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Abstract: In this paper, we introduce a new three-parameter distribution by compounding the

Nadarajah-Haghighi and geometric distributions, which can be interpreted as a truncated Marshall-Olkin

extended Weibull. The compounding procedure is based on the work by Marshall and Olkin 1997.

We prove that the new distribution can be obtained as a compound model with mixing exponential

distribution. It can have decreasing, increasing, upside-down bathtub, bathtub-shaped, constant and

decreasing-increasing-decreasing failure rate functions depending on the values of the parameters. Some

mathematical properties of the new distribution are studied including moments and quantile function. The

maximum likelihood estimation procedure is discussed and a particle swarm optimization algorithm is

provided for estimating the model parameters. The flexibility of the new model is illustrated with an

application to a real data set.

Key words: Exponential distribution, Failure rate function, Geometric distribution, Maximum likelihood

estimation, Nadarajah-Haghighi distribution.

INTRODUCTION

Nadarajah and Haghighi (2011) introduced and studied the mathematical properties of an extension of the

exponential distribution that allows for increasing, decreasing and constant hazard rate functions (hrfs). The

model is referred to as the Nadarajah-Haghighi (NH) distribution. Its cumulative distribution function (cdf)

is given by

G(t;α, λ) = 1− exp{1− (1 + λ t)α}, t > 0, (1)
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where λ > 0 is the scale parameter and α > 0 is the shape parameter. If T follows the Nadarajah-Haghighi

distribution, we shall denote by T ∼ NH(α, λ). The corresponding probability density function (pdf) is

given by

g(t;α, λ) = αλ (1 + λ t)α−1 exp{1− (1 + λ t)α}, t > 0. (2)

The NH distribution presents several advantages if compared with some well-known generalizations of

the exponential model, such as the gamma, Weibull and exponentiated exponential (EE) distributions. For

example, unlike these distributions, the NH distribution allows for an increasing hrf when its corresponding

density is monotonically decreasing. The second advantage is the ability to model data that have their mode

fixed at zero.Another advantage is based on amathematical relationship with theWeibull distribution, where

the NH model can be interpreted as a truncatedWeibull distribution. These three facts combined may attract

more complex applications in the literature of lifetime distributions.

The NH distribution is not the only extension of the exponential distribution. In addition to the gamma

and Weibull distributions, many other generalizations have been proposed over the years. One of them is

G(t; ρ, λ, α) = (1− ρ e−λ t)α, t > λ−1 log ρ, (3)

where ρ > 0, λ > 0 and α > 0. Note that the EE distribution, discussed in Gupta et al. (1998), is

actually a particular case of equation (3) when ρ = 1. Nadarajah and Kotz (2006) and Barreto-Souza

et al. (2010) proposed two important extensions of the exponential model, which are the beta exponential

(BE) and beta generalized exponential (BGE) distributions, respectively. The BE and BGE distributions are

special cases of the beta family of distributions, pionnered by Eugene et al. (2002). The beta family still

contains other generalizations of the exponential model such as the beta Weibull (BW) (Lee et al. 2007)

and beta modified Weibull (BMW) (Silva et al. 2010) distributions. The Kumaraswamy class, introduced

by Cordeiro and de Castro (2011), also contains several models that extend the exponential distribution,

such as the KumaraswamyWeibull (KwW) (Cordeiro et al. 2010) and Kumaraswamy generalized Rayleigh

(KwGR) (Gomes et al. 2014) distributions. References about other generalizations of the exponential model

are widespread and the reader can see those listed in the above papers.

In this paper, we introduce a new continuous distribution, which is an extension of the NH model, by

compounding the NH and geometric distributions. The new model is therefore another extension of the

exponential distribution and is referred to as the Nadarajah-Haghighi geometric (NHG) distribution. The

proposed distribution is more flexible for modeling lifetime data, namely in reliability, in terms of its failure

rate shapes, which maybe be constant, decreasing, increasing, upside-down bathtub and bathtub shaped.

The compounding procedure follows the pioneering work by Marshall and Olkin (1997a). In the same

way, several classes of distributions were proposed by compounding some useful lifetime and power series

(PS) distributions in the last few years. Chahkandi and Ganjali (2009) introduced the exponential power

series (EPS) class of distributions, which contains as special cases the exponential Poisson (EP), exponential

geometric (EG) and exponential logarithmic (EL) distributions. Morais and Barreto-Souza (2011) defined

the Weibull power series (WPS) class, which includes, as sub-models, the EPS distributions. The WPS

distributions can have increasing, decreasing and upside down bathtub hrfs. The generalized exponential

power series (GEPS) distributions were proposed by Mahmoudi and Jafari (2012) following the same

approach of Morais and Barreto-Souza (2011). Silva et al. (2013) studied the extendedWeibull power series

(EWPS) family, which includes as special models the EPS and WPS families. Bourguignon et al. (2014)
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extended the Birnbaum-Saunders distribution through the class of Birnbaum-Saunders power series (BSPS)

distributions. In a recent paper, (Silva and Cordeiro 2015) introduced the Burr XII power series (BXIIPS)

family of distributions.

The rest of the paper is organized as follows. Section 2 introduces the NHG distribution and presents

some special models. Further, we demonstrate that the NHG density function can be expressed as a mixture

of densities of minimum of the baseline order statistics and study some of its properties. In Section

3, the estimation procedure is approached by maximum likelihood via a particle swarm optimization

approach. Section 4 deals with bootstrap percentile intervals. Numerical results fromMonte Carlo simulation

experiments are investigated in Section 5. We also perform simulations to assess the use of bootstrap

percentiles (simple and double) for construction of confidence intervals for the parameters. An application

to real data is performed in Section 6. Finally, concluding remarks are presented in Section 7.

CONSTRUCTION OF THE NHG DISTRIBUTION

LetT1, . . . , TN be independent and identically distributed (iid) NH random variables with cdf (1) and pdf (2).

We assume thatN has a zero-truncated geometric distribution independent of the T ’s with probability mass

function (pmf) given by

pn = P (N = n) = (1− p) pn−1, n = 1, 2, . . . ,

with p ∈ (0, 1). Defining X = min(T1, . . . , TN ), the conditional random variable (X|N = n) has cdf

P (X ≤ x,N = n) = (1− p) pn−1(1− {exp[1− (1 + λx)α]}n), x > 0, n ≥ 1.

The NHG distribution is defined by the marginal cdf of X ,

F (x;α, λ, p) =
1− exp[1− (1 + λx)α]

1− p exp[1− (1 + λx)α]
, x > 0. (4)

Hereafter, the random variable X according (4) with parameters α, λ and p is denoted by X ∼
NHG(α, λ, p). The pdf of X is

f(x;α, λ, p) =
(1− p)αλ (1 + λx)α−1 exp[1− (1 + λx)α]

{1− p exp[1− (1 + λx)α]}2
, x > 0. (5)

It can be shown that

lim
x→0

f(x;α, λ, p) = αλ/(1− p) and lim
x→∞

f(x;α, λ, p) = 0.

Even when p ≤ 0, Equation (5) is a density function. We can then define the NHG distribution by (5)

for any p < 1. The study of the new distribution is important since it extends some distributions previously

considered in the literature. In fact, the NH distribution is obtained by taking p = 0, please see (Nadarajah

and Haghighi 2011). The EG distribution (Adamidis and Loukas 1998) follows by takingα = 1 and 0 < p <

1, whereas the EEG distribution (Adamidis et al. 2005). is obtained when α = 1 for any p < 1. Clearly, the

EEG distribution extends the EG distribution. For α = 1 and p = 0, Equation (5) reduces to the exponential

distribution. When p → 1− (p tending to 1 from by the left), the NHG distribution distribution converges

to a distribution degenerated at zero, i.e., P (X = 0) = 1. Hence, the parameter p can be interpreted as a

degeneration parameter. Figure 1 displays the pdf of X for selected parameter values.
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Figure 1 - The NHG density function for some parameter values; λ = 1.

Proposition 1. For any λ > 0, the pdf of the NHG distribution is monotonous if α > 1 and p ≤ 0 and the

pdf is strictly decreasing if α < 1 and 0 < p < 1.

Proof. The proof of this result follows directly by derivation criteria.

Proposition 2. The NHG density function is log-convex if α < 1 and 0 ≤ p < 1, and it is log-concave if

α > 1 and p ≤ 0.

Proof. Let z = (1 + λx)α. It implies that z > 1 for x > 0. We have x = (z1/α − 1)/λ. Now, rewriting the

NHG density function as a function of z, δ(z) say, we obtain

δ(z) =
(1− p)αλ z(α−1)/α e1−z

[1− p e1−z]2
, z > 1.

As a simple derivation exercise, deriving with respect to z, it is possible to observe that log[δ(z)] < 0.

The second derivative of log[δ(z)] with respect to z is given by

d2 log[δ(z)]

d z2
= −

[
(α− 1)

α z2
− 2 p e1−z

[1− p e1−z]2

]
.

The main motivation for the new distribution is based on four points:

1. Ability (or the inability) of the NHG distribution to model data that have their mode fixed at zero.

2. As we shall see later, the NHG hrf can be constant, decreasing, increasing,

decreasing-increasing-decreasing, upside-down bathtub, bathtub-shaped or constant.
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3. IfY is aMarshall-Olkin extendedWeibull randomvariablewith shape parameterα and scale parameter

λ, then the density in (5) is the same as that one of the random variable Z = Y − λ−1 truncated at

zero; that is, the NHG distribution can be interpreted as a truncated Marshall-Olkin extended Weibull

distribution.

4. It can be applied in some interesting situations as follows:

• Time to relapse of cancer under the first-activation scheme. Here, N is the number of carcinogenic

cells for an individual left active after the initial treatment and Xi is the time spent for the ith

carcinogenic cell to produce a detectable cancer mass, for i ≥ 1;

•Time to the first failure. Suppose that the failure of a device occurs due to the presence of an unknown

number N of initial defects of same kind, which can be identifiable only after causing failure and are

repaired perfectly;

• Reliability. From the stochastic representations X = min{Xi}Ni=1 and Z = max{Xi}Ni=1, we note

that the NHG model can arise in series and parallel systems with identical components, which appear

in many industrial applications and biological organisms.

Proposition 3. The distribution of the form (4) is geometric extreme stable.

Proof. The proof follows easily using the arguments by Marshall and Olkin (1997b). So, we omitted the

details.

Proposition 4. The density function of X can be expressed as a mixture of densities of minimum order

statistics of T .

Proof. For any positive real number a, and for |z| < 1, we have the generalized binomial expansion

(Prudnikov et al. 1986).

(1− z)−a =

∞∑
n=0

Γ(a+ n)

Γ(a)n!
zn, (6)

where Γ(·) is the gamma function. Applying (6) to (5), yields

f(x;α, λ, p) =

∞∑
n=1

pn fT(1)
(x;α, λ, n), x > 0,

where
∑∞

n=1 pn = 1 and fT(1)
(t;α, λ, n) is the density function of T(1) = min(T1, . . . , Tn), for fixed n,

given by

fT(1)
(t;α, λ, n) = nαλ (1 + λ t)α−1{exp[1− (1 + λ t)α]}n, t > 0.

Remark 1. The cdf and pdf of Y = max(T1, . . . , TN ) are given by

FY (y;α, λ, p) =
(1− p){1− exp[1− (1 + λx)α]}
1− p{1− exp[1− (1 + λx)α]}

, y > 0 (7)

and

fY (y;α, λ, p) =
(1− p)αλ (1 + λx)α−1{exp[1− (1 + λx)α]}

(1− p{1− exp[1− (1 + λx)α]})2
.
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The distribution with cdf (7) is called the complementary Nadarajah-Haghighi-geometric (CNHG)

distribution. It is a suitable model in a complementary risk problem based in the presence of latent risks,

which arise in several areas such as public health, actuarial science, biomedical studies, demography and

industrial reliability (Basu and Klein 1982). However, in this work, we do not focus on this alternative class

of distributions.

Proposition 5. Let X ∼ NHG(α, λ, p). Then:

i) The cdf of the nth order statistic corresponding to the pdf (5) is given by

Fn(x) = [F (x;α, λ, p)]n =

{
1− exp[1− (1 + λx)α]

1− p exp[1− (1 + λx)α]

}n

;

ii) The density function of the nth order statistic is given by

fn(x) =
n(1− p)f(x;α, λ, p)[F (x;α, λ, p)]n−1

{1− p[1− F (x;α, λ, p)]}n+1
.

Proof. The proof of Proposition 4 is trivial.

The NHG survival function is given by

S(x;α, λ, p) =
(1− p) exp[1− (1 + λx)α]

1− p exp[1− (1 + λx)α]
, x > 0,

and the corresponding hrf (for x > 0) becomes

h(x;α, λ, p) =
αλ (1 + λx)α−1

1− p exp[1− (1 + λx)α]
=

hNH(x;α, λ)

1− p exp[1− (1 + λx)α]
,

where hNH(x;α, λ) is the NH hrf.

Note that the ratio h(x;α, λ, p)/hNH(x;α, λ) is increasing in x for p < 0 and decreasing in x for

0 < p < 1. Further, we have

lim
x→0

h(x;α, λ, p) =
αλ

1− p
and lim

x→∞
h(x;α, λ, p) =


0, α < 1,

∞, α > 1,

α λ, α = 1.

Proposition 6. For λ > 0, the NHG distribution has an increasing hrf if α > 1 and p < 0, and it has a

decreasing hrf if α < 1 and 0 < p < 1. It is constant if α = 1 and p = 0.

Proof. The proof follows trivially by derivation criteria.

Figure 2 displays some plots of the NHG hrf for some parameter values. The parameter λ does not

change the shape of the hrf since it is a scale parameter. It is evident that this hrf can be decreasing,

increasing, upside-down bathtub shaped or bathtub-shaped. It is difficult to determine analytically the

parameter ranges corresponding to these shapes. It is interesting to point out that the NHG hrf can also

be decreasing-increasing-decreasing. So, this distribution is quite flexible and can be used effectively in
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Figure 2 - The NHG hrf for some parameter values; λ = 1.

analyzing real data in several areas. Thus, the beauty and importance of the new distribution lies in its

ability to model monotone as well as non-monotone failure rates, which are quite common in reliability and

biological studies.
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Theorem 7. Suppose that the conditional survival function of a continuous random variableX is given by

S(x|θ) = exp
{
θ
[
1− e(1+λx)α−1

]}
, x > 0, α, λ, θ > 0.

If the parameter θ has the exponential distribution with pdf

π(θ) = (1− p)e−(1−p) θ, θ > 0, p < 1,

then the compound distribution of X has the NHG distribution.

Proof.

S(x;α, λ, p) =

∞∫
0

S(x|θ)π(θ) dθ = (1− p)

∞∫
0

exp
{
θ
[
1− e(1+λx)α−1

]}
e−(1−p) θ dθ

= (1− p)

∞∫
0

exp
{
−θ

[
e(1+λx)α−1 − p

]}
dθ =

1− p

exp[(1 + λx)α − 1]− p

=
(1− p) exp[1− (1 + λx)α]

1− p exp[1− (1 + λx)α]
,

which is the NHG survival function.

The rth moment of X is given by

E(Xr) = (1− p) e I(p, r, α),

where I(p, r, α) =
∫∞
1 (u1/α − 1)re−u(1 − p e1−u)−2du is an integral to be numerically evaluated. This

integral can be easily computed numerically in software such as Julia and R.
The quantile function (qf) corresponding to equation (4) is given by

Q(u) = λ−1

{[
1− log

(
1− u

1− u p

)]1/α
− 1

}
, 0 < u < 1.

Simulating the NHG random variable is straightforward. Let U be a uniform variate on the unit interval

(0, 1). Thus, the random variable X is given by

X = λ−1

{[
1− log

(
1− U

1− Up

)]1/α
− 1

}
,

follows (5), i.e, X ∼ NHG(α, λ, p).

MAXIMUM LIKELIHOOD ESTIMATION

In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of the new

distribution from complete samples only. Let x1, . . . , xn be observed values from the NHG distribution

An Acad Bras Cienc (2019) 91(1) e20180480 8 | 27
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with parameters α, λ and p. Let θ = (α, λ, p)> be the parameter vector. The total log-likelihood function

for θ is given by

`n(θ) = n+ n log[(1− p)αλ] + (α− 1)

n∑
i=1

log(1 + λxi)−
n∑

i=1

(1 + λxi)
α

− 2

n∑
i=1

log{1− p exp[1− (1 + λxi)
α]}.

By taking the partial derivatives of the log-likelihood function with respect to the parameters in θ, we

obtain the components of the score vector Uθ = (Uα, Uλ, Up)
>:

Uα =
n

α
+

1

α

n∑
i=1

(1− ν̇i) log(ν̇i)−
2 p

α

n∑
i=1

π̇i ν̇i log (ν̇i) ,

Uλ =
n

λ
+ (α− 1)

n∑
i=1

xi ν̇
−1/α
i − α

n∑
i=1

xi (2p+ π̇i) ν̇
1−1/α
i and Up = 2

n∑
i=1

π̇i −
n

1− p
,

where

ν̇i = (1 + λxi)
α and π̇i =

exp [1− (1 + λxi)
α]

1− p exp [1− (1 + λxi)
α]
, i = 1, . . . , n.

Setting Uα, Uλ and Up equal to zero and solving the equations simultaneously yields the MLE θ̂ =

(α̂, λ̂, p̂)> of θ = (α, λ, p)>. These equations cannot be solved analytically and statistical software can be

used to solve them numerically using iterative methods such as the Newton-Raphson type algorithms.

The normal approximation for the MLE of θ can be used for constructing approximate confidence

intervals and for testing hypotheses on the parameters α, λ and p. Under conditions that are fulfilled for the

parameters in the interior of the parameter space, we can approximate the distribution of
√
n(θ̂ − θ) by

the multivariate normal N3(0,K
−1
θ ), where Kθ is the unit expected information matrix. The asymptotic

behavior remains valid if Kθ = limn→∞ n−1Jn(θ), where Jn(θ) is the observed information matrix, is

replaced by the average sample information matrix evaluated at θ̂, i.e., n−1Jn(θ̂). The elements of the

observed information matrix can be obtained from the authors upon request.

OPTIMIZATIONALGORITHM

In computer science, the particle swarm optimization (PSO) is a computational method for optimization of

parametric and multiparametric functions.

Further details on the philosophy of the PSOmethod are given in the book Swarm Intelligence (Kennedy

et al. 2001).

The PSO algorithm optimizes a problem by having a population of candidate solutions and moving

these particles around in the search-space according to simple mathematical formulae over the particle’s

position and velocity. The movement of the particles in the search space is randomized. For each iteration of

the PSO algorithm there is a leader particle, which is the particle that minimizes the objective function in the

corresponding iteration. The remaining particles arranged in the search region will follow the leader particle

randomly and sweep the area around this leading particle. In this local search process, another particle may

become the new leader and the other particles will follow this new leader randomly. Each particle arranged

An Acad Bras Cienc (2019) 91(1) e20180480 9 | 27
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in the search region has a velocity vector and position vector and its movement in the search region is given

by changes in these vectors. The PSO algorithm is presented below, where f : Rn 7→ R is the objective

function to be minimized, S is the number of particles in the swarm (set of feasible points, i.e. search region),

each particle having a vector position xi ∈ Rn in the search-space and a vector velocity defined by vi ∈ Rn.

Let pi be the best known position of particle i and g the best position of all particles.

1. For each particle i = 1, . . . , S do:

• Initialize the particle’s position with a uniformly distributed random vector: xi ∼ U(blo, bup),

where blo and bup are the lower and upper boundaries of the search-space.

• Initialize the particle’s best known position to its initial position: pi 7→xi.

• If f(pi) < f(g) update the swarm’s best known position: g 7→pi.

• Initialize the particle’s velocity: vi ∼ U(−|bup − blo|, |bup − blo|).

2. Until a termination criterion is met (e.g. number of iterations performed, or a solution with adequate

objective function value is found), repeat:

• For each particle i = 1, . . . , S do:

– Pick random numbers: rp, rg ∼ U(0, 1).

– For each dimension d = 1, . . . , n do:

* Update the particle’s velocity: vi,d 7→ω vi,d+φprp(pi,d − xi,d)+φgrg(gd − xi,d).

– Update the particle’s position: xi 7→xi + vi

– If f(xi) < f(pi) do:

* Update the particle’s best known position: pi 7→xi

* If f(pi) < f(g) update the swarm’s best known position: g 7→pi.

3. Now g holds the best found solution.

The parameterω is called inertia coefficient and, as the name implies, controls the inertia of each particle

arranged in the search region. The quantitiesωp andωg control the acceleration of each particle and are called

acceleration coefficients. The PSO algorithm described above, which is implemented in the programming

language R, is presented below.
This algorithm with few modifications will be implemented in the AdequacyModel package, which is

available on the website of R. The algorithm above is quite general and can be applied to maximize any

function involving or not a database. Using pso, a given function is maximized taking into consideration

vectors of restrictions delimiting the search-space. In truth, the pso function above is constructed tominimize

any function. However, to maximize f is equivalent to minimize −f . A brief description of the arguments

of the pso function are listed below.

• func: Objective function that we want to maximize;

• S: Number of particles considered. By default, the number of particles is equal to 150;

• lim_inf e lim_sup: Vectors that restrict the region-search inferiorly and superiorly, respectively.
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• e: Error considered. The algorithm stops if the variance in the last 10 iterations is less than or equal to

e;

• data: By default data=NULL, but when the func is a log-likelihood function, data is a data vector;

• N: Maximum number of iterations.

One advantage of the PSO method is that we do not need to concern ourselves with initial shots.

Problems with initial shots are frequent in methods such as the BFGS when the objective function involves

flat or nearly flat regions.

The example below shows clearly this problem and the use of the function pso, especially how to

specify the objective function for the argument func. The PSO method is described in the A.

Example:

Consider Easom function f(x, y) = − cos(x) cos(y) exp{−[(x− π)2 + (y − π)2]}, and −10 ≤ x, y ≤ 10.

The Easom function is minimized at x = y = π, with f(π, π) = −1. The use of the pso function to

minimize the above function is

easom <- function(par,x){
x1 = par[1]
x2 = par[2]
-cos(x1)*cos(x2)*exp(-((x1-pi)^2 + (x2-pi)^2))

}
set.seed(0)
pso(func=easom,S=350,lim_inf=c(-10,-10),lim_sup=c(10,10))

In both minimizations there is convergence. For minimization through BFGSmethod, we use the optim
function of the R language with the argument method="BFGS". For more details on the optim function,

do help(optim). Figure 3(a) presents four estimates obtained by the BFGS method, whose points are

those of minimum obtained by this method, using the BFGS procedure with different initial shots. In the

legend are described the initial shots. In these four estimates for different shots the optim function indicates
convergence.

Before performing the pso function, the seed of the Mersenne-Twister generator proposed by

Matsumoto andNishimura (1998) is fixed at zero, i.e, set.seed(0). Is it possible to perceive clearly through
Figure 3 that the minimization method using the PSO function pso is much more efficient and approaches

better the global minimum.

BOOTSTRAP CONFIDENCE INTERVALS

The bootstrap method was introduced in 1979 by Efron. This method was inspired by a previous

methodology based on resampling called jackknife. Efron (1979) summarized the methodologies based on

resampling existing until then and established a new research area.

The idea of replacing complicated and often inaccurate simulation methods based on resampling

approaches has attracted several researchers to develop methodologies based on bootstrap for various
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(a) Minimization by BFGS method
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● Minimum point estimate

(b) Minimization by PSO method

Figure 3 - Points of minimum obtained by optim and pso functions by using BFGS and PSO methods.

purposes. With the popularization of the bootstrap method, some researchers have begun to establish

mathematical conditions under which the bootstrap is justifiable.

In the literature there are many jobs that make use of bootstrap methodologies. In general, the bootstrap

method is used to correct the biases of the estimators, in construction of confidence intervals, hypothesis

tests, estimation of standard errors of estimators, among others.

The bootstrap methods present two approaches, namely the parametric bootstrap and nonparametric

bootstrap. Parametric bootstrap refers to the case where the resampling is performed based on a known or

established distribution F (θ̂), where θ̂ is an estimator of θ. On the other hand, in bootstrap nonparametric,

there is the lack of a true distribution F . The resampling is based on the empirical distribution function F̂n.

Resample of F̂n is equivalent to resample data with replacement.

BOOTSTRAP PERCENTILE INTERVAL

Let Tn be an estimator of the scale θ based on n observations and t its estimate. Let T ∗
n be the same estimator

based on n observations resampling from the original sample with replacement and t∗ its estimate. For

simplicity, suppose Tn is a continuous random variable. Denoting the pth quantile of the distribution of the

random variable Tn − θ by ap, we obtain

Pr
{
Tn − θ ≤ aα1

2

}
= Pr

{
Tn − θ ≥ a1−α2

2

}
=

α

2
.

As the amount Q = Tn − θ is invertible and Tn depends only on the sample, we can construct the

confidence interval for θ by rewriting the events above, i.e., we can replace the events Tn − θ ≤ aα1
2
and

Tn − θ ≥ a1−α2
2
by θ > Tn − aα1

2
and θ < Tn − a1−α2

2
, respectively. Thus, the confidence interval of level

γ is given by the limits
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`α/2 = t− a1−α2
2
, `1−α/2 = t− aα1

2
.

In many situations, we do not know the distribution of Tn− θ. In such cases, suppose that there is some

transformation Tn, U = h(Tn), such that U has a symmetric distribution. Suppose also that we can obtain

the confidence interval of level 1 − α to φ = h(θ). According to Davison and Hinkley (1997), we can use

bootstrapping to obtain an approximation of the distribution of Tn−θ using the distribution of T ∗
n − t. Thus,

we estimate the p quantile of Tn−θ by the (J+1)p-th ordered value of t∗−t estimated by t∗((J+1)p)−twhere

J is the number of bootstrap samples. Similarly, the p quantile of h(Tn)− h(θ) = U − φ can be estimated

by the (J + 1)p-th ordered value of h(T ∗
n) − h(t) = u∗ − u. Let bp be the p-th quantile of U − φ. Since

U has a symmetrical distribution, then U − φ also has a symmetrical distribution, as soon as it is true that

bα

2
= −b1−α

2
. Based on the symmetry of U −φ, we have h(`α/2) = u+ bα/2 and h(`1−α/2) = u+ b1−α/2.

As bα/2 and b1−α/2 are quantiles of U − φ and we can obtain these quantiles, the lower and upper limits

of the confidence intervals are given by u+ (u∗((J+1)α/2) − u) and u+ (u∗((J+1)(1−α/2)) − u), respectively,

which lead to the limits

u∗((J+1)α/2), u∗((J+1)(1−α/2)),

whose transformation to θ are given by

t∗(J+1)α/2, t∗(J+1)(1−α/2). (8)

Note that we do not know the transformation h. The confidence interval of level 1−α for the parameter

θ does not involve h and it can be evaluated without knowledge of this transformation. The interval (8) is

known as the bootstrap interval percentile. According to (Davison and Hinkley 1997, p. 203), the percentile

method can be applied to any statistic.

INTERVAL DOUBLE BOOTSTRAP PERCENTILE

When using the percentile method, we can obtain a coverage different than the desired level (1 − α). The

interesting thing is that we can continue making use of bootstrap to correct this discrepancy. This fact reveals

the flexibility of the bootstrap method.

The idea to obtain more accurate confidence intervals is to make use of diagrams double bootstrap, i.e.,

for each replica of the original bootstrap there will be conducted another bootstrap. Consider the situation

where only a trust boundary is of interest and it is the upper limit with nominal confidence level 1−α, where

Pr {Tn − θ ≤ aα(F ) | F} = Pr
{
t(F̂n)− t(F ) ≤ aα(F ) | F

}
= α.

We ignore the errors of simulation, which is really evaluated is the confidence limit t(F̂n) − aα(F̂n).

The bias of the bootstrap percentile follows from the fact that aα(F̂n) 6= aα(F ), which implies

Pr
{
t(F ) ≤ t(F̂n)− aα(F̂n) | F

}
6= 1− α.

Davison and Hinkley (1997) proposed to correct the bias by adding a correction to aα(F̂n), However, an

approach more successful is to adjust the index α. Thus, we can replace aα(F̂n) by aq(α)(F̂n) and estimate

which the fitted value (q̂α) must be used. Therefore, we obtain q(α) satisfying
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Pr
{
t(F ) ≤ t(F̂n)− aq(α)(F̂n) | F

}
= 1− α. (9)

Note that the solution q(α) depends on F , i.e., q(α) = q(α, F ). Since the distribution F is unknown, we

can estimate q(α) by q̂(α) = q(α, F̂n). Let x
∗
n = {X∗

1 , X
∗
2 , . . . , X

∗
n} by a sample obtained randomly with

replacement from xn and x
∗∗
n = {X∗∗

1 , X∗∗
2 , . . . , X∗∗

n } a new sample obtained by refitting x∗n with empirical

distribution functions given by F̂ ∗
n and F̂ ∗∗

n , respectively. Let T ∗
n and T ∗∗

n be the statistics Tn evaluated at x
∗
n

and x∗∗n , where t∗ and t∗∗ are the estimates, respectively. We denote Pr∗{ · } as the conditional probability
in F̂n and Pr∗∗{ · } as the conditional probability in F̂ ∗

n . We can obtain q̂(α) using the bootstrap version of

equation (9) given by

Pr∗
{
t(F̂n) ≤ t(F̂ ∗

n)− aq̂(α)(F̂
∗
n) | F̂n

}
= 1− α. (10)

From the definition (10), a scheme involving a second level of bootstrap is given by

Pr∗
[
Pr∗∗

{
T ∗∗
n ≤ 2T ∗

n − t | F̂ ∗
n

}
≥ q̂(α) | F̂n

]
= 1− α. (11)

Davison and Hinkley (1997) proved that the coverage 1 − α + O(n−a) is corrected for 1 − α +

O(n−a−1/2). For unilateral confidence limits, we have a = 1
2 or a = 1. For the bilateral confidence interval,

the coverage 1− α+O(n−1) is corrected to 1− α+O(n−2).

In general, especially in non-parametric problems, the determination of (11) can not be done exactly.

Thus, approximate methods must be used.A basic algorithm is given as follows. Suppose we have J samples

of F̂n and denote these estimates by F̂ ∗
n,1, . . . , F̂

∗
n,j , where F̂

∗
n,j is the j-th empirical distribution function.

Set

u∗j = Pr(T ∗∗
n ≤ 2t∗j − t | F̂ ∗

n,j).

The values u∗1, . . . , u
∗
j can be determined by approximation. We generate K samples of F̂ ∗

n,j and for

each of them we obtain the estimated values t∗∗j,1, . . . t
∗∗
j,k, for k = 1, 2, . . . ,K. So,

u∗K,j = K−1
K∑
k=1

I{t∗∗j,k ≤ 2t∗j − t},

where I{A} is the indicator function for an event A. The Monte Carlo version of (11) is given by

J−1
J∑

j=1

I{u∗K,j ≥ q̂(α)} = 1− α,

where q̂(α) is the quantile α of u∗K,j . The simplest way to obtain q̂(α) is sorting the values u∗K,j , u
∗
K,1 ≤

u∗K,2 ≤ · · · ≤ u∗K,J ∈ (0, 1), and setting q̂(α) = u∗K,(α(J+1)). The (J + 1)α-th quantile of u∗K,j is used

to obtain the corrected quantile of t∗j − t. The double bootstrap percentile bilateral interval algorithm is

presented below:

1. For a given sample (original sample) calculate the quantity t;

2. Generate J samples and obtain t∗j , for j = 1, . . . , J ;
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3. Generat K new bootstrap samples for each of the J samples in the previous step, and for each one,

calculate t∗∗j,k, with k = 1, 2, . . . ,K;

4. Determine

u∗j = K−1
K∑
k=1

I
{
t∗∗j,k ≤ 2t∗j − t

}
,

where I is the indicator function;

5. Order vector u∗ with J positions and obtain the lower and upper quantile of u∗, which are given,

respectively, by qinf = u∗(J+1)∗α/2 and qsup = u∗(J+1)(1−α/2);

6. Order values t∗1, t
∗
2, . . . , t

∗
J (i.e, t∗(1) ≤ t∗(2) ≤ · · · ≤ t∗(J)) and build the confidence interval for the

original sample using quantile estimates evaluated in the previous step. Considering the values of the

ordered statistics t∗j , for j = 1, 2, . . . , J , the limits of the interval of level 1− α are given by

t∗((J+1)α/2), t∗((J+1)(1−α/2)).

SIMULATIONSAND HARDWARE USED

The pso function is computationally intensive, especially when the objective function involves some data

sets. This situation is common when the goal is to maximize a log-likelihood function. The problem arises

with great intensity when we use the pso function iteratively as is the case of Monte Carlo simulations. The

simulations presented are extremely itensive because they will be studied using bootstrap percentile simple

and double (two levels of bootstrap) to obtain interval estimates for the NHG parameters. For the case of

double bootstrap, each replica Monte Carlo will have a bootstrap and for each bootstrap will be conducted

another bootstrap render the simulations impractical in some hardware.

The simulations are performed using the R language (version 3.2.0) in the hardware from the National

Center for High Performance Processing of São Paulo, Brazil (CENAPAD-SP). The CENAPAD-SP provides

a powerful computing environment, based on machines RISC (IBM) and Intel/Itanimum2 (SGI) with

operating system based in Unix. The theoretical processing capacity of these two environments totals around

33 TFLOPS beyond of 250 TB external disk. Its use is measured in Service Units, what are accounted as

users run commands and process jobs. In particular, the simulations performed make use of the SGI Altix

ICE 8400 LX system installed in CENAPAD-SP that have 64 CPU’s and 384 cores Intel Xeon Six Core

5680 of 3.33GHz, 1152 GB of RAM and Infiniband interconnect. The theoretical processing capability of

the system is approximately 5 TFLOPS.

The jobs that are submitted for processing on SGI Altix ICE 8400 LX are managed and have resources

allocated by the PBSPro software (Altair Portable Batch System Professional 11.0.2), which also has the

function of managing the queues of jobs submitted for processing in the cluster. The cluster runs the

opreracional system SUSE Linux Enterprise Server 11 SP1 (x86_64) kernel 2.6.32.13 64 bits. Access to
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the cluster is through a local machine using SSH (Secure Shell), which is part of the suite of protocols

TCP/IP that makes secure remote administration of Unix-type servers.

It is possible to use in an efficient way all of the computing resources of SGIAltix ICE 8400 LX running

parallel computing by OpenMPI (Message Passing Interface), which is nothing more than a standard for

parallel computing in data communication. The use of standard OpenMPI in R is through the Rmpi, SNOW,
doSNOW and foreach libraries available on the license terms GPL-2 (GNU General Public License).

This pattern allows using R by dividing each bootstrap in several cores of different nodes in the cluster.
Thus, the code executes sequentially until it finds a parallel builder, i.e., there is a flow of execution main

(master thread) and when required new threads are triggered to divide the work and, finally, it is performed a

join for recovery the results. Divide each replica of bootstrap does not cause problems because each replica

bootstrap is mathematically independent of another.

For the simulations we consider 10,000 replicas of Monte Carlo, and for each replica it is carried out

two levels of bootstrap percentile. The first level of bootstrap is composed of 500 samples (J = 500) and

the second level is carried out 250 new samples (K = 250). The simulations are extremely intensive since

for each Monte Carlo replica, we perform an optimization by PSO algorithm and within each replica of

bootstrap (first level of bootstrap) another optimization is performed by PSO algorithm, closing a total of 5

million optimizations. Table I gives the times of the execution of R scripts, in hours, on hardware mentioned

above. Note that for n = 500 in the double bootstrap scheme, some simulations exceeded 11 days.

The performance of interval estimates is evaluated by percentile bootstrap and double percentile

bootstrap at a nominal level of 95% for different sample sizes (n = 20, n = 60, n = 100 and n = 500).

The real model has fixed parameters α = 1.5, λ = 1.3 and p = 0.5.

For the first level of bootstrap, the standard errors of the MLEs are obtained by the PSO method.

Small errors in the estimates are obtained for different sample sizes as shown in Figure 4. The performance

of interval estimates by single and double bootstrap is assessed by the percentage of coverage, i.e., it is

considered the percentage of confidence intervals containing the true parameter. It is noted that build interval

estimates by single percentile bootstrap is not a good strategy for obtaining random intervals for the model

parameters. In all cases, there are much lower coverages for the nominal levels. However, using the second

level of bootstrap to correct the estimate obtained by simple percentile bootstrap method represents a good

improvement in the interval estimates. Table II gives the improvement in coverage when using the double

percentile bootstrap method. It is also possible to notice a small increase in the range of interval estimates

by using the second level of bootstrap. Anyway, the small amplitudes do not represent a problem.

TABLE I

Times of executions of Monte Carlo simulations to evaluate the interval

estimates obtained by single and double percentile bootstrap.

n Simple Bootstrap (In hours) Double Bootstrap (In hours)

20 105.3212 150.4235

60 175.3455 191.9864

100 213.7565 265.5455

500 400.3253 450.4535
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TABLE II

Coverage and range of interval estimates by simple bootstrap, double and

nominal level of 95%.

Simple Bootstrap Double Bootstrap

n Parameters Coverage (%) Range Coverage (%) Range

n = 20

α 65.0327 2.1562 92.3441 3.2432

λ 62.1665 2.1605 93.4551 2.3423

p 67.3002 0.9663 94.2138 1.3563

n = 60

α 71.1454 0.7446 93.5233 3.2124

λ 77.7465 2.1454 92.3453 2.3567

p 66.7213 1.2423 94.4354 2.8433

n = 100

α 72.2198 1.4354 92.4345 3.3315

λ 69.2300 2.1322 94.2130 1.0035

p 69.4357 0.5493 93.4365 2.1252

n = 500

α 83.1233 2.1215 94.7834 3.2123

λ 71.9011 1.2321 94.3254 3.2122

p 72.2965 1.1190 93.9342 1.2134

1 - The column for the range refers to the average range.

2 - We consider 10 thousand Monte Carlo replicas.

EMPIRICAL EXAMPLE

For this application, we use a real data set referred to the times between failures (thousands of hours) of

secondary reactor pumps. The data are presented in Table III. A descriptive analysis of the data is given in

Table IV.

There are certainly other competitive distributions to fit these data. It is also reasonable to understand

that generated distributions can be used in practice and depending on the problem a distribution will provide

a better fit than others.

For this application, we consider the NHG(α, λ, p), NH(λ, β) and ENH(α, λ, β) models. The cdfs are

given in Table III.

TABLE III

Times between failures (thousands of hours) of secondary reactor pumps.

2.160 0.150 4.082 0.746 0.358 0.199 0.402 0.101 0.605 0.954

1.359 0.273 0.491 3.465 0.070 6.560 1.060 0.062 4.992 0.614

5.320 0.347 1.921
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Figure 4 - Errors evaluated by bootstrap and the maximum likelihood using

the PSO method with 500 bootstrap replicates.

In order to determine the shape of the most appropriate hazard function for modeling, a graphical

analysis data may be performed. In this context, the total time in test (TTT) plot proposed by Aarset (1987)

can be used. Let T be a random variable with non-negative values, which represents the survival time. The

TTT curve is obtained by constructing the plot ofG(r/n) = [(
∑r

i=1 Ti:n)+(n−r)Tr:n]/(
∑n

i=1 Ti:n) versus

r/n, for r = 1, . . . , n, where Ti:n, i = 1, . . . , n, are the order statistics of the sample [see (Mudholkar and

Hutson 1996)].

We use the R programming language version (3.0.2). In particular, we use the Adequacy
Model package in version 1.0.8 available for download at http://cran.r-project.org/web/packages/AdequacyModel/

index.html under the terms of the GPL-2 and GPL-3. The script was created and is maintained by two authors

of this paper. The plots can be easily obtained using the TTT function of the AdequacyModel. For more

details on this function, see help(TTT). The TTT plot for the current data is displayed in Figure 5, which

alternates between convex and concave, suggesting, according toAarset (1987), that the better risk function

to the current data has decreasing form.

Figure 6 displays the estimated distributions to the data obtained in a nonparametric manner using

kernel density estimation with the Gaussian filter. Let x1, . . . , xn be independent and identically distributed
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TABLE IV

Descriptive statistics.

Statistics
Real data sets

Time between failures (hours)

Mean 1.5779

Median 0.6140

Mode 0.5000

Variance 3.7275

Skewness 1.3643

Kurtosis 0.5445

Maximum 6.5600

Minimum 0.0620

n 23

observations, where each of them follows an unknown f distribution. The kernel density estimator is given

by

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi

h

)
,

where K(·) is the kernel function usually symmetrical,
∫∞
−∞K(x)dx = 1, and h > 0 is a smoothing

parameter known in the literature as bandwidth. Numerous kernel functions are available in the literature.

The standard normal distribution is the most widely used because it has convenient mathematical properties.

Silverman (1986) demonstrated that for the K standard normal, the ideal bandwidth is h =
(
4σ̂5

3n

) 1

5 ≈
1.06 σ̂ n−1/5, where σ̂ is the standard deviation of the sample.

The AdequacyModel package provides a computational support for researchers who want to work

with continuos distributions, mainly in the survival analysis area. The AdequacyModel package is

used to evaluate some adequacy statistics such as the AIC (Akaike Information Criterion), CAIC

(Consistent Akaikes Information Criterion), BIC (Bayesian Information Criterion), HQIC (Hannan-Quinn

information criterion), KS (Kolmogorov-Smirnov), A∗ (Anderson-Darling), W ∗ (Camér-von Misses) and

KS (Kolmogorov-Smirnov) statistics. The last twomeasures are described byChen andBalakrishnan (1995).

The goodness.fit is the function in the AdequacyModel package used to evaluate these statistics. Other

details can be obtained with the command help(goodness.fit).

Chen and Balakrishnan (1995) corrected statisticsW ∗ and A∗ based on the suggestions from Stephens

(1986). We use these statistics, where we have a random sample (x1, . . . , xn) with empirical distribution
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Figure 5 - The TTT plot for the time between failures

(thousands of hours) of secondary reactor pumps.
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Figure 6 - Gaussian kernel density estimation for the data of

the time between failures (thousands of hours) of secondary

reactor pumps.

function Fn(x) and want to test if the sample comes from a specified distribution. The statisticsW ∗ and A∗

are given by

W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2dF (x; θ̂n)

}(
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
,

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂)(1− F (x; θ̂n))}
dF (x; θ̂n)

}(
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
,

respectively, where Fn(x) is the empirical distribution function, F (x; θ̂n) is the specified distribution

function evaluated at theMLE θ̂n of θ. Note that the statisticsW
∗ andA∗ are given by difference distances of

Fn(x) and F (x; θ̂n). Thus, the lower the statistics values the more evidence we have that F (x; θ̂n) generates

the sample.

The R language is also used to obtain the MLEs by the PSO heuristic method of global optimization

discussed in the previous section. Currently, the version 1.0.8 of the AdequacyModel package does not

support the PSO methodology. However, possibly the standard algorithm or a modification will be present

in future versions of the package. The standard errors of the MLEs of the model parameters are evaluated by

non-parametric bootstrap. For the calculations, we consider 500 bootstrap samples (B = 500) [see (Davison

and Hinkley 1997) and (Efron and Tibshirani 1993)].

Let x1, . . . , xn be a random sample. Let also Fθ(x) be the distribution function of the sample, where

θ (unknown) is the true parameter and θ̂ a estimator of θ. A bootstrap sample (non-parametric bootstrap)

is obtained sampling with replacement from the original sample. The procedure generates a new sample
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(x∗1, . . . , x
∗
n) (bootstrap sample). Let θ̂∗ be the estimate of θ based on the bootstrap sample and B be the

fixed number of bootstrap samples. The bootstrap estimate of the standard error of θ̂ is given by

ŝe(θ̂) =

√√√√ 1

B

B∑
i=1

(θ̂∗i −
¯̂
θ∗) ,

where,

¯̂
θ∗ =

1

B

B∑
i=1

θ̂∗.

Table V presents the MLEs of the parameters of the distributions obtained by the PSOmethod. They are

also given for the estimated standard errors obtained via nonparametric bootstrap.Also, we construct interval

estimates by double percentile bootstrap for the model parameters. The estimates are presented in Table VI

for a confidence level of 95%.We consider 500 samples for the first level and 250 bootstrap samples for the

second level. Roughly speaking, all the competing models are able to fit the reactor pumps data. However,

the adequacy statistics showed in Table VII indicate that the NHGmodel yields a better fit to these data than

the other models.

TABLE V

The MLEs of the parameters for the fitted NHG, ENH, NH and EXP models

through of the PSO method (bootstrap standard errors in parentheses).

Distributions Estimates of the parameters Equation

NHG(α, λ, p) 0.4195 5.7294 −0.7929 F (x) =
1− e1−(1+λx)α

1− p e1−(1+λx)α

(0.1153) (2.7918) (1.2611)

ENH(α, λ, β) 0.2856 42.0728 3.1569 F (x) =
[
1− e1−(1+λx)α

]β
(0.4808) (19.0491) (1.2583)

NH(α, λ) 0.4934 2.5010 F (x) = 1− e1−(1+λx)α

(0.3493) (1.4762)

TABLE VI

Interval estimates by double percentile bootstrap for the model parameters

at a confidence level of 95%.

Distributions Interval estimates

NHG(α, λ, p) (0.3578; 0.8177) (0.8884; 13.8570) (−3.7684; −0.0001)

ENH(α, λ, β) (0.2621; 0.7341) (0.8400; 49.9999) (0.9062; 5.8346)

NH(α, λ) (0.3804; 1.4111) (0.3665; 5.9659)
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Figure 7 - Estimated for models fitted to the times between failures (thousands of hours)

of secondary reactor pumps.

TABLE VII

Goodness-of-fit statistics.

Statistics

Distribution AIC CAIC BIC HQIC KS A∗ W∗

NHG(α, λ, p) 72.8293 74.0925 76.2358 73.6860 0.1684 0.2547 0.0323

ENH(α, λ, β) 289.7261 290.9892 293.1326 290.5828 0.6630 0.3020 0.0424

NH(α, λ) 239.9434 240.5434 242.2144 240.5146 0.7119 0.3546 0.0513

1 - The statistics are obtained in the AdequacyModel package version (1.0.8).

CONCLUDING REMARKS

We study the NHG distribution, which can be viewed as an improved extension of the Nadarajah-Haghighi

(NH) distribution. The NHG density function can take various forms depending on its shape parameters.

Moreover, its failure rate function can be decreasing, increasing, upside-down bathtub, bathtub-shaped,

constant and decreasing-increasing-decreasing. Then, it can be used quite effectively in analyzing real data

in practice. The estimation of the parameters is approached by the maximum likelihood method. The new
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distribution may attract wider applications for modeling failure times due to fatigue and lifetime data in

fields such as engineering, finance, economics, and insurance, among several others. Two applications

to real data illustrate the potentiality of the family. Future research could be addressed to study the

complementary Nadarajah-Haghighi-geometric distribution. This class of distributions is a suitable model

in a complementary risk problem based in the presence of latent risks, which arise in several areas such as

public health, actuarial science, biomedical studies, demography and industrial reliability.
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A - CODE IN R LANGUAGE FOR THE PSO METHOD

pso <- function(func,S=150,lim_inf,lim_sup,e=0.0001,data=NULL,N=100){
b_lo = min(lim_inf)
b_up = max(lim_sup)
integer_max = .Machine$integer.max

if(length(lim_sup)!=length(lim_inf)){
stop("The vectors lim_inf and lim_sup must have the same dimension.")

}
dimension = length(lim_sup)
swarm_xi = swarm_pi = swarm_vi = matrix(NA,nrow=S,ncol=dimension)

# The best position of the particles.
g = runif(n=dimension,min=lim_inf,max=lim_sup)

# Objective function calculated in g.
f_g = func(par=as.vector(g),x=as.vector(data))

if(NaN%in%f_g==TRUE || Inf%in%abs(f_g)==TRUE){
while(NaN%in%f_g==TRUE || Inf%in%abs(f_g)==TRUE){

g = runif(n=dimension,min=lim_inf,max=lim_sup)
f_g = func(par=g,x=as.vector(data))

}
}

# Here begins initialization of the algorithm.
x_i = mapply(runif,n=S,min=lim_inf,max=lim_sup)

# Initializing the best position of particularities i to initial position.

swarm_pi = swarm_xi = x_i
f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector(data))

is.integer0 <- function(x){
is.integer(x) && length(x)==0L

}

if(NaN%in%f_pi==TRUE || Inf%in%abs(f_pi)){
while(NaN%in%f_pi==TRUE || Inf%in%abs(f_pi)){

id_inf_fpi = which(abs(f_pi)==Inf)
if(is.integer0(id_inf_fpi)!=TRUE){

f_pi[id_inf_fpi] = integer_max
}
id_nan_fpi = which(f_pi==NaN)
if(is.integer0(id_nan_fpi)!=TRUE){

x_i[id_nan_fpi,] = mapply(runif,n=length(id_nan_fpi),min=lim_inf,
max=lim_sup)
swarm_pi = swarm_xi = x_i
f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector(data))
}

}
}
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minimo_fpi = min(f_pi)
if(minimo_fpi < f_g) g = x_i[which.min(f_pi),]

# Initializing the speeds of the particles.

swarm_vi = mapply(runif,n=S,min=-abs(rep(abs(b_up-b_lo),dimension)),
max=abs(rep(abs(b_up-b_lo),dimension)))

# Here ends the initialization of the algorithm

omega = 0.5
phi_p = 0.5
phi_g = 0.5

m=1
vector_f_g <- vector()

while(is.na(var(vector_f_g)) || m<50 ||
var(vector_f_g[length(vector_f_g):(length(vector_f_g)-10)])>e){
# r_p and r_g are randomized numbers in (0.1).
r_p = runif(n=dimension,min=0,max=1)
r_g = runif(n=dimension,min=0,max=1)

# Updating the vector speed.
swarm_vi = omega*swarm_vi+phi_p*r_p*(swarm_pi-swarm_xi)+
phi_g*r_g*(g-swarm_xi)

# Updating the position of each particle.
swarm_xi = swarm_xi+swarm_vi

myoptim = function(...) tryCatch(optim(...), error = function(e) NA)

f_xi = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector(data))
f_pi = apply(X=swarm_pi,MARGIN=1,FUN=func,x=as.vector(data))
f_g = func(par=g,x=as.vector(data))

if(NaN%in%f_xi==TRUE || NaN%in%f_pi==TRUE){
while(NaN%in%f_xi==TRUE){
id_comb = c(which(is.na(f_xi)==TRUE),which(is.na(f_pi)==TRUE))
if(is.integer0(id_comb)!=TRUE){

new_xi = mapply(runif,n=length(id_comb),min=lim_inf,
max=lim_sup)
swarm_pi[id_comb,]=swarm_xi[id_comb,] = new_xi
if(length(id_comb)>1){

if_xi[id_comb] = apply(X=swarm_xi[id_comb,],MARGIN=1,
FUN=func,x=as.vector(data))
f_pi[id_comb] = apply(X=swarm_pi[id_comb,],MARGIN=1,FUN=func,
x=as.vector(data))

}else{
f_xi[id_comb] = func(par=new_xi,x=as.vector(data))
}

}
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}
}

if(Inf%in%abs(f_xi)==TRUE){
f_xi[which(is.infinite(f_xi))]=integer_max

}
if(Inf%in%abs(f_pi)==TRUE){

f_pi[which(is.infinite(f_pi))]=integer_max
}

# There are values below the lower limit of restrictions?
id_test_inf=
which(apply(swarm_xi<t(matrix(rep(lim_inf,S),dimension,S)),1,sum)>=1)
id_test_sup=
which(apply(swarm_xi>t(matrix(rep(lim_sup,S),dimension,S)),1,sum)>=1)

if(is.integer0(id_test_inf)!=TRUE){
swarm_pi[id_test_inf,] = swarm_xi[id_test_inf,] =
mapply(runif,n=length(id_test_inf),
min=lim_inf,max=lim_sup)

}

if(is.integer0(id_test_sup)!=TRUE){
swarm_pi[id_test_sup,] = swarm_xi[id_test_sup,] =
mapply(runif,n=length(id_test_sup),
min=lim_inf,max=lim_sup)

}

if(is.integer0(which((f_xi<=f_pi)==TRUE))){
swarm_pi[which((f_xi<=f_pi)),] = swarm_pi[which((f_xi<=f_pi)),]

}

if(f_xi[which.min(f_xi)] <= f_pi[which.min(f_pi)]){
swarm_pi[which.min(f_pi),] = swarm_xi[which.min(f_xi),]
if(f_pi[which.min(f_pi)] < f_g) g = swarm_pi[which.min(f_pi),]

} # Here ends the block if.

vector_f_g[m] = f_g
m = m+1
if(m>N){

break
}

} # Here ends the block while.

f_x = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector(data))
list(par_pso=g,f_pso=vector_f_g)

} # Here ends the function.
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