the model across to the 
landscape to map the spatial distribution of HM, 
HDOM and SD of pine at the stand level for the 
benefit of forest managers. An overview of the 
methodology is outlined in Fig. 2.

RESULTS

LIDAR-DERIVED CANOPY HEIGHT STRUCTURE OF 
THE Pinus taeda PLANTATIONS

Young forest stands of Pinus taeda are normally 
defined by a lower canopy coverage, high tree 
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density and low height values. By reaching maturity, 
intermediate and advanced stands, present higher 
canopy coverage values, higher height values and 
lower tree density when compared with young 
stands due to forest thinning and mortality. LiDAR 
derived metrics such as H99TH was high correlated 
(r > 0.9) with field heights (HM, HDOM). An 
example of variations in height ranging from early 
(i.e., 4.0 years) to intermediate (i.e., 6.0 and 8.0 
years) ages of development are shown in Fig. 3. 
Although located in different farms and therefore 
under distinct site index conditions, the LiDAR 
derived height increased from early (Fig. 3a) to 
intermediate ages (Fig. 3b, c).  

LIDAR METRICS SELECTION

Pearson’s correlation test (r) applied to the 30 
candidate LiDAR metrics determined that 24 
were highly correlated each other (r > 0.9). We 
kept one of the highly correlates metrics (i.e., 
H99TH), and the six remaining metrics not highly 
correlated to each other were also used as input in 
the VarSelection function. Some LiDAR-derived 
metrics were positively correlated, such as H99TH 
and HSD (r = 0.81), whereas both HSKE and COV 
(r = -0.67) were negatively correlated as shown in 
Table IV.   

The most important metrics selected from 
the VarSelection to be included in the imputation 

Figure 2 - Flowchart of the LiDAR data processing and forest attributes modeling.
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Figure 3 - LiDAR vertical profiles of three randomized transects (1.5 x 140 m) of Pinus taeda plantations. The 
transects represent stands with 4.0 years (a); 6.0 years (b) and 8.0 years (c).

TABLE IV
Pearson’s correlation coefficients among the selected LiDAR-derived metrics.

r HMIN HSD HSKEW HKUR H99TH COV

HMIN 1.00

HSD 0.21 1.00

HSKEW -0.31 -0.61 1.00

HKUR 0.23 0.31 -0.88 1.00

H99TH 0.37 0.81 -0.87 0.75 1.00

COV 0.23 0.31 -0.67 0.54 0.57 1.00

model as predictor variables for estimating HM, 
HDOM and TD according to the gmsd statistics 
were H99TH, HSD, SKE and HMIN (Fig. 4). 
When added the HKUR and COV metrics to the 
model, they did not improve the fit, and therefore, 
they were automatically removed by the algorithm.

IMPUTATION MODEL PRECISION AND BIAS

The LiDAR-derived metrics were better predictors 
of HM and HDOM as compared to TD. The imputed 

model produced a relative RMSD of 6.99, 5.70 and 
12.92%; relative Bias of -0.36, -1.02 and -1.00, and 
adj.R2 of 0.90, 0.94 and 0.61 for the HM, HDOM, 
and TD attributes respectively (Table V). With the 
exception of TD, the RMSD and Bias were less 
than 10% in the cross validation procedure. The 
adj.R2 of the cross validation for the imputation 
model of TD was markedly lower at 0.40 (±0.17). 

The Figs. 5, 6, and 7 show the relationship 
between the observed and imputed values of the 
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Figure 4 - LiDAR-derived metrics selection according to 
grmsd (generalized root mean square distance). The gray 
boxplots represent the four best LiDAR-derived metrics for 
the imputation modeling. The solid black and the doted gray 
lines represent the mean and standard deviation of the grmsd.

Figure 5 - Imputed versus Observed HM (m); (n=53). Solid 
line depicts regression fit; dashed line is the 1:1 line. Shaded 
areas represent 95% regression confidence intervals. 

Figure 7 - Imputed versus Observed TD (N/ha); (n=53). Solid 
line depicts regression fit; dashed line is the 1:1 line. Shaded 
areas represent 95% regression confidence intervals.

Figure 6 - Imputed versus Observed HDOM (m); (n=53). 
Solid line depicts regression fit; dashed line is the 1:1 line. 
Shaded areas represent 95% regression confidence intervals.

forest attributes studied herein. The regression 
intercepts differed significantly from zero (p ≥ 
0.7), and the 1:1 line fell within the 95% regression 
confidence envelope for all regressions, with the 
exception of the TD regression.

According to the cross validation performance, 
the LiDAR metrics were also better predictors for 

HM and HDOM rather than TD (Table VI). The HM 
and HDOM imputation models produced estimates 
that were strongly correlated (r > 0.93) with the 
validation dataset, whereas the TD imputation 
model were weakly correlated (r = 0.62). This 
resulted consequently in high values of RMSD 
and Bias, respectively. On the other hand, for both 
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HM and HDOM, the adj.R2 values were high and 
RMSD and Bias values were low (Table VI). 

IMPUTED FOREST ATTRIBUTES

Imputed HM, HDOM and TD of Pinus taeda for 
the 53 sample plots ranged from 6.1 to 13.4 m; 
8.9 to 15.5 m and 1266 to 1585 N/ha, respectively. 
In general, imputed values are overestimated 
compared to the reference forest attribute values. 
Forest stands containing younger trees (3 to 5 
years) showed the highest TD values, while the 
plantations with intermediated stands ages (6-9 
years) contained the lowest TD values (Table VII). 

The k-NN imputed model created was applied 
across the extent of the study area to map the 
forest attributes at the landscape level. The Fig. 8 
is showing the spatial distribution of the imputed 
HM, HDOM and TD values at three stands with 
ages ranging from 4 to 8 years old. The stand “A” 
with the age of four years and area of 14.4 ha (Fig. 
8a1-a3) has imputed average values of 7.18 (±0.35) 
m, 8.02 (±0.32) m, and 1574 (±27) N/ha for HM, 

HDOM and TD, respectively; and the stand “B” 
with the age of six years and area of 8.5 ha (Fig. 
8b1-b3) imputed average values of 10.80 (±0.56) 
m; 11.78 (±0.75) m, and 1260 (±93) N/ha for HM, 
HDOM and TD, respectively; while the stand “C” 
with the age of eight years and area of 15.4 ha 
(Fig. 8c1-c3), presented imputed average values of 
11.44 (±0.66) m; 12.66 (±0.84) m, and 1253 (±88) 
N/ha for HM, HDOM and TD; respectively. The 
predicted total number of tree in the stands a), b) 
and c) were approximately 22,651; 10,710; 19,296 
trees, respectively. Differences in HM, HDOM and 
TD are mainly related to the ages, site index and 
management practices of each stand. Moreover, 
differences also depend on other factors such as 
the soil type and intensity of land use before the 
establishment of the stands.       

DISCUSSION

LiDAR is increasingly being used as a means for 
obtaining forest structural measurements over large 
areas, and LiDAR-derived metrics can be used to 

TABLE V
Adjusted coefficients of determination (adj.R²), pearson correlation (r), root mean square difference (RMSD) and BIAS of 

both observed and predicted forest atributes values (HM, HDOM and TD) from the imputation model.

Model LiDAR derived 
metrics Adj.R² r

RMSD BIAS

m; N∙ha-1 % m; N∙ha-1 %

HM 0.90 0.95 0.65 6.99 -0.03 -0.36

HDOM
H99TH + HSD + 
HSKE +HMIN

0.94 0.97 0.59 5.70 -0.11 -1.02

TD 0.38 0.61 183 12.92 -14.11 -1.00

TABLE VI
Cross validation statistics. Number of boostraping = 1000. The values represent the average, and the values inside of the 

brackets represent the standard deviation.

Model Adj.R2 R
RMSD BIAS

m; N∙ha-1 % m; N∙ha-1 %

HM 0.87[0.53] 0.93[0.03] 0.79[0.18] 8.55[1.80] 0.05[0.22] 0.54[2.42]

HDOM 0.83[0.06] 0.93[0.03] 0.93[0.19] 9.05[1.82] -0.01[0.27] -0.18[2.60]

TD 0.40[0.17] 0.62[0.14] 186.33[34.04] 13.19[2.59] -10.99[47.86] -0.82[3.37]
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predict forest attributes using imputation modeling 
(Fig. 8). A proper data mining is required in order 
to select the variables that have a physical mean or 
relationship with the desired forest attributes. In 
this investigation, LiDAR-derived metrics such as 
H99TH, HSD, HSKE and HMIN were found to be 
the most relevant variables to predict HM, HDOM 
and TD. These variables were the most efficiently 
to describe the canopy structure of the forest stands 
by capturing the majority of variation contained 
in the reference dataset. Moreover, these LiDAR 
metrics have been frequently reported as predictor 
variable for forest attributes modeling from LiDAR 
data (Hudak et al. 2012, Silva et al. 2014). 

LiDAR is an important tool for forest inventory 
when combined with appropriately designed sample 
plots in the field and with appropriate modeling tools 
(Hudak et al. 2008, Silva et al. 2017d). Since this 
is most probably the first time that k-NN has been 
applied to predict forest attributes from airborne 

LiDAR data in Brazil, the obtained results strong 
corroborates with those presented by Roberts et al. 
(2005), Hudak et al. (2008, 2014), Falkowski et al. 
(2009, 2010), Fekety et al. (2014), and Gagliasso et 
al. (2014) in loblolly pine environments. 

The main advantage of imputation modeling 
is the simultaneous coherent prediction of multiple 
response variables simultaneity (Crookston and 
Finley 2008). This is a significant asset in forest 
inventory where typically multiple forest attributes, 
in particular the HM, HDOM and TD, are of 
interest.

In this study, the prediction of TD based on 
LiDAR-derived predictors has proven to be more 
difficult than predicting HM and HDOM. The lower 
performance to retrieve this parameter over planted 
forest is due to the lower variability among forest 
stands even under different ages. The difficulties 
in predicting TD has been also highlighted in 
other studies (Maltamo et al. 2004, Woods et al. 

TABLE VII
Summary of the statistics for the observed and imputed forest atributes at different age intervals.

Age Atributes
Statistics (m; and N∙ha-1)

MIN MAX MEAN SD

3-5

HM
Observed 6.4 7.1 6.76 0.25
Imputed 6.1 7.1 6.72 0.29

HDOM
Observed 6.9 8.9 7.69 0.54
Imputed 6.5 8.9 7.59 0.59

TD
Observed 1299 1707 1574 83
Imputed 1299 1707 1585 86

5-7

HM
Observed 9.2 12.2 10.3 0.93
Imputed 8.5 11.1 9.91 0.73

HDOM
Observed 9.6 13.1 11.16 1.37
Imputed 9 13.1 11.05 1.4

TD
Observed 840 1607 1377 210
Imputed 954 1607 1361 160

7-9

HM
Observed 9.7 12.6 11.24 0.74
Imputed 10 13.4 11.61 0.79

HDOM
Observed 11.1 14.2 12.94 0.81
Imputed 10.8 15.3 12.88 1.06

TD
Observed 808 1514 1289 188
Imputed 808 1628 1266 243
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2008, Hirata et al. 2009). The main reason for this 
discrepancy are most probably because the LiDAR 
data distribution accounts more for vertical profile 
what confirms the need of other methodologies for 
predicting TD rather than plot-area based approach 
in this type of environment. The methodology 
already demonstrated by Zandoná et al. (2008) 
or more recently by Strîmbu and Strîmbu (2015) 
based directly on point cloud segmentation have 
shown that the individual tree based approach 
provides accurate estimates of tree density in pine 
plantations. Therefore, future research is required 
to evaluate new approaches using individual tree 
detection.

Although showing great potential for forest 
inventory procedures, the use of airborne LiDAR 
in Brazil is still considered experimental due 
to its expensive cost (Hummel et al. 2011). This 
is because the number of companies is low, 
when compared with other countries where this 
technology is already being used intensively. 
LiDAR has the advantage of capturing variability 
across forest stands and mapping forest attributes 
at the landscape level with high accuracy (Silva et 
al. 2017a).

In in-situ conventional forest inventory 
procedures, the variability of the forest attributes 
at stand level demands time and is costly, and is 

Figure 8 - Imputed forest attributes at landscape level. Maps are with 25 meters of spatial resolution. Examples of Pinus taeda 
stands with 4.0 years (a); 6.0 years (b); and 8.0 years (c). The numbers 1, 2 and 3 represent in order HM, HDOM and TD, 
respectively.
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not always perceptive and therefore less studied. 
LiDAR demonstrated to be an established 
technology that is increasingly and being used to 
characterize spatial variation (Watt et al. 2014). In 
addition, LiDAR permits an accurate production of 
digital elevation models, such as DTM and digital 
surface model (DSM) that are used for hydrological, 
geomorphological, and other applications (Hudak 
et al. 2009). In particular, LiDAR-derived DTM 
has attracted great interest to support forestry 
operations industrial plantation, like in Brazil, 
since it provides thorough and detailed information 
about terrain topography, which in turn is used 
to road planning and to choose the best skidding 
system in complex forest areas (Sterenczak and 
Moskalik 2014).

CONCLUSIONS

This paper describes a framework for predicting 
forest inventory data in unsampled areas via an 
RF-k-NN imputation modeling procedure. This 
procedure incorporates airborne LiDAR-derived 
predictor metrics. Airborne LiDAR has proven 
to be an accurate method to spatially estimate 
stand heights at regular basis. The tree density 
was not totally explained by the LiDAR-derived 
metrics into an imputation model in the area-based 
approach presented herein, and therefore, future 
research will be carried out to test new approaches 
using individual tree framework. In many countries, 
LiDAR has already moved from the research arena 
to operational reality in the area of forest resource 
inventory. We hope that the promising results for 
forest inventory modeling presented herein will 
stimulate to operational this technology in Brazil.
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