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Abstract: This study characterized the physical, chemical, macro- and micromorphological 
soil properties from three successive marine terrace levels from Harmony Point (Nelson 
Island, Maritime Antarctica) in order to understand the pedological signatures of 
Quaternary coastal landscape evolution of Maritime Antarctica. Soils were sampled on 
the Late Holocene beach (current beach) and Mid Holocene marine terraces higher up, at 
3, 8, and 12 m a.s.l. At the lower levels, the predominant soils were Gelorthents, whereas 
Haplogelepts dominate the higher terraces. Soil properties are mostly infl uenced by 
parent material and faunal activity, in which cryoclastic (thermal weathering) and 
phosphatization are the main soil-forming processes. Soils from the upper levels 
are more developed, deeper with reddish colors, granular structures and incipient 
formation B horizon. These horizonation features highlight that soils vary according with 
age of glacier-isostatic terrace uplift, representing a Quaternary soil chronosequence. All 
marine terrace levels are Ornithogenic soils, at varying degrees. However, the presence 
of old bird nesting sites for long periods led to formation of phosphatic horizons, stable 
Fe-phosphate minerals and abundant vegetation in the highest terraces of this part of 
Maritime Antarctica.

Key words: Antarctic soils, Holocene beaches, Ornithogenic soils, Soil mineralogy, Gla-
cier-isostatic uplift.

INTRODUCTION
Maritime Antarctica (MA), the western coast of 
Antarctica Peninsula, South Sandwich and South 
Shetland Islands (SSI), are the main periglacial 
areas of Antarctica (Cannone & Guglielmin 
2009, Campbell & Claridge 1987, López-Martínez 
et al. 2012). In MA, freeze-thawing processes 
are essential to understand the soil formation 
and long-term landscape evolution (French 
1996). In addition, climate conditions of MA 
allow the proliferation of algae, lichens and 
extensive moss carpets (Campbell & Claridge 
1987), enhancing the stability of underlying 

soils. Around 4-5 Ma ago, a long deglaciation 
period occurred and infl uenced the formation 
of the present-day landscapes (Björck et al. 1991, 
Björck & Zale 1996). 

Several pedogeomorphological studies 
have been carried out in MA (e.g. Francelino 
et al. 2011, López-Martínez et al. 2012, Moura et 
al. 2012, Rodrigues et al. 2019), classifying the 
marine terraces as Holocene beaches, and 
representing one of the most relevant landforms 
of this region (López-Martínez et al. 2012). 

Marine terraces are mainly originated 
by isostatic uplift, following glacier retraction 
(Araya & Hervé 1972, Pallàs et al. 1995, Serrano 
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2003, Fretwell et al. 2010, Francelino et al. 
2011). This type of uplift is generally ~0.44 mm 
greater than the tectonic one (Pallàs et al. 1995). 
Additionally, Fretwell et al. (2010) suggest a 
mean rate of elevation of 2.80 mm/year for the 
most elevated beach levels of SSI. These results 
indicate great sea-level oscillations, which 
corroborates the former wide extension of ice 
caps, and widespread thawing processes in SSI 
during the Holocene, after the LGM (Pallàs et al. 
1995, Hall & Perry 2004).

After exposure, and under the influence of 
environmental factors (e.g. biological activity), 
marine terraces are subjected to pedogenesis 
(Francelino et al. 2011). For example, buried 
cyanobacteria and mosses indicate solifluction 
and/or periglacial erosion processes; 
phosphatization processes in the nesting sites 
is clearly associated with long-term bird-activity 
(Myrcha et al. 1985, Tatur 1989, Myrcha & Tatur 
1991, Pereira et al. 2013, Schaefer et al. 2004, 
Simas et al. 2007, Rodrigues et al. 2021).

Cambisols and Regosols are the main soil 
types (IUSS Working Group WRB 2015) on Antarctic 
marine terraces (Francelino et al. 2011), but the 
interplay between the soil forming-processes, 
topographic variation of marine terraces and 
age, is still known. In order to understand 
these relations, soils from different altitudes (3, 
8 and 12 m) from Harmony Point (HP; Nelson 
Island, Maritime Antarctica) were sampled and 
analyzed according to their physical, chemical, 
mineralogical and micromorphological 
properties. The study area in Nelson island was 
uplifted about 14.5-16.0 m above sea level (a.s.l.) 
during Middle Holocene (Bentley et al. 2005, 
Fretwell et al. 2010), and represents a typical 
setting of glacier retreat marine terraces uplift 
in MA.

MATERIALS AND METHODS
Study area 
Harmony Point (HP) covers an area of 4 km2 
(S62°18’; W59°12’), located in Nelson Island (part 
of SSI), in which 5 % (8 km2) of its total area (165 
km2; Fig. 1) is composed of ice-free areas. 

The local weather is influenced by successive 
cyclonic systems, which originate intense, 
relatively warm and wet winds and precipitation 
(Bintanja 1995). The maritime influence in the 
SSI is clear (Rakusa-Suszczewski 1993, Wen et 
al. 1994), with a climate classified as a Southern 
Polar Oceanic or Etf (according to Köppen’s 
climatic classification). The predominant wind 
directions are northwest, west, north, and 
southeast (Bintanja 1995, Braun et al. 2001, Setzer 
& Hungria 1994). Northwest and west winds are 
warm and most frequent, reaching high speeds 
in the transition late Summer/early Spring 
(Rakusa-Suszczewski 1993). The mean annual 
temperature is -2.8 °C (Ferron et al. 2004). 

HP is geologically part of a magmatic arc 
formed between the Upper Cretaceous to Early 
Quaternary (Birkenmajer 1982, Kraus 2005, 
Smellie et al. 1980). The predominant rocks are 
andesitic lavas, basalts and tuffs, of Mesozoic to 
Cenozoic age (Smellie et al. 1984). The HP coastal 
domain is composed of sedimentary rocks of 
andesitic nature, with coarse granulometry 
(pebbles to coarse sand), and subjected to 
recent glacial reworking (John & Sudgen 1971), 
with an influence of gabbro intrusions. Gentoo 
Penguins (Pygoscelis papua) and Giant Petrels 
(Macronectes giganteus) nesting sites are 
commonly found on beaches, terraces and 
outcrops. 

The lower (first) marine terrace level (MT-
1) is located at 3 m a.s.l., composed of medium 
to large pebbles, with the composition of the 
raised beach. The second level (MT-2) is located 
at 8 m a.s.l., with a mix of pebbles or with or 
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without lichens, but only incipiently vegetated, 
especially at the transition zone with MT-1. Also, 
flooding areas and ponds are covered by mosses 
carpet. The third level (MT-3) is located at 12 m 
a.s.l., under pebbly landsurfaces, and has more 
developed vegetation on lakes and melting 
channels, with mosses in the latter. Also, volcanic 
rock stacks occur occasionally, surrounded by 
debris slopes. Evidence of past nesting sites is 
clearly demonstrated by selective concentration 
of circular to ovoidal pebbly landforms on well-
drained soils. 

The vegetation from MA ice-free areas 
is predominantly cryptogamic (Olech 1993) 
and lichens, mosses and algae are among 
the autochthonous species (Victoria et al. 
2009). Mosses are associated with flooded 

areas due to their good adaptation of 
waterlogging (Meick & Seppelt 1997, Schaefer 
et al. 2004). The marine terraces of HP, 
Sanionia uncinata, Sanionia georgicouncinata, 
Brachythecium autrosalebrosu, Acarospora 
macrocyclus,Caloplaca spp occur, whereas 
Prasiola crispa growth in places with intense 
bird’s activity (Rodrigues et al. 2019).

Soil sampling and classification
Five pedons (P1, P2, P3, P4 and P5) were selected 
and dug to a depth of about 100 cm, with a total 
of 24 samples collected during the Summer of 
2015. Sampling places were selected in order to 
assess a three level-sequence of uplifted marine 
terraces: P1 is related to the current beach (CB) 
and P2 to the first level (3 m; MT-1), P3 to the 

Figure 1. Location of the studied area, Harmony Point, Nelson Island, Maritime Antarctica. A: Location of South 
Shetland Island in the Continent Antarctica. B: Location of South Shetland Islands. C: Nelson Island and Harmony 
Point location, D: Harmony Point area; E: Coastal domain location of the sampled soil profile.
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second level (8 m, MT-2) and P4 and P5 to the 
third level (12 m; MT-3; Fig. 2). All soil samples 
were air-dried before physical, chemical, 
mineralogical and micromorphological analyses 
were carried out in the laboratory (EMBRAPA 
2017). Soils were pedologically described 
according to Schoeneberger et al. (2012) and 
classified according to Soil Taxonomy (Soil 
Survey Staff 2014) and WRB-FAO (IUSS Working 
Group WRB 2015).

Soil characterization
Soil texture was analyzed by mechanical 
dispersion of fine earth (< 2 mm) samples in 
distilled water, sieving and weighting of the 
coarse and fine sand, sedimentation of the 

silt fraction, followed by siphoning of the < 2 
μm fraction (Gee & Bauder 1986). All routine 
analytical chemical and physical determinations 
were obtained using standard procedures of 
EMBRAPA (2017). Soil pH (determined in 1:2.5 
soil/water solution) and exchangeable nutrients 
were determined in < 2 mm air-dried samples 
(EMBRAPA 2017). Mg2+ and Al3+ were extracted 
with 1 mol/L KCl, and P, Na and K were extracted 
with Melich-1 (EMBRAPA 2017). Elemental 
concentrations in the extracts were determined 
by atomic absorption (Ca2+, Mg2+ and Al3+), flame 
emission (K and Na) and photocolorimetry (P) 
(Murphy & Riley 1962). Total organic carbon (TOC) 
was determined by wet oxidation, according to 
Yeomans & Bremer (1988). 

Figure 2. Coastal domain of HP and its respective levels of marine terraces and studied profiles. P1- current beach 
(CB); P2- marine terrace 1 (MT-1); P3- marine terrace 2 (MT-2); P4 and P5- marine terrace 3 (MT-3). 
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The mineralogical composition of the clay 
fraction of selected samples was studied by X-ray 
diffractometry (XRD). The clay was separated by 
centrifugation, and all analysis were carried 
out on natural clay. The diffractometer used 
is the Panalytical, Empyrean model, with CuKα 
radiation and power 45 kV and 40 mA. The scan 
interval was 2 to 70°, with a step of 0.02° 2θ and 
a count of 10 “/ step. The diffractograms were 
interpreted in X’Pert HighScore Plus software 
and through literature standards (Brindley and 
Brown 1980). 

Secondary (pedogenic) Fe and Al oxides 
(FeDCB and AlDCB) were extracted from the clay 
by dithionite-citrate-bicarbonate (McKeague & 
Day 1966). For the analysis of Fe and Al poorly 
crystalline forms (FeOX and AlOX), 0.2 mol/L 
ammonium oxalate at pH 3.0 was used in the 
absence of light (Schwertmann 1973). Fe and 
Al (FeP and AlP) bound to soil organic matter 
(OM) were extracted by sodium pyrophosphate 
according to proposed by Dahlgren (1994).

Undisturbed samples were impregnated 
with resin, and thin sections were produced, 
following the procedures of Filizola and Gomes 
(2004). The description was carried out with 
a Zeiss optical microscope, Axioskop model, 
using the terms proposed by Stoops (2003) and 
Stoops et al. (2010), with emphasis on cryogenic 
features (Schaefer et al. 2008).

Micromorphometrical  analysis was 
performed using the free software Jmicrovision© 
1.2.7. The geometry of particles was measured 
according to the following aspects: area, 
perimeter, length, width, and orientation 
(0º-180º). The rounding degree of 50 grains 
with granulometric values superior to sand (1-3 
mm) was assessed, according to Cox (1927). In 
agreement with their orientations, grains were 
divided into three angular classes: 0º-44º/136º-
180º, horizontal; 45º-74º/106º-135º, oblique; and 
75º-105º, vertical. The software Minitab® 18.1 

allowed originating the statistical and boxplot 
data. The tool Magic Wand, which is part of 
software Jmicrovision© 1.2.7, allowed obtaining 
the microporosity within thin sections.

Mean values for physical (i.e. roundness 
degree) and chemical properties (i.e. Fed and 
Ald) were calculated with the aid of ANOVA and 
Tukey tests in order to determine and highlight 
the differences among the studied five pedons 
concerning their levels in the marine terraces. 
Non-parametric Kruskal-Wallis test (K-T) was 
performed for non-normally distributed data 
(i.e. soil properties). Differences were considered 
significant at p < 0.05. Principal Component 
Analysis (PCA) was used for correlated 
components. All statistical analyses were 
performed with the aid of Minitab® 18 software.

RESULTS 
General characteristics of soil profiles
 Morphological, physical (Table I and Fig. 2) 
and chemical (Table II) soil properties show 
the influence of parent material, topographic 
position, and biological activity. 

At the current beach (CB) and first marine 
terrace level (MT-1), soils were classified as Typic 
Gelorthents (Soil Survey Staff 2014) or Haplic 
Arenosols (IUSS Working Group WRB 2015), 
respectively, with moderate to well-drainage 
conditions. Soil depth varies between 50-60 
cm, and buried algae layers are observed in 
P2 (MT-1), leading to a horizon classification of 
3Oib and 3Cb, were suffixes “i” and “b” stand 
for slightly decomposed organic matter, and for 
buried, respectively. These layers indicate the 
deposition of sediments and organic matter in 
different events at higher level, at the initial 
stages of isostatic compensation. On the surface, 
no vegetation occurs.

All horizons in P1 and surface horizons in P2 
show dark grayish-brown to dark brown colors 
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(10YR 3/2, 3/3), which is typical of soils derived 
of igneous rocks (Moura et al. 2012). Subsurface 
horizons in P2 have yellowish colors (2.5Y 4/2 to 
2.5YR 3/2). Xanthic soils with similar chroma and 
hue can be likewise found within sulfide-rich 
rocks identified in Barton and Keller Peninsulas 
(Francelino et al. 2011, Lee et al. 2004, Lopes et 
al. 2017, Simas 2006). The sum of silt and clay 
particles is higher in P1 than P2, and the textural 
classes ranged from loamy sand to sandy loam. 
In addition, in both pedons, the main structure 
is single grain. 

Chemical properties (Table II) show 
eutrophic soils in CB, and dystrophic soils in the 
MT-1. P1 shows the highest Na concentrations 

among all soils (1.56-1.87 cmolc/kg), which can 
be explained by direct influence of sea spray. 
Soil pH values are low (3.90 to 5.10) in all soils. 
Exchangeable Ca2+ and Mg2+ concentrations are 
in the range of 1,39 to 10,3 cmolc/kg and 0,23 
to 3.73 cmolc/kg, respectively. The P-extractable 
concentrations are both high (P1 - 602 mg/kg; 
P2 - 365 mg/kg) due to the influence of penguin 
activity (Simas 2006). 

P3 in the second marine terrace level 
(MT-2) has the same soil (CB as in MT-1), Typic 
Gelorthents (Soil Survey Staff, 2014) or Haplic 
Arenosols (IUSS Working Group WRB  2015). 
This soil has a depth of 75 cm, with similar 
morphological and physical properties with 

Table II. Chemical properties of soils from HP marine terraces.

Horiz. Depth
pH pH P K Na Ca2+ Mg2+ Al3+ H + Al BS CECeff CECpot PBS Alsat OM

H2O KCl -----mg/kg----- --------------------------------cmolc/kg------------------------------ ----%----
dag/

kg
P1 - Current Beach (CB)

A 0-12 4,2 3,5 597,1 0,67 1,87 2,86 3,73 1,3 8,7 9,1 10 18 51 12 1,37
C 12-40 4,7 3,4 307,6 0,64 1,82 1,74 2,9 1,3 6,3 7,1 8,4 13 53 15 1,43

2Cb 40-54 5,1 4 901,8 0,51 1,56 3,05 2,13 0,8 4,5 7,3 8 12 62 10 1,64
P2 - Marine Terrace 1 (MT-1)

A 1-25 4,1 3,1 336,8 0,49 1,43 3,22 3,58 3,8 15,5 8,7 13 24 36 30 2,00
2C 25-45 4,5 3,1 296,4 0,45 0,91 1,45 1,3 3,2 8,4 4,1 7,3 13 33 44 1,38

3Oib 45-55 3,9 3,3 378,5 0,30 0,71 1,14 0,77 2,2 10,3 2,9 5,2 13 22 43 2,25
3Cb 55-65 4,3 3,2 446,5 0,46 0,87 1,97 1,8 3,2 8,8 5,1 8,3 14 37 39 1,88

P3 - Marine Terrace 2 (MT-2)
O 0-3
A 03-8 4,2 3,4 390,4 0,33 0,91 1,81 1,01 3 18,7 4,1 7,1 23 18 43 2,17
AC 8-18 4,4 3,3 640,5 0,34 0,91 1,67 0,77 5,2 19,5 3,7 8,9 23 16 58 3,73
2C1 18-50 4,7 3,3 928,1 0,30 0,71 1,82 0,67 3,8 8,4 3,5 7,3 12 29 52 4,67

P4 - Marine Terrace 3 (MT-3)  
O 0-2 4,6 4,2 3.514,50 0,80 1,39 10,2 3,23 0,1 9,5 16 16 25 62 1 1,96
A 2- 18 4,8 3,7 802 0,44 0,80 7,74 2,03 0,8 17,1 11 12 28 39 7 1,83
B 18-26 4 2,9 1.048,00 0,27 0,36 1,79 0,76 3,4 26,9 3,2 6,6 30 11 52 2,61

Bw 26-60 3,9 2,7 711,9 0,39 0,43 1,39 0,73 5,2 25,8 2,9 8,1 29 10 64 1,04
C1 60-80 4 2,8 1.184,10 0,23 0,30 1,18 0,67 5,5 16,4 2,4 7,9 19 13 70 1,04
C2 80-100 3,8 2,8 818,9 0,22 0,30 1,04 0,49 5 23,2 2 7 25 8 71 0,52

P5 - Marine Terrace 3  (MT-3)
A 0-5 4,6 4,1 2.768,00 0,69 1,43 10,3 3,24 0 16,3 16 16 32 49 0 2,87

AB 05-15
Bw 15-20 3,6 2,7 2.742,30 0,40 0,55 1,55 0,26 4 34,1 2,8 6,8 37 8 59 2,74
2C1 20-65
C2 65-70 3,4 2,6 2.216,00 0,45 0,55 1,39 0,23 4,1 40,4 2,6 6,7 43 6 61 2,35

BS: sum of bases; CECeff: effective cation exchange capacity; CECpot: potential CEC at pH 7.0; PSB: percentage of bases saturation; 
Alsat: Al saturation; OM: organic matter.
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MT-3 (Table I), notably soil color and the 
granular to blocky structures in the surface 
horizons. Petrels nesting sites and an abundant 
vegetation cover of Sanionia uncinata can be 
observed at this terrace level, representing the 
dominant moss species in coastal areas of MA 
(Victoria et al. 2009). In all horizons of P3, pH is 
acid (3.9-4.5) and exchangeable Ca2+, Mg2+ and 
K+ concentrations are the lowest (Table II). On 
the other hand, P content, exchangeable Al3+ 
and H+Al concentrations are higher than those 
obtained at the MT-1. Organic matter (OM) is also 
higher than P1, and its contents increases with 
depth. 

 The third level (MT-3) have Typic 
Haplogelepts/Haplic Cambisols (P4), and 
Typic Gelorthent/Haplic Arenosols (P5), by Soil 
Survey Staff (2014) and IUSS Working Group 
WRB  (2015) classifications, respectively. Soils 
at the high terrace level are deeper (75-100 
cm), and have B horizons and phosphate-rich 
layers. Surface horizons have brown (7.7YR 3/4) 
to dark brown (10YR 3/3) colors, due to organic 
matter incorporation, and B horizons are more 
palid (7.5YR 6/4; Table I) due to phosphate 
accumulation (Myrcha et al. 1983, Simas 2006, 
Simas et al. 2007, Tatur & Barczuk 1985). Values 
of pH and exchangeable cations at subsurface 
horizons in P4 and P5 were lower than those from 
the lower MT-1 and MT-2 levels (Table II). On the 
other hand, P-extractable (802-3,514.50 mg/dm3) 
and exchangeable K+ and Al3+ concentrations are 
much higher than those of MT-1 and MT-2. CEC 
obtained values were high (i.e. HP-3 with 32-43 
cmolc/dm3), and organic matter concentrations 
in A horizon are abundant due to the presence of 
vegetation cover of Prasiola crispa and Sanionia 
uncinata.

Mineralogy
Primary mineralogical assemblage of clay 
fraction of all sampled soils is composed of 

plagioclases (NaAlSi3O8-CaAl2Si2O8), pyroxenes 
and quartz (SiO2; Table III). According to XRD 
analysis, plagioclases are mostly andesine (3.21 
Å) and anorthite (3.10 Å). The primary mineralogy 
of the clay fractions is very common in Antarctica 
soils due to physical weathering caused by 
cryoclasty and glacial erosion processes (Jeong 
et al. 2004, Michel et al. 2006, Schaefer et al. 
2008, 2015, Simas 2006, Simas et al. 2008).

Other minerals in the clay fraction are illite 
{(K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)}; 10.60 Å), 
smectite (15.10 Å), chlorite (14.19 Å), kaolinite [7.15 
Å; Al2(OH)4Si2O5] and phosphates (Fig. 3). Chlorites 
are essentially authigenic in Antarctica’s soils 
and may result from hydrothermal alteration of 
pyroxenes (Blume et al. 2004, Srivastava et al. 
2011). On the other hand, smectites are formed 
by chemical weathering processes (Bockheim 
1980, Borchardt 1989, Boyer 1975, Campbell & 
Claridge 1987, Gibson et al. 1983, Hillenbrand & 
Ehrmann 2001, Vennum & Nejedly 1990).

The mineral assemblage kaolinite+chlorite 
was identified in P1 and P2 pedons, as indicated 
by the peaks close to 7.15 Å, which disappear 
after being heated at 550 °C (Fig. 3). Kaolinite 
occurs in soils of MA (Blume et al. 2002, Schaefer 
et al. 2008, Simas et al. 2008) and its presence 
is explained by stronger chemical weathering in 
acid-sulfate soils, or weathering under cold, wet 
climates (Srivastava et al. 2011).

Phosphate minerals, such as struvite 
[NH₄MgPO₄·6H₂O] and vivianite [Fe2+

3 (PO4)2·8H2O] 
were identified in the soils influenced by 
bird activities, being the predominant phases 
in MT-2 and MT-3 levels. Leucophosphite 
[KFe3+

2(PO4)2(OH)·2H2O] peaks are more intense 
in the Bw horizon of P5, higher up (Fig. 4). 
According to Tatur (1989), these minerals result 
of percolation of guano-rich solutions and the 
consequent reaction of the latter with primary 
minerals, such as plagioclases and pyroxenes.
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FeDBC and AlDCB concentrations increase from 
MT-1 to MT-2 (Table III). In MT-3 (P4 and P5), 
FeDCB concentrations (FeDCB P4 = 7.70 -11.13 %; P5 
= 4.56-13.17 %) are higher than AlDCB (AlDCB P4 = 
1.77-2.73 %; P5 = 1.49-2.21 %), which suggests high 
amounts of this element in the parent material 
(i.e. andesitic rocks), explaining the high 
amounts of Fe-phosphate minerals in these 
soils (i.e. vivianite). The average concentrations 
of AlP are lower than FeP (AlP = 0.32 and FeP = 

0.79), which demonstrates high affinity between 
the Fe-oxides and the organic matter. High FeOX/
FeDCB ratios (0.72-2.15) in the studied soils (Table 
III) indicate high abundance of Fe phases of low 
crystallinity. The ratios AlOX/AlDCB are between 
0.98-1.50 (Table III), which also implies Al phases 
with low crystallinity.

Table III. Mineralogy of clay fraction and Fe and Al (%) concentrations extracted by dithionite-citrate-bicarbonate, 
ammonium oxalate and pyrophosphate methods from the HP soils of marine terraces.

Pedon Clay fraction DRX
DBC Oxalate Pyrophosphate FeOX/FeDCB AlOX/AlDCB

FeDCB AlDCB FeOX AlOX FeP AlP    

P1 - Current BeaChl (CB)

A Qz, Chl, Sm, Ko, An 2,1 0,49 2,82 0,59 0,28 0,15 1,34 1,2

C Qz, Sm, An, Ko 4,24 0,59 4,98 0,76 0,14 0,1 1,17 1,29

2Cb Qz, An, Chl, Ko, Vm 4,15 1,03 5,48 1,63 0,18 0,21 1,32 1,58

P2 - Marine Terrace 1 (MT-1)

A And, Chl, Sm 3,12 0,83 3,58 0,75 0,49 0,14 1,15 0,9

2C And, Chl, Sm 7,57 0,73 8,32 0,79 0,31 0,08 1,1 1,08

3Oib  Qz,Chl, Sm, 5,41 0,67 6,19 0,8 0,25 0,08 1,14 1,19

3Cb Chl, And, Chl, Sm 7,76 0,97 4,05 0,88 0,13 0,05 0,52 0,91

P3 - Marine Terrace 2 (MT-2)

A Chl, Ab, Sm 3,96 1 5,61 1,25 0,68 0,23 1,42 1,25

AC Chl,  Sm, Str 7,77 1,21 12,04 1,61 0,85 0,24 1,55 1,33

C1 Chl, Ab, Sm, Str 10,52 1,15 14,21 1,7 0,61 0,2 1,35 1,48

A Chl, Ab, Sm 3,96 1 5,61 1,25 0,68 0,23 1,42 1,25

P4 - Marine Terrace 3 (MT-3)

O And, Sm, Le 7,7 1,77 9,91 2,07 0,91 0,58 1,29 1,17

A Chl, And, Mt, Sm, Le 9,3 1,83 9,41 1,77 1,5 0,52 1,01 0,97

B Qz, And, Chl, Sm, Le 12,98 2,73 10,19 1,87 1,2 0,41 0,79 0,68

Bw Qz, Chl, Mt, Le, Str 11,69 1,88 25,19 2,95 0,57 0,24 2,15 1,57

C1 Chl, Mt, Le, Str, Vv 11,13 2,2 17,01 2,69 1,27 0,52 1,53 1,22

P5 - Marine Terrace 3  (MT-3)

A Qz, And, Sm, Le, Vv 4,56 1,49 6,98 2,24 0,65 0,55 1,53 1,5

Bw Qz, And, Sm, Le, Vv 10,33 1,7 12,06 2,16 2,18 0,79 1,17 1,27

C2 And, Sm, Le 13,17 2,21 14,96 2,71 2,18 0,87 1,14 1,23
An: anatase; And: andesine; Chl: Chlorite; Ko: Kaolinite; Le: leucophosphite; Qz: quartz; Sm: smectite; Str: struvite; Vv: vivianite.
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Statistical data
Statistical results of soil properties from the 
analyzed pedons are shown in Table IV. ANOVA 
and Kruskal-Wallis tests were applied in order to 
distinguish soil proprieties among the pedons. 
ANOVA analyses show significant differences 
in H+Al (p = 0.006), CECpot (p = 0.000), OM (p = 
0.007), Ald (p = 0.001), Alo (p = 0.001) and silt (p 
= 0.024) and clay fractions (p = 0.036). P4 and 
P5 yield the highest mean values of analyzed 
variables (i.e. OM) and are significantly different 
from P1, P2 and P3 (see Table IV). P3 exhibits 
the highest mean values of OM (3.50 dag/kg) 
and is significantly different from other pedons. 
Kruskal-Wallis tests also showed that P (p = 
0.013), Na (p = 0.033), FeP (p = 0.009) and AlP (p 
= 0.003) are significantly different. On the other 
hand, P2 show the lowest mean values of P 
(364,6 mg/kg), FeP (0,3 %) and AlP (0,1 %).

The score plot for the first two principal 
components is showed in Fig. 5. PCA explained 
70.90 % of total variance. First principal 
component is strongly correlated with FeDCB, Al3+, 
Alsat and FeOX scores (Supplementary Material - 
Table SI). On the other hand, second principal 
component is dominated by the negative 
loadings of silt and fine sand fractions and AlP, 
FeP and Ca2+ scores (Table SI). PCA shows that 
pedons (P1, P2, P3, P4 and P5) can be divided 
into three groups (see ellipses in Fig. 5): surface 
horizons of P4 and P5; horizons of P1, P2 and P3; 
and subsurface horizons of P4 and P5.

 Micromorphology and micromorphometry 
The results of the micromorphological 
description are shown in Table V. Accompanying, 
photomicrographs of microstructures in thin 

Figure 3. XRD spectrum of clay fraction within the 
pedon P2 (MT-1). Chl: chlorite, Sm: smectite, Ko: 
kaolinite Pg: plagioclase, Qz: quartz. “d” in nm.

Figure 4. XRD spectrum of clay fraction within the 
pedon P4 (MT-3). Chl: chlorite, Sm: smectite, Pg: 
plagioclase, Qz: quartz, Le: Leucophosphite, Str: 
Struvite. “d” in nm.
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sections are illustrated in Fig. 6, whereas Fig. 
7 and 8 show the pore size boxplot and Cox 
rounding index, respectively.

Soils from MT-1 show simple packing voids 
(Fig. 6). Pores occupy 40 % of thin section area 
and their average size is 0.30 mm (Fig. 7). Pores 
surfaces are generally smooth and regular, 
though some of them show rough boundaries. 

Lithic fragments show zigzag-like planes, 
well fit, regular and smooth, which may have 
resulted from cryoclastic processes (Van Vliet-
Lanoe 1985). Due to the lack of aggregates, 
microstructures are associated to Monic Basic-
related distribution pattern and are mainly 
composed of coarse grains, such as sand 
grains and pebbles. These grains are andesite 

Table IV. Summary statistics of soil properties for pedons from HP marine terraces.

Current Beach MT-1 MT-2 MT-3

Pedon P1 P2 P3 P4 P5 p-value

  Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

pH 4,6a 0,5 4,2a 0,3 4,4a 0,3 4,1a 0,4 3,8a 0,6 0,230

P* mg/kg 602,0 297,0 364,6 64,1 653,0 269,0 1347,0 1076,0 2575,0 312,0 0,013

K mg/kg 0,6a 0,1 0,4a 0,1 0,3a 0,0 0,4a 0,2 0,5a 0,2 0,212

Na* cmolc/kg 1,8 0,2 1,0 0,3 0,8 0,1 0,6 0,4 0,8 0,5 0,033

Ca2+* cmolc/kg 2,6 0,7 1,9 0,9 1,8 0,1 3,9 4,0 4,4 5,1 0,913

Mg2+* cmolc/kg 2,9 0,8 1,9 1,2 0,8 0,2 1,3 1,1 1,2 1,7 0,180

Al3+ cmolc/kg 1,1a 0,3 3,1a 0,7 4,0a 1,1 3,3a 2,4 2,7a 2,3 0,363

H + Al cmolc/kg 6,5b 2,1 10,75b 3,3 15,53ab 6,2 19,82ab 6,7 30,27a 12,5 0,006

BS* cmolc/kg 7,8 1,1 5,2 2,5 3,8 0,3 6,3 5,9 7,1 7,7 0,635

CECeff* cmolc/kg 8,8 1,1 8,5 3,3 7,8 1,0 9,6 3,7 9,8 5,3 0,908

CECpot cmolc/kg 14,33c 3,2 16c 5,4 19,3bc 6,4 26,0b 4,0 37,33a 5,5 0,000

PBS % 55,3 a 5,9 32,0 a 6,9 21,0 a 7,0 23,8 a 22,0 21,0 a 24,3 0,101

Alsat % 12,3 a 2,5 39,0 a 6,4 51,0 a 7,6 44,2 a 31,9 40,0 a 34,7 0,342

OM  dag/kg 1,5b 0,1 1,9ab 0,4 3,5a 1,3 1,5b 0,8 2,7ab 0,3 0,007

FeDCB % 3,5 a 1,2 6,0 a 2,2 7,4 a 3,3 9,5 a 3,3 9,4 a 4,4 0,097

AlDCB % 0,7b 0,3 0,8b 0,1 1,1ab 0,1 1,9a 0,6 1,8a 0,4 0,001

FeOX % 4,4a 1,4 5,5a 2,2 10,6a 4,5 12,9a 7,1 11,3a 4,0 0,111

AlOX % 1,0b 0,6 0,8b 0,1 1,5ab 0,2 2,1a 0,6 2,4a 0,3 0,001

FeP*  % 0,2 0,1 0,3 0,2 0,7 0,1 1,0 0,4 1,7 0,9 0,009

AlP*  % 0,2 0,1 0,1 0,0 0,2 0,0 0,4 0,2 0,7 0,2 0,003

FeOX/FeDCB* 1,3a 0,1 1,0a 0,3 1,4a 0,1 1,4a 0,5 1,3a 0,2 0,390

AlOX/AlDCB* 1,4a 0,2 1,0a 0,1 1,4a 0,1 1,1a 0,3 1,3a 0,1 0,180

Gravel.* % 10,5 0,2 20,2 8,1 57,8 20,7 30,3 16,5 14,5 10,7 0,072

Coarse sand % 67,0a 5,0 74,5a 14,8 79,0a 10,4 64,7a 15,2 44,0a 20,1 0,071

Fine sand* % 5,0 1,0 7,5 6,9 6,0 6,1 9,5 8,1 16,0 16,6 0,773

Silt % 10,0ab 3,0 8,5ab 5,0 3,7b 2,1 11,8ab 6,1 23,0a 11,5 0,024

Clay % 17,7a 0,6 9,8a 3,4 11,3a 3,2 14,2a 3,8 17,3a 4,5 0,036
* indicates that variables were analyzed by Kruskal–Wallis (K-T) test. The other variables were analyzed by ANOVA followed by a 
Tukey test. Means that do not share a letter are significantly different, the other indicated by the same letter are not significantly 
different. Bolder numbers in p-value indicate that is significantly different. MT: marine terrace. aPercent of particles > 2 mm.
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rock fragments, whose predominant mineral 
assemblage is formed by opaque minerals 
(pyrite), plagioclases and pyroxenes. 

 MT-1 soils have an average size of the grains 
of 0.60 mm, and are predominantly angular. The 
grain roundness is lower than those in MT-2 
and MT-3 levels (Fig. 8). Orientation-related 
data show 62 % horizontal, 26 % vertical and 
12 % oblique grains. Fine materials occur within 
lithic fragments (as infillings) and also as grains 
resulting from the alteration of mafic minerals, 
with brown to yellowish colors and a crystallitic 
b-fabric. In addition, few residues of Prasiola 
crispa with low decomposition degree can be 
observed. 

Soils from MT-2 show simple packing voids 
(Fig. 6) and are composed of lithic fragments 
of pebble granulometry, which are filled with 
sand-sized fragments. These fragments occupy 
25 % of thin section area and show an average 
size of 0.14 mm. Large grains are coated by 
a clay micromass that form a basic chitonic 
microstructure (Stoops 2003). 

Among the lithic fragments, volcanic 
andesites are predominant, which is typical of 
marine terraces. 65 % of thin section area shows 
coated grains, with roundness indices of 0.76. The 

average size is 0.60 mm, and grains orientations 
were 57 % horizontal, 4 % vertical, and 39 % 
oblique. The relative distribution pattern was 
chitonic, with increasing density of the fine 
materials in places, originating a chito-gefuric 
related distribution pattern. The micromass 
shows a brown-reddish color, limpid aspect 
and undifferentiated b-fabric. The isotropic 
pattern associated to the limpid aspect suggests 
amorphous materials (Sedov et al. 2010). Organic 
tissues of Sanionia uncinata can be observed, 
with a more advanced decomposition stage; 
bone fragments are altered and oxidized. Illuvial 
coatings on coarse grains, and infillings are 
common pedofeatures.

The soils of MT-3 show planar voids, 
deformed vesicles and vughs, which occupy 16 
% of the thin section, with mean pores size of 
0.10 mm, smaller than MT-1 and MT-2 (Fig. 6).

Microstructure is small subangular blocky, 
formed by the coalescent arrangement of 
granular aggregates, and coarse sand grains, and 
the related distribution pattern is classified as 
enaulic. Coarse material arrangement observed 
in MT-3 is similar to MT-2, mainly lithic fragments 
of volcanic andesitic nature, comprising 35 % of 
the thin section area and average size of 0.60 

Figure 5. Principal 
component analysis 
(PCA) of the soil 
variables analysed. 
Three groups of 
correlated variables and 
three groups of samples 
associated with them 
(indicated by ellipses).
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mm. The average values obtained for the Cox 
(1927) index is 0.74, which is related to subangular 
grains; however, the variation amplitude of 
grains yields values close to 1.00 (Fig. 8).

In MT-3 the grains are oriented as follows: 46 
% horizontal, 18 % vertical and 36 % oblique. Two 
distinct types of micromasses can be observed. 
The first originates aggregates composed of 
silt to fine sand particles and lithic fragments 
with granulometric size slightly more prominent 
than sand grains; it also shows brown-yellowish 
color, speckled aspect and crystallitic b-fabric. 
The second is very similar to micromass of MT-3, 
with coating of pebbles with a brown-reddish 

color, limpid aspect and undifferentiated 
b-fabric. Finally, the pedofeatures of MT-3 are 
clay coatings on coarse grains, and infillings.

DISCUSSION 
Soil properties 
The soils of HP marine terraces are similar 
to others from coastal areas of MA (Haus et 
al. 2016, Moura et al. 2012, Navas et al. 2006, 
2008, Simas et al. 2007, Tatur 1989), showing a 
great pedogenic development with increasing 
altitude. These observations are corroborated 

Table V. Micromorphological properties of the soils from HP marine terraces.

Microestructure

Groundmass
Organic 
material Pedofeautures

Coarse Material Fine Material C/F2µm relative 
distribution 

P2 - Marine Terrace 1 (MT-1) - A horizon

Single grain 
microstructure, 

with few fine, pore 
of simple-packing 

voids.

Cryoclast plutonic rock 
fragments (diabase) 

and fragments of 
opaque minerals 
(possibly pyrite), 
plagioclase and 

pyroxenes.

Yellowish brown color,
limpid e crystallitic 

b-fabric.
Coarse monic.

Rare fragments 
of Prasiola 

crispa in low 
decomposition 

stage.

Not found.

P3 - Marine Terrace 2 (MT-2) - A horizon

Chitonic 
(Pelicular grain 
microstructure),  

with thick material
being coated 

by thin coating 
of fine, sinple 
packing voids.

Fragments of andesitic 
volcanic rock. It 

presents lithological 
heterogeneity of gravel 

and coarse sand.

Probable presence of 
amorphous, reddish 
brown color, limpid 
e undifferentiated 

b-fabric.

Chitonic and 
Chito-gefuric.

Fragments 
of Sanionia 
uncinata in 

intermediate 
stage of 

decomposition 
and fragments 

of oxidized 
bones.

Coating around 
the lithic 

fragments. It 
presents cracks 

that individualize 
the coating 
in several 
fragments.

P5 - Marine Terrace 3 (MT-3) - Bw horizon

Subangular blocky 
microstructure, 

moderately 
separated, planes 
voids, deformed 

vesicles and 
vughs.

Fragments of andesitic 
volcanic rock. It 

presents lithological 
heterogeneity of gravel 

and coarse sand. . 
Calcite intrusions 

are present in some 
fragments.

Micromass 1 of the 
aggregates: yellowish 
brown color, speckled 
e crystallitic b-fabric. 
Micromass2: reddish 

brown, limpid e 
undifferentiated 

b-fabric.

Single-spaced 
equal enaulic.

Fragments 
of Sanionia 
uncinata in 
advanced 
stage of 

decomposition. 
Many 

fragments of 
bones.

Coating around 
the lithic 

fragments.  
Fissures that 
individualize 
the coating 
in various 
fragments.
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by physical, chemical, mineralogical and 
micromorphological soil properties.

Morphologically, the upper terrace soils (MT-
2 and MT-3) exhibit more stable structures, are 
thicker, with higher chroma, displaying marked 
horizons. In the MT-3, the formation of Bw 
horizon (Schoeneberger et al. 2012) with cambic 
features, at 21 cm depth, reveals the greater 
pedogenetic evolution of old terraces. Haus et 
al. (2016) also reported Bw horizon formation at 
higher and older levels of marine terraces in the 
Peninsula. 

All soils from HP marine terraces are 
skeletal (80 % V/V granulometric fractions > 
2 mm diameter), and consistent with other 
studies in the SSI (Simas et al. 2007). However, 
lithic fragments at the upper terrace soils (P4 
and P5) are smaller and more degraded than 
lower ones (P1, P2 and P3). This can be explained 
by the greater age of pebbles at MT-3 to physical 
weathering (Francelino et al. 2011, Michel et al. 

2014, Rodrigues et al. 2019, Simas et al. 2008), 
resulting in breaking up into smaller fragments. 

We observed an anomalous behavior of 
clay content along the soil sequence. The CB 
has relatively higher clay content than the 
MT-1 and MT-3, due to solifluction processes 
(French 1996), by which melting channels bring 
dispersed clay by erosion of snowpack’s to the 
lowest parts of the coast, increasing the clay 
content close to sea level. The MT-3 does not 
show any clay accumulation by deposition. On 
the other hand, the phosphatization process 
contribute to clay formation in soils and its 
stabilization in granular aggregates (Pereira et 
al. 2013, Rodrigues et al. 2021, Simas et al. 2007), 
and increase with higher terraces. 

The CECpot, PBS and Alsat are good indicators 
to evaluate the pedogenetic evolution of the 
soils in the marine terrace sequence. In the 
studied soils, CEC and Al saturation increases 
and bases saturation decrease with altitude, 
from MT-1 to MT-3 (Table II); this behavior 

Figure 6. 
Photomicrographs 
of microstructures, 
in which appear the 
porosity extraction 
(black) and the 
orientation of the 
grains in the soils 
within the distinct 
levels of marine 
terraces.Py = pirita; 
Pg = plagioclase; Px = 
pyroxene; Ca = calcite; 
Bf = bone fragment; 
Om = organic matter; 
Mm = Micromass; Cm 
= coarse material; 
Agg = aggregate. Each 
semi-circle stands 
for isolines of grain 
amount. MT: marine 
terrace.
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suggests a significant contribution of organic 
matter, generating potential acidity (H+Al), which 
is also consistent with increasing exchangeable 
Al3+ concentrations. High CEC values indicate 
greater weathering processes and nutrient 
release. The weathering processes associated 
to bird activity yield Al enrichment in these 
soils (Łachacz et al. 2018), by increasing acidity. 
Additionally, soils from MT-3 show low FeOX/FeDCB 
relationship in the Bw horizons, indicating a 
greater degree of crystallization of iron oxides, 
and more developed soils (Arduino et al. 1986, 
Wagner et al. 2007). 

Statistical analyses corroborate the 
differences of pedogenetic processes in the 
studied levels. Descriptive statistical data 
for the contents of gravel, coarse and fine 
sand do not allow any separation the studied 
soils. However, silt and clay show significant 
differences, especially for P5 (see Table IV). 
The overall chemical composition of soils was 
significantly different, with average values of P, 
H+Al and CECpot in the upper levels (MT-2 and 
MT3) higher than in the lower ones (CB and MT-
1); these differences are strongly influenced by 
bird activity. Additionally, significant differences 
of OM, Fep and Alp demonstrate the influence 

of organic matter in pedogenesis of these soils 
(Daher et al. 2019), in line with the PCA results.

Mineralogical data corroborate the chemical 
attributes and show the greater development 
of ornithogenic soils from MT-3. The type of 
phosphate mineral allows distinguishing two 
main terrace areas: i) old abandoned terraces 
with negligible present-day bird activity, in 
which leucophosphite predominates (Tatur 
1989), and ii) another zone, with intense active 
nesting sites, in which struvite and vivianite are 
the dominant phases, and birds are present.

Micromorphological and micromorphometric 
results helped to confirm the greater development 
of soils in the upper altitude levels (MT-3). The 
heterogeneity of coarse material composition 
demonstrates its allochthonous nature. All 
pedons are composed of volcanic fragments, 
from both marine origin (ice-rafted material) and 
fragmentation of surrounding volcanic outcrops. 
In all analyzed terraces, the incipient orientation 
of coarse materials is preferentially horizontal 
(Fig. 6), although more than 40 % of the grains are 
oriented to oblique angles (Brewer 1964, Harris & 
Ellis 1980). 

 Grain roundness and porosity allow 
separating MT-2 and MT-3 from MT-1. Soils from 

Figure 7. Boxplot with 
the size of the pores 
of the distinct levels 
of marine terraces. MT: 
marine terrace.
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MT-3 are influenced by higher pedogenetic 
transformations, demonstrated by the porosity, 
micromass and relative distribution of coarse 
and fine materials (Fig. 6). The diversity of 
relative distribution patterns indicates the 
performance of different soil-forming processes 
(Chadwick & Nettleton 1993). Grains from MT-2 
and MT-3 show coating features, which implies 
the redistribution and illuviation of fine 
particles. The latter mainly occur in sandy and 
pebbly soils (Ugolini 1986, Locke 1986) and are 
influenced by freezing-thawing cycles (Schaefer 
et al. 2008, Van Vliet-Lanoe 2010). 

Soil-landscape interplays: the Quaternary soil-
time sequence 
The physical, chemical, mineralogical, macro- and 
microphological soil properties demonstrate the 
existence of a soil chronosequence in HP (sense 
Jenny 1946). This sequence is mainly influenced 
by the conjugation of age of pedogenesis with 
altitudinal variations exposure to periglacial 
processes and bird activity. Advancing age also 
influences the nature of materials associated 
with the phosphatization processes.

Soil chronossequences in marine terraces 
of polar regions are key examples of gradual 
pedogenetic changes within a time-span of few 

thousand years in the Quaternary (Bockheim & 
Ugolini 1990). However, local geomorphological 
features of terraces can influence these soil 
chronosequences (Hugget 1998). The altimetric 
positions of marine terraces not only affect 
the local hydrological conditions, but also the 
erosion and deposition rates of each level (Meij 
et al. 2016, Pereverzev & Litvinova 2012), and the 
formation of ponds depressions and melting 
channels.

In marine terraces of MA, solifluction and 
freeze-thawing processes are frequent (French 
2007, López-Martínez 2012), clearly demonstrated 
by micromorphological analysis, specifically 
the formation of a basic monic and pellicular 
microstructures (Schaefer et al. 2008, Simas et 
al. 2015). These features can be observed in all 
HP marine terrace levels.

The soil drainage is influenced by the distinct 
terrace levels. The formation of margin levees 
between the terraces allows the accumulation of 
snowpack and the formation of flooded areas. In 
SSI, extensive flooded areas favor soil gleization 
processes (Michel et al. 2014, Simas et al. 2008), 
but some parts of HP have good drainage 
conditions that favours the illuviation of fine 
particles downwards. Well-drained soils are 
only observed at the high levels, corroborated 

Figure 8. Boxplot 
of Cox roundness 
indices of the 
grains from distinct 
kinds of soils. MT: 
marine terrace.
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by the abundant vegetation and accumulation 
of organic matter. On the other hand, at lower 
levels, flooded areas and ponds enable the 
development of Bryum spp (Victoria et al. 2009), 
and little soil formation.

All marine terrace levels are influenced 
by bird activity, resulting in classification soils 
as Ornithogenic (Simas et al. 2007; Table I). 
Soils from MT-3 have more intense and old 
ornithogenic influence by present and past 
penguin nesting sites. With age, the same level, 
the vegetation growth is more stable, in close 
association with advanced soil development.

Biological processes associated with 
vegetation and bird activity are essential to the 
pedogenetic processes in the ice-free areas of 
SSI region (Bölter 2011). Both allow mitigating the 
periglacial and eolic erosion effects in surface 
areas and enable the accumulation of organic 
matter due to microbial activity and growth of 
lichens and mosses. Guano resulting from bird 
not only increases nutrient availability (Beyer & 
Bölter 2002), but also influences the chemical 
weathering processes and P-enrichment 
(Cannone et al. 2008, Barczuk & Tatur 2003, 
Bockheim 2015, Michel et al. 2006, Myrcha & 
Tatur 1991, Schaefer et al. 2008, Simas et al. 2007, 
2008, Tatur & Barczuk 1985, Tatur & Myrcha 1984, 
1993, Ugolini 1972). The decomposition of organic 
matter from guano originates acid compounds, 
such as nitric acid (HNO3), which is also 
essential to Al-activity, chemical weathering and 
formation of phosphate minerals and granular 
microstructures. Bird activity also increases the 
organic matter contents, by greater development 
of Sanionia uncinata carpets and Prasiola crispa 
around the present-day nests. The capacity 
of vegetation to establish the upper marine 
terrace level indicates greater geomorphological 
stability, and higher soil development with age. 
In this concern, it is known that the combination 
of ornithogenic activity, high altitude and 

exposure time of terraces increase the chemical 
weathering rates in soils chronosequences 
(Wagner et al. 2007).

Different levels of marine terraces of SSI are 
associated with successive glacial isostatic uplift 
during the Holocene (Araya & Hervé 1972, Pallàs 
et al. 1995, Francelino et al. 2011), which indicate 
younger soils in this lower coastal landscape. 
At lower elevations (< 8 m), soils are classified 
as Gelorthents, whereas in high terraces (12-
28 m), they are Humigelepts, and both showed 
gradual soil development upwards (Wagner et 
al. 2007). Similar results were reported by Haus 
et al. (2016), who investigated Holocene age soils 
(< 4 kyr BP) from eight levels of marine terraces 
from Livingston Island. Finally, the features of 
the studied soils from HP are in agreement with 
the Haus et al. (2016), assuming an approximate 
similar age in both studies.

CONCLUSIONS
1 - In HP, soils from the upper marine terraces 
are more developed than the lower terrace 
levels. This is a consequence of the greater age 
of exposure of the parent materials (marine 
sediments and volcanic rock fragments) to 
pedogenesis, and longer periods of bird activity, 
and higher number of nesting sites. Hence, 
higher terrace soils showed prominent chemical 
weathering, Fe and Al release, formation of Fe-
phosphates and greater vegetation development, 
resulting in higher contents of organic matter 
and well-developed soils. 

2 - Soils closer to coast show high Na and 
exchangeable bases elements concentrations, 
high amounts of primary minerals (e.g. 
plagioclase) and are weakly developed; hence, 
soils classified as Gelorthents are very common 
in these lower terrains. In some cases, these 
soils may contain clay transported from the 
highest terrace levels by erosion.
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3 – The presence of soil chronosequence on 
HP is a consequence of biotic, hydrological and 
geomorphological phenomena, which maximize 
the local pedogenetic processes with increasing 
age. This shows the importance of using marine 
terraces as proxies of landscape evolution in 
Maritime Antarctica. 
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