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Abstract: Hovenia dulcis is a plant commonly used as a pharmaceutical supplement, 
having displayed important pharmacological properties such antigiardic, antineoplastic 
and hepatoprotective. The purpose of this work was investigate the cytotoxic, genotoxic 
and mutagenic potential from fractions of Hovenia dulcis ethanolic extract on 
Saccharomyces cerevisiae strains FF18733 (wild type) and CD138 (ogg1). Ethanolic extract 
from Hovenia dulcis leaves was fractioned using organic solvents according to increasing 
polarity: Hexane (1:1), dichlorometane (1:1), ethyl acetate (1:1) and butanol (1:1). Three 
experimental assays were performed, such as (i) inactivation of cultures; (ii) mutagenesis 
(canavanine resistance system) and (iii) loss of mitochondrial function (petites colonies). 
The fi ndings shown a decrease in cell viability in FF18733 and CD138 strains; all fractions 
of the extract were mutagenic in CD138 strain; only ethyl acetate and butanol fractions 
increased the rate of petites colonies for CD138 strains. Ethyl acetate and n-butanol 
fractions induces mutagenicity, at the evaluated concentrations, in mitochondrial and 
genomic DNA in CD138 strain, mediated by oxidative lesions. In conclusion, it is possible 
to infer that the lesions caused by the extract fractions could be mediated by reactive 
oxygen species and might reach multiple molecular targets to cause cellular damage.

Key words: Citotoxicity, medicinal plant, mutagenicity, Rhamnaceae. 

INTRODUCTION

Hovenia dulcis Thunb. is a plant commonly 
used as a pharmaceutical supplement, 
having recently been considered as bearing 
nutraceutical properties (Yang et al. 2013, Lim 
et al. 2015, De Biaggi et al. 2020). A member of 
the Rhamnaceae family, this hardy tree usually 
grows in Asia, Eastern China and Korea. Its 
roots, seeds, branches, leaves and fruits have 
exhibited pharmacological effects, such as 
being antifatigue, antidiabetic, neuroprotective, 
antigiardia, antineoplastic and hepatoprotective 

(Na et al. 2013, Yang et al. 2019, Li et al. 2005, 
Gadelha et al. 2005, Castro et al. 2002, Dong et 
al. 2018).

The compounds isolated from this species 
includes triterpenes, alkaloids, fl avonoids, and 
triterpenes glycosides, isoled from the roots, 
barks, leaves, fruits, and seeds of H. dulcis (Kang 
et al. 2017, Xu et al. 2003, Park et al. 2016a, Ding 
et al. 1997, Yoshikawa et al. 1996, 1997).

T r i t e r p e n e s  i s o l a t e d  f ro m  H . 
du lc i s  roots  (27-O-protocatechuoy l-
3 - d e h y d ro x y i s o c e a n o t h a n o l i c  a c i d , 
27-O-protocatechuoyl-3-dehydroxycolubrinic acid, 
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27-O-protocatechuoyl-3-dehydroxyepicolubrinic 
acid, 27-O-syringoylbetulinic acid) induced 
antiproliferative activity in HSC-T6 hepatic stellate 
cells (Kang et al. 2017). Hovenitin I isolated from the 
methanolic fraction from a Hoveniae Semen Seu 
Fructus, showed protective activity on liver injury 
induced by D-galactosamine/lipopolysaccharide 
or carbon tetrachloride in mice (Yoshikawa et al. 
1997).

At the molecular level, ethanolic extract of 
branches from H. dulcis exhibit antiangiogenic 
activisuppressing both in VEGFR2 signaling and 
HIF-1α expression in hepatocarcinoma cell line 
Hep G2 (Han et al. 2017). Ethanolic extract of fruits 
from H. dulcis suppressed lipopolysaccharide 
(LPS)-stimulated inflammatory responses 
through nuclear factor-κB (NF-κB) pathway in 
Raw 264.7 cells (Park et al. 2016b). Aqueous H. 
dulcis seeds extracts reduced lipid accumulation 
in oleic acid-induced steatosis of HepG2 cells via 
activation of the AMPK and PPARα/CPT-1 pathway 
(Kim et al. 2016). In addition, in a comparative 
study on H. dulcis antioxidant activity by 
investigating in vivo and in vitro materials, 
higher antioxidant activity was observed in 
calli extracts when compared to the leaf extract 
(Ribeiro et al. 2015).

Despite therapeutic advantages, some 
plants are potentially toxic, carcinogenic and 
teratogenic (Déciga-Campos et al. 2007, Akinboro 
& Bakare 2007). In vitro studies have shown that 
many plant species used in traditional medicine 
have toxic or mutagenic/carcinogenic properties 
(Cardoso et al. 2006, Demma et al. 2009, Mohd 
Fuat et al. 2007). In line with this notion, it is 
important to screen medicinal plants for their 
mutagenic and/or toxic potentiality, their 
properties and efficacy. This assessment can 
provide for an appropriate development of 
potential chemotherapeutic drugs, as well as 
safe use of plant-derived medicines and as a 
measure of safety for the continued long-term 

use of these plants (Cavalcanti et. al. 2006, 
Verschaeve et al. 2004, Verschaeve & Staden 
2008).

Saccharomyces cerevisiae yeast strains 
feature many technical advantages over other 
systems, such as a short-time generation, 
facilitated genetic manipulations, inexpensive 
growth media, simple sterile technique 
requirement, easy laboratory maintenance, 
possibility of long-term storage, about one fifth 
of yeast genes are members from orthologous 
gene families associated with human diseases 
(Tenreiro et al. 2013). Thus, yeast has become an 
important tool and has been used by researchers 
as a eukaryotic model to study many cellular 
mechanisms, such as cell division, replication, 
metabolism, intracellular transport. S. cerevisiae 
has been used to detect toxic and/or mutagenic 
activities, to study mitochondrial functions, 
aging processes, and various pathologies 
associated with mitochondria, DNA repair and 
response to oxidative stress (Breitenbach et al. 
2013, Tenreiro et al. 2013, Boiteux  & Robertson 
2013, Cankorur-Cetinkaya et al. 2013, Silva et al. 
2014, 2016, Melo et al. 2011).

Living cells are exposed to different ways of 
stress during their life cycle including oxidative 
stress through reactive oxygen species (ROS) 
formation. Normally, ROS levels are controlled 
by cellular antioxidant systems, but increase in 
ROS levels leads to oxidative stress (Wallace 2014, 
Boiteux & Robertson 2013). It has been known, 
for several decades, that oxidative DNA damage 
accumulates in cells over time, this accumulation 
being linked to neurodegenerative disorders and 
cancer (Wallace 2014). The major oxidative DNA 
damages, as type 7, 8-dihydro-8-oxoguanine (8-
oxoG) lesions, are removed by the base excision 
repair (BER) pathway (Wallace 2014, Boiteux & 
Robertson 2013). These lesions, if not removed, 
can lead to change-producing mutations in 
cellular functions, as well as inactivate tumor 
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suppressor genes and/or activate oncogenesis 
(Friedberg et al. 2006, Wallace 2014, Boiteux & 
Robertson 2013, Chalissery et al. 2017).

Therefore, the purpose of this study was 
investigate S. cerevisiae strains exposed to 
ethanolic extract fractions from H. dulcis 
in relation to their citotoxic and genotoxic 
potential, the induction of cell death as well as 
mutagenic potential (nDNA and mtDNA).

MATERIALS AND METHODS
Plant material
Hovenia dulcis leaves were collected in 
Petrópolis, Rio de Janeiro State, Brazil, in October 
2015. A voucher specimen is kept at the Herbário 
da Universidade do Estado do Rio de Janeiro, 
HRJ-12818. 

Chemical agents and reagents
Agar, Yeast Nitrogen Base without amino acids 
(YNBD), Bacto peptone and Yeast extract were 
purchased from DifcoTM, Sweden. Glucose, 
Ethanol P.A. Triphenyltetrazoliumchloride (TTC) 
and Dimethyl sulfoxide (DMSO) were purchased 
from Merck, Brazil. 4-Nitroquinoline-1-oxide (4-
NQO) and canavanine (Can) were purchased from 
Sigma, USA. Phosphate-buffered saline (PBS) 
powder was purchased from Laborclin, Brazil. 
4-NQO powder was dissolved in 10% ethanol 
solution, being used for experimental positive 
control. PBS powder was dissolved in distilled 
H2O, sterilized by autoclaving (20 min, 121°C), 
stored at room temperature (PBS solution). 
It was used to wash cells and experimental 
negative control. 1% DMSO solution (1% DMSO) 
was 1 % in distilled H2O.

Yeast strain, media, growth conditions and 
reagents
S. cerevisiae parental strains FF18733 (Mata, his7, 
leu2, lys1, ura3, trp1) (Heude  & Fabre 1993) and 

their derivative CD138 (ogg1::TRP1) (Thomas et 
al. 1997, Pádula et al. 2004) were grown at 28 
°C in YPD medium (1% yeast extract, 1% bacto-
peptone, 2% glucose, with 2% agar for plates) or 
YNBD medium (2% glucose, 0.7% yeast nitrogen 
base without amino acids with 2% agar for 
plates) supplemented with appropriate amino 
acids and bases. Supplemented YNBD (YNBD) 
medium, lacking arginine, but containing 
canavanine (Sigma), at 60 mg/l was used for 
selective growth of canavanine-resistant (CanR) 
mutants. Yeast cultures were grown to a cell 
density of ~1 ×108 cells/ml (stationary phase) in 
YPD medium, at 28°C, under shaking. Cells were 
harvested, washed twice with PBS solution, and 
resuspended in the same solution. 

Preparation of the H. dulcis ethanolic extract 
Fresh leaves from H. dulcis (fresh weight = 1826 
g) were washed with water and dried in an oven 
(45 °C) for 24 hours. After drying in the oven, this 
resulted in a dry weight (DW) of 532 g. The dried 
material was then macerated and immersed 
in ethyl alcohol 95% for 2 days and filtered on 
Whatman paper (no 1). The filtrate was separated 
and stored, and more ethyl alcohol 95% was 
added to the plant material. This process was 
performed for 2 weeks. Subsequently, all filtrate 
was subjected to rotary evaporation at 40 °C, 
resulting in a 26 g crude ethanolic extract 
residue.

 The yield percentage of crude ethanolic 
extract was 4.8% based on the weight of dry plant 
material, determined through the following 
equation: Yield % = mr / DW x 100. In which: mr = 
crude extract residue mass (g), DW = dry weight 
plant material (g).

Fractions Preparation 
The crude ethanolic extract residue (5.5 g) was 
dissolved in distilled water. The solution was 
placed in a separating funnel, n-hexane 1:1 (v 
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/ v) was added, following vigorous stirring and 
separation of the two phases, and hexane fraction 
was isolated. This procedure was repeated three 
times. Subsequently, the residual extract was 
fractioned using organic increasing polarity 
solvents - dichloromethane (1:1), ethyl acetate 
(1:1) and butanol (1:1) - in a manner similar to 
that described for hexane. Subsequently, all 
fractions were subjected to rotary evaporation 
at 40 °C, resulting in a residue of 1.30g (hexane 
fraction), 1.18g (dichloromethane fraction), 0.29g 
(ethyl acetate fraction), 0.87g (butanol fraction). 

Fraction yield percentages were 0.24% 
(hexane fraction), 0.22% (dichloromethane 
fraction), 0.05 % (ethyl acetate fraction) and 
0.16% (butanol fraction) based on the DW dry 
plant material (g) weight, determined through 
the following equation: Yield % = mf / DW x 100. 
In which, mf = fraction residue (g) mass, DW = dry 
weight plant material (g).

The extract fractions were stored at 4 °C and 
subsequently diluted in 1% DMSO for use in the 
pharmacological tests.

Evaluation of cytotoxic potential of H. dulcis 
ethanolic fractions 
Cultures thus obtained were treated with different 
ethanolic extract fractions concentrations from 
H. dulcis (3.125, 6.25, 12.5, 25, 50, 75, 100, 125, 150, 
175, 200 μg/mL) and incubated (28 °C) under 
agitation, for 60 min. For the control, the cultures 
were treated with 4-Nitroquinoline-1-oxide (4-
NQO) (1 μg/mL) powerful chemical mutagen and 
carcinogen (Arima et al. 2006, Kanojia  & Vaidya 
2006), 1% DMSO solution (solvent used to dilute 
the extract fractions ) or PBS solution (buffer 
solution used to dilute S. cerevisiae strains). 
Subsequently, appropriate treated cell dillutions 
were performed and plating (YPD-agar plates). 
Colonies were counted after 2 days at 28 °C 
(Silva et al. 2016). Values represent the mean of 
three isolated experiments. The concentration of 

the sample which inhibits 50% of the observed 
effect (IC50) was determined by using the linear 
equation (y = ax + b) using Excel® software 
package Office 97. The program then created a 
trend line and selected the items to display the 
equation on the graph and present the R-square 
value on the graph (correlation coefficient). Then 
by using a y = 0.5 value we calculated the value 
of x (dose corresponding to IC50).

Evaluation of the mutagenic potential of H. 
dulcis ethanolic extract fractions
Stationary phase cultures were diluted to 5 x 
102 cells/ml in YPD medium. FF18733 strain 
were treated with ethanolic extract fractions 
from H. dulcis (IC50), hexane (125 μg/mL), 
dichloromethane (100 μg / mL), ethyl acetate (50 
μg/mL) and butanol (150 μg/mL). CD 138 strain 
were treated with ethanolic extract fractions 
from H. dulcis (IC50), hexane (100 μg/mL), 
dichloromethane (50 μg/mL), ethyl acetate (12.5 
μg/mL) and butanol (50 μg/mL). 4NQO (1 μg/
mL), or 1% DMSO solution were used as positive 
and negative controls, respectively, for both 
strains. Yeast strains were treated for 48 hours, 
at 28 °C. under shaking. Canavanine-resistant 
mutants (CanR) were determined after plating 
appropriate dilutions on YNBD-agar plates 
supplemented with canavanine and amino acids 
(Uracil 0.2%, Histidine 2%, Leucine 1%, Lysine 
0.4% and Tryptophan 0.2%), and mutants were 
counted after 3 days at 28 °C (Silva et al. 2016, 
Thomas et al. 1997). Values are the mean of three 
isolated experiments.

Measurement of petite colonies induction 
(mitochondrial mutants)
Stationary phase FF18733 cultures were treated 
with ethanolic extract fractions from H. dulcis 
(IC50), hexane (125 μg/mL), dichloromethane (100 
μg/mL), ethyl acetate (50 μg/mL) and butanol 
(150 μg/mL). CD138 strain were treated with 
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ethanolic extract fractions from H. dulcis (IC50), 
hexane (100 μg/mL), dichloromethane (50 μg/
mL), ethyl acetate (12.5 μg/mL) and butanol (50 
μg/mL). 4NQO (1 μg/mL), or 1% DMSO solution 
were used as positive and negative controls, 
respectively, for both strains. Yeast strains were 
treated for 24 hoursat 28 °C. under shaking. 
Treated cultures were spread out on YPD-agar 
plates and incubated at 28 °C for 4 days. The 
phosphate buffer with agar (1%) containing 
triphenyltetrazolium chloride (TTC) poured onto 
YPD-agar plates and mitochondrial mutants 
form white and small colonies (petite colonies), 
scored by TTC color assay (Ogur et al. 1957, Chen 
& Clark-Walker 2000, Silva et al. 2016). Values are 
the mean of three isolated experiments. At least 
2500 colonies (total 7500) of each strain were 
scored to determine petite percentage.

Statistical analysis
The experiments were performed in triplicate. 
The data obtained in each experiment were 
submitted to variance analysis (ANOVA oneway) 
and post test of Tukey multiple comparisons 
using the GraphPad InStat 4.0 program adopting 
a confidence level of 95%. IC50 values obtained 
in the experiments were confirmed with those 
determined using Excel® software. Sample 
concentration which inhibits 50% of the 
observed effect (IC50) was determined using the 
linear equation (y = ax + b) using the Excel® 
software package Office 97. Then the program 
created a trend line and selected the items 
to display equation on the graph and present 
the R-square value on the graph (correlation 
coefficient). Then, using a value of y = 0.5 we 
calculated the value of x (dose corresponding 
to IC50).

RESULTS
Effect of Hovenia dulcis ethanolic extract 
fractions on S. cerevisiae strains survival
The results show a significant decrease (**p< 0.01 
***p<0.001) in the survival fraction of the extract 
fractions when compared to control (PBS and 1% 
DMSO). The IC50 was determined for FF18733 strain 
[hexane (125 μg/mL), dichloromethane (100 μg/
mL), ethyl acetate (50 μg/mL) and butanol (150 
μg/mL)] and CD138 strain [hexane (100 μg/mL), 
dichloromethane (50 μg/mL), ethyl acetate 
(12.5 μg/mL) and butanol (50 μg/mL)] (Figure 1a 
and 1b). The ethyl acetate fraction had greater 
cytotoxic potential, with IC50 values calculated 
from 58.050±0.057 μg/mL for the FF18733 and 
19.405±0.039 μg/mL strain for the CD138 strain 
(Table I).

Mutagenesis evaluation
In order to evaluate possible mutagenic 
potentiality, S. cerevisiae strains were treated with 
IC50 fractions and analyzed by quantification of 
Can1 gene mutant frequency. Figure 2 shows data 
from spontaneous and induced mutagenesis by 
fractions from H. dulcis ethanolic extract (IC50). 
There was a significant increase in the mutation 
rate induced by the fractions only in CD138 strain 
(*p< 0.05 **p< 0.01 ***p<0.001) in comparison with 
spontaneous mutation rate (1% DMSO solution 
or PBS solution) and 4NQO (positive control), 
confirming its strong mutagenic activity.

Mitochondrial function
Triphenyl tetrazolium chloride color assay 
was used to investigate the frequency of 
mitochondrial mutants (petites). Following 
treatment of S. cerevisiae with H. dulcis ethanolic 
extract fractions, alteration in respiratory 
metabolism was observed, only in CD138 yeast 
strain. These alterations were observed in CD138 
cultures treated with ethyl acetate and butanol 
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Figure 1(a). Survival fraction of 
S. cerevisiae strain FF18733 (b) 
Survival fraction of S. cerevisiae 
strain CD138 treated with different 
concentrations of the H. dulcis 
ethanolic extract. Evaluation after 
60 min of treatment with H. dulcis 
extract fractions ** (p <0.01) *** (p 
<0.001) compared to control.
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fractions (*p<0.05) (Figure 3). Each experiment 
was performed using, 4NQO as a positive control 
and PBS solution or and 1% DMSO solution as 
negative. 

DISCUSSION

In the present study, it was observed, in both 
evaluated strains, that the fractions from the H. 
dulcis ethanolic extract caused cell inactivation, 
in all concentrations tested, thereby evidencing 
their cytotoxicity. These results corroborate´s 
Park & Chang (2007), report, in which the 
chloroform fraction of the H. dulcis methanolic 
leaf extract inhibited cell growth of human 
hepatoma lineage (HEPG2) and human colon 
adenocarcinoma (HT29 lineage). In mutagenesis 
assay, an increase in the frequency of mutations 
in the CD138 strain was observed after treatment 
with H. dulcis ethanolic fractions. The CD138 
strain is deficient in the OGG1 gene. The OGG1 
gene encodes a DNA glycosylase which catalyses 
the removal of 8-OxoG from damaged DNA. 
Thus, Ogg1-deficient S. cerevisiae strains (CD 
138) exhibit a spontaneous G-C to T-A mutator 
phenotype which results in cell death after 
8-oxoG induction (Thomas et al. 1997, Tsuzuki 

et al. 2007, Menck & Sluys 2017). Our results 
indicate that one or more components of the 
extract produced lesions in the Can1 gene (type 
8-OxoG). These lesions have been repaired in 
the wild strain (FF18733) but not repaired in the 
mutant strain (CD138), which justifies a higher 
level of mutagenesis in CD138 strain.

Mitochondrial genome damage by genotoxic 
and/ or oxidizing agents can be assessed by the 
mitochondrial mutagenesis assay, also known 
as petit assay. An increase was observed in 
the frequency of petite colonies only in CD138 
strains, after treatment with ethyl acetate and 
n-butanol fractions (*p< 0.05). Silva et al. (2014) 
have already observed this same effect in CD138 
strain treated with Cassia augustifolia. In fact, 
mitochondrial DNA accumulate mutations 
in an order of magnitude higher than that of 
nuclear DNA, consistent with the vulnerability 
of the mitochondria to ROS-induced DNA 
damage (Kaniak-Golik & Skoneczna 2015). Ogg1 
inactivation leads to increased frequency of 
mitochondrial petite mutants due to deletions 
in the mtDNA (rho gen) (Singh et al. 2001, Liu & 
Butow 2006). Alterations or loss of mitochondrial 
activity are one of the factors that trigger the 
intrinsic pathway of cell death programmed by 

Table I. Cytotoxicity of Hovenia dulcis ethanolic extract fractions on strains of S. cerevisiae.

Strain Fractions IC50 (µg/mL) Slope R
2
 95% confidence interval IC

50
 

FF18733

Hexane 134.351±0.057 0.004 0.973 134.294 – 134.408

Dichloromethane 104.029±0.043 0.003 0.968 103.986 – 104.073

Ethyl acetate 58.05±0.057 0.004 0.930 57.993 – 58.107

Butanol 158.94±0.024 0.004 0.977 158.934 – 158.958

CD138

Hexane 104.818±0.035 0.003 0.968 104.783 – 104.853

Dichloromethane 56.128±0.035 0.004 0.966 56.093 – 56.163

Ethyl acetate 19.405±0.039 0.008 0.868 19.366 – 19.444

Butanol 61.905±0.080 0.004 0.974 61.824 – 61.985
IC50: Concentration that reduces viability by 50%.
Slope: Angular coefficient.
R2: Correlation coefficient.
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apoptosis (Menck & Sluys 2017). Our findings 
suggest that there was an increase in mtDNA 
damage and, consequently, there was a change in 
the activity of this organelle. Thus, the discovery 
that one of the fractions produces mitochondrial 
alteration´s makes this fraction an interesting 
object of study for a chemotherapeutic agent.	

By joining all findings, it was possible to 
conclude that the ethyl acetate and butanol H. 
dulcis ethanolic extract fractions are cytotoxic 
and mutagenic, inducing oxidative lesions in 

genomic and mitochondrial DNA. Therefore, a 
precaution should be taken regarding the use of 
this medicinal plant by the general population, 
based on the mutagenic potential evidenced 
in this study. Further studies should be carried 
out to identify the substances responsible for 
these toxic and mutagenic activities, and to 
demonstrate the involvement of the extract 
in the induction of apoptosis via the intrinsic 
mitochondrial pathway.

Figure 2. Spontaneous and exposure-induced mutagenesis frequency to fractions of H. dulcis ethanolic 
extract on S. cerevisiae strains, FF18733 and CD138. Evaluation after 48h of treatment with IC50 
concentrations of H. dulcis ethanolic extract fractions *(p<0.05) **(p <0.01) *** (p <0.001) compared to 
control.
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