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Abstract - The aim of this study was to verify changes in absolute power (qEEG), in theta, during the 
catch of a free falling object. The sample consisted of 10 healthy individuals, of both genders, with ages 
between 25 and 40 years. A three-way ANOVA followed by Post-Hoc analysis was applied. The results dem-
onstrated main effects for time and position. In conclusion, a motor task that involves expectation produc-
es deactivation of non-relevant areas in the ipsilateral hemisphere of the active limb. On the other hand, 
the patterns of results showed activation in areas responsible for planning and selection of motor reper-
tories in the contralateral hemisphere.
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Mudanças na potência absoluta no EEG quantitativo durante tarefa de apreensão de um obje-
to em queda livre

Resumo - O objetivo deste estudo foi verificar mudanças na potência absoluta (EEGq), em teta, durante 
a pegada de objeto em queda livre. A amostra consistiu de 20 indivíduos saudáveis, de ambos os gêneros, 
com idade entre 25 e 40 anos. Foi utilizada uma ANOVA three-way seguida de uma análise Post-Hoc. Os 
resultados demonstraram efeito principal para momento e posição. Concluindo, uma tarefa motora que 
envolve expectativa produz desativação de áreas não-relevantes no hemisfério ipsilateral do membro ati-
vo. Por outro lado, o padrão dos resultados mostrou ativação em áreas responsáveis por planejamento e 
seleção de repertórios motores no hemisfério contralateral.
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Motor behavior is the product of a fine integra-
tion between cortical and peripheral components 
associated to afferent information. The central ner-
vous system (CNS) captures, identifies and processes 
sensory stimuli in order to prepare and adjust mo-
tor behavior1. The prefrontal cortex (PFC) is an inte-
gration cortex. It is considered neither a sensory nor 
a motor cortex; it is an association region, provid-
ing integration sensory stimuli to motor centers2,3. 
The PFC is involved in cognition, attention mainte-
nance, planning and organization, including the ca-
pacity to follow certain thought sequences and be-
havior strategy choices4. Plastic alterations might oc-
cur in this area regarding motor reactions (reaction 

time, anticipatory movements and motor learning), 
which might lead to performance and gesture preci-
sion improvement5. 

Quantitative electroencephalography (qEEG) has 
made possible the elucidation of cognitive process-
es and motor learning6, 7. Specific electroencephalo-
graphic variables are particularly related to such pro-
cesses. Absolute power, defined as total energy in-
tensity of an electrode on a certain region at differ-
ent frequency bands8. Therefore, the present study 
examined the theta band (4–7 Hz), due to its rela-
tion with attention processes, particularly, sustained 
attention9. Previous experimental data showed an 
association between theta and cognitive and visual-
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spatial tasks10. Such tasks involve dynamic and com-
plex sensory-motor integration processes11. 

This study aimed at trying to elucidate electro-
physiological and cortical mechanisms involved in an-
ticipatory actions when individuals had to catch a 
free falling object; specifically through qEEG theta 
absolute power changes. 

Method
The sample was composed for 20 healthy individuals of 

both sexes with ages varying between 25 and 40 years, ab-
sence of mental and physical illness (previous anamnesis), 
right handed (Edinburgh), and do not using any psychoac-
tive or psychotropic substance at the time of the study. The 
experiment consisted of a task of catching an object in free 
fall. The balls were discharged by an electromagnetic sys-
tem, composed of two solenoids. The interval between the 

falling balls was 11 seconds, each ball was a trial and each 
block was made of 15 trials. The entire experiment consist-
ed of three blocks, lasting 2 min and 30 sec each, with 1 
min interval between the blocks. The intervals favored the 
recovery of the active limb, avoiding muscular fatigue. The 
qEEG acquisition occurred during 2 seconds before the ball 
fall and 2 seconds after the ball fall12.

Spatial electrode localization and frequency bands 
– Since motivation, planning and execution of voluntary 
movements are mediated by the frontal lobes13,14, the fron-
tal area was investigated in the present study. Electrodes 
investigated were: F7, F3, FZ, F8, F4. The theta band (4–7 
Hz) was also chosen due to its association with attention 
processes particularly sustained attention9, and space-visu-
al tasks10.

Statistical analysis – A Three-Way ANOVA and a Post 
Hoc were used for each electrode combination. The factors 
time (pre and post ball fall) blocks (whole task time) and 
position (the three electrode combinations) a) F3/F4; b) F7/
F8; and c) F3F7/F4F8, were compared (p≤0.05). 

Results
In the first analysis, when the left prefrontal cor-

tex was compared to the right prefrontal cortex (F3/
F4), one main effect for the factors time (p=0.002) 
and position (p=0.002) (Fig 1) was observed. In the 
second analysis, when the left prefrontal cortex was 
compared to the right prefrontal cortex (F7/F8), an-
other main effect was observed for time (p=0.006) 
and position (p=0.000) factors (Fig 2). In the third 
analysis, when the left prefrontal cortex was com-
pared to the right prefrontal cortex (F3F7/F4F8), an 
additional main effect for the time (p=0.002) and po-
sition (p=0.000) factors was observed (Fig 3). No in-
teractions among effects were detected. 

Fig 1. Absolute power means in theta frequency band between 

F3 and F4 positions in prefrontal cortex in pre and post time. 

Fig 2. Absolute power means in theta frequency band between 

F7 and F8 positions in prefrontal cortex in pre and post time. 

Fig 3. Absolute power means in theta frequency band between F3/

F7 and F4/F8 positions in prefrontal cortex in pre and post time. 
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Discussion

The current experiment is an attempt to elucidate 
cortical/electrophysiological mechanisms regarding 
anticipatory actions involved in voluntary move-
ments, specifically, when subjects had to catch a free 
falling object (in this case, a ball). Through qEEG, 
changes in the theta frequency band power were 
examined. No interactions among the factors were 
observed, so discussion will only refer to the main 
effects. 

Time factor – In this experiment, subjects had to 
observe the fall of a certain object with the objec-
tive of catching it. An electromagnetic system, made 
of two solenoids, was positioned ahead of the sub-
jects in order to send information about the pre and 
post fall time to the computer12. Results demonstrat-
ed a theta absolute power increase in the post fall 
period, when compared to the pre fall period. This 
increase suggests a decrease in neural activity and 
consequently a reduced readiness engagement sub-
sequent to the task. Inversely, the period before the 
object fall revealed a diminished power value, which 
seems to reflect an increase in neural activity. This 
might suggest increased expectation, alertness and 
readiness15 when the object was falling. Our data are 
in agreement with previous investigation showing 
reduced theta values in the pre-stimulus period and 
increased theta values in the post stimulus period 
during continuous motor activities10. 

Position factor – Differences in absolute power 
values between the left prefrontal and the right 
prefrontal cortices were observed. According to our 
results, there was a theta absolute power augmenta-
tion when certain regions were isolated, F3/F4, and 
F7/F8; and when electrodes were summed F3F7/F4F8. 
Considering that a theta power increase could be 
interpreted as a deactivation of the involved corti-
cal area, the power augmentation observed in the 
right hemisphere suggests disengagement during 
the task. Traditionally, the right hemisphere is relat-
ed to spatial functions such as memory, learning and 
orientation16-18. A specialization of the right hemi-
sphere in spatial functions might be related to (spa-
tial) attention control of visual representation19,20, or 
a regulation function in conflict situations21, as when 
experiencing a bad interaction between motor and 
proprioceptive interaction and/or visual feedback22.

Hatfield et al.23 observed, through EEGq, an al-
pha power increase in the left hemisphere of elite 
shooters during the preparatory period and even 
after the shot was fired. Besides, this alpha power 

increase was followed by relative power stability in 
right hemisphere. Alpha power has an inverse rela-
tionship with cortical activation. High power values 
means diminished neuronal activity23,24. Investiga-
tions in motor performance area reveal that an al-
pha power increase remains relatively stable or even 
decreases in the right hemisphere during the prepa-
ratory period, suggesting that these regions could 
be highly activated during the preparatory phase of 
complex motor tasks25. Considering the hypothesis 
that theta presents the same behavior as alpha, our 
findings suggest an activation of the responsible ar-
eas for planning and selection of motor patterns in 
the contralateral hemispheres of the active limb. It 
also suggests a deactivation of non relevant areas of 
the ipsilateral hemisphere. 

Thalamic structures (interaction between thalamic 
nuclei and thalamic reticular nucleus) activate specific 
cortical areas at a certain time of the relevant infor-
mation processing and deactivate others not used 
during the task execution26. Such process could be in-
terpreted as an electroencephalographic correlate of 
activated cortical areas involved in the sensory infor-
mation processing and motor behavior production27. 
This might indicate a participation of a broader neu-
ral network in the information processing28.

In conclusion, our findings demonstrate that the 
execution of a motor task involving expectation, 
such as an object fall, produces deactivation of non 
relevant areas in the ipsilateral hemisphere of the 
utilized limb. An activation of responsible areas for 
planning and motor pattern selection was also ob-
served in the contralateral hemisphere of the utilized 
limb. Different population, other than healthy sub-
jects, should also be considered for new experiments, 
for example, patients suffering from Alzheimer’s and 
Parkinson’s disease, in an attempt to observe specific 
variables such as attention, anticipatory movements, 
reaction time and motor planning and execution. 
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