BRAGANTIA

Boletim Científico do Instituto Agronômico do Estado de S. Paulo

Vol. 30

Campinas, dezembro de 1971

N.º 19

BAMBU COMO MATÉRIA-PRIMA PARA PAPEL. III — ESTUDOS SÔBRE O EMPRÊGO DE QUATRO ESPÉCIES DE BAMBUSA, NA PRODUÇÃO DE CELULOSE SULFATO (1)

DIRCEU CIARAMELLO e ANÍSIO AZZINI, engenheiros-agrônomos (2), Seção de Plantas Fibrosas, Instituto Agronômico

SINOPSE

Dando sequência ao estudo do bambu como matéria-prima para as indústrias de celulose e papel, foram determinadas as características tecnológicas de quatro espécies tropicais exóticas, com bom desenvolvimento nas condições ecológicas do Estado de São Paulo.

Em cozimentos efetuados pelo processo sulfato constataram-se diferenças significativas entre as espécies, tanto em rendimento quanto no grau de deslignificação da celulose. Bambusa tulda foi a espécie com maior rendimento de celulose, ao passo que o menor número de permanganato foi obtido com B. stenostachya. Quanto às características físico-mecânicas do papel, esta última espécie foi a que apresentou maior comprimento de auto-ruptura e maior índice de estouro. A celulose obtida de B. nutans foi a mais resistente ao rasgo. Tanto com referência a dimensões de fibras como a rendimento em celulose e às características físico-mecânicas do papel, B. beecheyana mostrou-se sempre inferior às demais.

1 — INTRODUÇÃO

Muitas das espécies vegetais que até há poucos decênios eram consideradas impróprias para a fabricação de papel, constituem hoje valiosa fonte de matéria-prima para essa indústria. O aumento crescente de consumo per capita de papel, verificado nos países mais avançados, aliado ao aumento populacional, incen-

⁽¹⁾ Resultados parciais do projeto em execução no Instituto Agronômico, em convênio com o Banco Nacional de Desenvolvimento Econômico. Recebido para publicação em 31 de julho de 1971.

⁽²⁾ Com bôlsas de suplementação do CNPq.

tivou a pesquisa de novas matérias-primas. O avanço tecnológico tornou possível o emprêgo das espécies folhosas tropicais na produção de papéis de alta qualidade. A medida que novos métodos são desenvolvidos amplia-se a possibilidade de melhor aproveitamento das espécies vegetais, suprindo as necessidades da indústria. Sob o ponto de vista agronômico procura-se aumentar a produtividade, através do melhoramento genético das espécies vegetais e do desenvolvimento de práticas agrícolas mais avançadas.

Pela rapidez de crescimento, tornando possível colheitas a curtos intervalos de tempo, o cultivo do bambu poderá contribuir para o desenvolvimento da indústria, propiciando elevada produção de celulose por unidade de superfície.

Os bambus pertencem à família *Gramineae*, sub-família *Bambusoideae*, com aproximadamente 45 gêneros e mais de 1.000 espécies distribuídas por todo o mundo (3).

Enquanto florestas nativas de bambu são exploradas para a produção de celulose e papel em diversos países do mundo, no Brasil o seu emprêgo para essa finalidade está baseado na exploração de espécies exóticas, cuja introdução remonta a séculos. Na maioria das vêzes a escolha da espécie não leva em conta a sua produtividade agrícola e nem mesmo as características tecnológicas da celulose a ser produzida: usa-se a espécie mais abundante na região em que está instalada a indústria.

O número de espécies de bambu com boas possibilidades de desenvolvimento em nossas condições ecológicas é bastante elevado. A escolha não é muito fácil, uma vez que além das características agronômicas tem-se que levar em conta as tecnológicas. Em trabalho anterior (2), em que três espécies de bambu foram estudadas pelo processo sulfato, constataram-se diferenças, tanto no rendimento de celulose como nas características do papel. Com o presente estudo são determinadas as características de outras espécies de bambu.

2 — MATERIAIS E MÉTODOS

2.1 — ESPÉCIES VEGETAIS

Touceiras com 8 a 10 anos de idade, mantidas em coleção, em área de Latossolo Roxo, na Estação Experimental de Tatuí, Instituto Agronômico, forneceram colmos, com 2 a 3 anos de

idade, para o presente estudo. As espécies estudadas, cujas principais características morfológicas são relacionadas, foram as seguintes:

Bambusa nutans Wallich, originária da Índia, vegeta expontâneamente nas regiões de Assam e Himalaya, em altitude de 1700 m. Forma touceiras densas, com 12 a 15 m de altura. Os colmos, de coloração verde pouco intensa, possuem 4 a 8 cm de diâmetro, internódios de 30 a 40 cm e parede espêssa na parte basal do côlmo. Emite ramos a partir das gemas existentes no têrço superior, alguns bastante desenvolvidos, a ponto de dificultar um pouco a colheita.

Bambusa tulda Roxb, também natural da Índia, vegeta em altitudes de 1200 a 1500 m, nas regiões de Assam, Birmânia, Bengala e outras. Forma touceiras densas, com 15 metros ou mais de altura. Os colmos são verdes, com 5 a 10 cm de diâmetro e internódios longos. No país de origem é bastante empregado em construções, como material de andaime, esteiras e cestaria (1).

Bambusa stenostachya Häckel, espécie natural de Formosa, com bom desenvolvimento em nosso meio. Forma touceiras densas, com até 20 m de altura. Os colmos são verdes, com 8 a 10 cm de diâmetro e 30 a 40 cm de internódios. Apresenta espinhos nos nós e nos ramos: êstes, presentes mesmo na parte dos colmos próxima ao solo. Das quatro espécies em estudo esta foi a única a florescer no Estado de São Paulo, dentro dêsse período.

Bambusa beecheyana Munro, espécie chinesa, forma em nosso meio touceiras com 10 m de altura. Tem-se constatado o aparecimento de colmos mal desenvolvidos, que apresentam diminuição acentuada do diâmetro, logo a partir da base.

Foram colhidos colmos representativos de cada espécie, cujas dimensões médias foram determinadas.

De cada côlmo foram tiradas amostras para a determinação da densidade básica e para a micrometria das fibras, e o restante, utilizado no preparo dos cavacos, para cozimentos.

2.2 — DENSIDADE BÁSICA

Diversos autores têm salientado a importância da determinação da densidade básica da madeira e a influência dessa característica na qualidade do papel. Em estudo anterior (2), os auto-

res constataram diferenças entre espécies de bambu, quanto a essa característica, a qual, para *Bambusa vulgaris* Schrad e *B. vulgaris* var. *vittata* A & C Riv., se mostrou bastante elevada, quando comparada à das principais espécies arbóreas comumente empregadas pela indústria de celulose e papel. Por sua vez, o papel preparado com celulose daquelas espécies apresentou características físico-mecânicas de acôrdo com o esperado, face à densidade específica do bambu e às dimensões das fibras.

No presente estudo foram tomados 15 corpos de prova de cada espécie, representando tôda a extensão dos colmos, sendo cada corpo de prova constituído por um nó e parte do internódio correspondente. Os volumes, em estado de saturação em água, foram determinados com auxílio de uma balança hidrostática. Determinou-se o pêso sêco do material, depois de mantido em estufa a $105 \pm 2^{\circ}\mathrm{C}$ até pêso constante. A densidade básica foi calculada pela relação entre o pêso sêco das amostras e o volume (g/cm³).

2.3 — DIMENSÕES DAS FIBRAS

Amostras representativas das espécies em estudo foram transformadas em estilhas, com dimensões próximas das de palitos de fósforo, e postas para macerar, a 65°C, em solução composta de cinco partes de ácido acético glacial, três partes de água oxigenada a 130 volumes e duas de água destilada. Decorridos três dias, o material encontrava-se perfeitamente amolecido; removido o líquido, as fibras, lavadas, foram mantidas em suspensão em água destilada. Mediram-se ao microscópio 250 fibras de cada espécie: 200 para o comprimento e as demais para a largura, espessura das paredes e o diâmetro do lúmen.

2.4 — COZIMENTOS

Amostras representativas de cada espécie em estudo foram transformadas em cavacos com dimensões próximas às dos empregados pela indústria. Efetuaram-se 5 cozimentos, cada um compreendendo 4 amostras, uma de cada espécie. Cada amostra foi constituída por 500 gramas de cavacos a.s. acondicionados em saquinhos de algodão.

Os cozimentos foram efetuados em autoclave de laboratório, cilíndrica, com 20 litros de volume, aquecida elètricamente e girando a 2 rpm. Adotou-se o processo sulfato, com 14% de álcali

ativo, como Na₂O, em relação ao pêso a.s. dos cavacos, e 25% de sulfetação. Isso correspondeu a 13,55% de NaOH e 4,40% de Na₂S. A relação entre o volume da lixívia e o pêso dos cavacos a.s. foi sempre de 4:1. A temperatura adotada foi de 160 ± 2 °C, durante uma hora.

Os cavacos submetidos a essas condições de cozimento se apresentaram perfeitamente amolecidos, desfazendo-se após passagem por alguns segundos em um desfibrador. Após lavagem da pasta celulósica tomaram-se amostras para determinação do teor de umidade, e com base nêle se efetuaram as amostragens para determinação do número de permanganato e para a refinação e preparo das fôlhas de prova.

2.5 — CARACTERÍSTICAS FÍSICO-MECÂNICAS DO PAPEL

Amostras da pasta celulósica de cada espécie e cozimento foram refinadas em moinho centrífugo Jokkro, com 6% de consistência, em tempos de 30, 45, 60, 75 e 90 minutos. Determinou-se o grau de refinação, segundo Schopper Riegler, e prepararam-se, de cada amostra, 7 fôlhas de prova, com pêso aproximado de 60 g/m², para a determinação das características físico-mecânicas do papel.

Prèviamente à execução dos testes físico-mecânicos, tôdas as fôlhas de prova foram acondicionadas a 21 \pm 2°C e 65 \pm 2% de umidade relativa do ar.

3 — RESULTADOS E DISCUSSÃO

Pelos dados apresentados no quadro 1 verifica-se que as dimensões dos colmos variam conforme a espécie considerada. *Bambusa stenostachya* foi a que apresentou colmos de maiores dimensões, com touceiras bastante vigorosas; apresenta, porém, um sério inconveniente — ocorrência de ramos e espinhos por tôda a extensão dos colmos.

Densidade básica — Os valores obtidos para densidade básica das espécies em estudo, e respectiva análise de variância, estão apresentados no quadro 2.

QUADRO 1. — Dimensões dos colmos de quatro espécies de **Bambusa** (média de quatro repetições), com 2-3 anos de idade, em Latossolo Roxo da Estação Experimental de Tatuí, provenientes de touceiras com 8-10 anos de idade

Espécie	Pêso	Comprimento	Diâmetro D.A.P.	Comprimento do internódio
	kg	m	em	cm
Bambusa nutans	7,75	9,95	5,83	38
B. tulda	11,89	11,90	6,56	49
B. stenostachya	17,50	15,10	8,17	35
B. beecheyana	10,50	8,97	7,80	28

QUADRO 2. — Densidade básica de colmos de quatro espécies de Bambusa, mencionadas no quadro 1

		Densidad	le básica	
Valor	Bambusa nutans	B. tulda	B. stenostachya	B. beecheyana
	g/cm ³	g/cm ³	g/cm ³	g/em^3
Máximo	0,740	0,890	0,770	0,730
Médio	0,615	0,773	0,653	0,670
Mínimo	0,430	0,660	0,550	0,540
Desvio-padrão	0,090	0,058	0,078	0,056
Erro-padrão da média .	0,022	0,015	0,019	0,015
Coef. de variação (%)	14,652	7,545	11,999	8,319

Bambusa tulda, com pêso específico de 0,773, foi o mais denso dos quatro bambus estudados nessa série. B. stenostachya, com 0,653, e B. beecheyana, com 0,670, pouco diferiram entre si, enquanto B. nutans, com densidade de 0,615, estêve bastante próximo das madeiras usadas pela indústria de celulose, quanto a essa característica.

QUADRO 3. — Dimensões das fibras de quatro espécies de Bambusa, mencionadas nos quadros anteriores

T.	2010	Compri-		Espessura das paredes	as paredes	Diâmetro	Coef. de enfeltra-	Coef. de
Especie	Valor	mento	Largura	P1	P2	uo lúmen	mento C/L	dade d/L
		mm	micros	micros	micros	micros		
B, nutans	Maximo Medio Minimo S. S. C. V. %	4,130 2,291 1,370 0,570 0,040 24,850	30,429 16,970 8,807	13,389 7,010 3,508 2,400 0,336 34,230	12,458 7,190 3,795 2,410 0,337 33,510	4,582 2,770 1,504 0,936 0,124 33,790	135	16,323
B, tulda	Maximo Medio Minimo S Sx̄ C.V. %	3,790 2,150 1,180 0,604 0,604 2,042	33,682 17,330 7,733	14,780 7,200 3,222 2,890 0,400 40,090	14,821 7,790 3,079 2,950 0,410 37,800	4,081 2,340 1,432 0,510 0,070 21,800	124	13,502
B. stenostachya	Maximo Médio Minimo S Sx_ C.V. %	3710 2.226 1.060 0.596 0.691 26,780	27,064 15,494 6,658	10,310 6,315 2,291 1,482 0,208 23,452	10,167 6,279 8,007 1,403 0,200 22,373	6,587 2,900 1,360 1,253 0,179 40,450	144	18,717
B, beecheyana	Maximo Médio Minimo S. S. C. V. %	3.500 1.930 1.060 0.576 0.040 29,840	29,284 17,197 7,445 	11,026 6,809 3,078 1,883 0,265 27,697	11,098 6,830 3,007 1,940 0,272 28,403	7,160 3,558 1,360 1,274 0,174 35,804	1211111	20,690
Observ.: s sx C.V. 9	= Desvio-padrão = Erro-padrão da 1 % = Coef. de variação	Desvio-padrão Erro-padrão da média Coef. de variação			C = Comprin L = Largura P = Parede (d = Diâmetr	Comprimento médio da fibra Largura média da fibra Parede das fibras Diâmetro do lúmen	da fibra ra	-

Rendimento em nasta celulósica e número de nermanganato para quatro espécies de Bambusa

Cozimento	Bambusa nutans	nutans	B .	B. tulda	B. stenostachya	stachya	- B. beecheyana	heyana
N.º	Celulose	N.P.	Celulose	N.P.	Celulose	N.P.	Celulose	N.P.
	%		%		%		%	
91	38,72	19,4	42,66	17,5	40,94	15,6	36,18	18,9
92	40,84	19,1	42,31	14,8	39,62	14,0	36,00	18,0
93	38,38	18,2	42,12	13,6	37,82	12,8	34,56	16,3
94	39,68	18,2	42,00	16,0	37,08	14,1	35,52	16,7
95	39,52	19,0	42,64	16,5	36,97	15,0	34,08	17,2
Média	39,43	18,8	42,35	15,7	38,49	14,3	35,27	17,4

Tukey a 5% para rendimento = 1,80 Tukey a 5% para NP = 1,60

Dimensões das fibras — No quadro 3 são apresentados os resultados médios obtidos nas medições de fibras, com a respectiva análise de variância.

O comprimento médio das fibras foi de 1,93 mm para *B. beecheyana*, e variou de 2,15 a 2,30 mm para as demais espécies. Pequenas foram as diferenças para largura, de 0,015 a 0,017 mm. Maiores diferenças foram constatadas na espessura das paredes e no diâmetro do lúmen, o que ocasionou variação no coeficiente de flexibilidade, com limites de 13,5 para *B. tulda* e 20,7 para *B. beecheyana*. De um modo geral, as fibras das quatro espécies podem ser consideradas longas, finas e de paredes espêssas.

Rendimento e número de permanganato da pasta — No quadro 4 são apresentados os rendimentos em celulose e o número de permanganato, para as espécies e os cozimentos.

A análise estatística dos dados de rendimento demonstrou haver efeito altamente significativo de espécies. A diferença mínima significativa para a média das espécies, determinada pelo teste de Tukey, foi de 1,80. Bambusa tulda, com rendimento médio em celulose de 42,35%, mostrou-se superior às demais, enquanto B. beecheyana, com 35,27% de celulose, foi significativamente inferior às outras três espécies. B. nutans e B. stenostachya não diferiram entre si, porém com rendimentos intermediários entre as outras duas espécies citadas, e delas diferiram significativamente.

Tôdas as espécies diferiram entre si quanto ao grau de deslignificação, determinado como número de permanganato. A diferença mínima significativa, determinada pelo teste de Tukey, foi de 1,16. B. stenostachya, com NP = 14,3, apresentou a pasta mais bem deslignificada, ao passo que o número de permanganato mais elevado foi encontrado para B. nutans, com 18,8.

Refinação da pasta — A resposta à refinação, medida em °SR, foi idêntica nas espécies estudadas, conforme pode ser constatado pelos dados apresentados no quadro 5 e pela sua análise de variância.

QUADRO 5. — Resultados da refinação das pastas celulósicas de quatro espécies de **Bambusa**, em moinho centrífugo **Jokkro**, expressos em °SR (média de cinco cozimentos)

	T					
Espécie	30	45	60	75	90	Média
	∘SR	°SR	∘SR	∘sr	∘SR	∘SR
Bambusa nutans	22,0	33,2	52,4	65,2	74,4	49,
B. tulda	22,6	37,4	54,0	66,6	74,4	51,0
B. stenostachya	22,2	35,4	51,6	65,0	74,4	49,
B. beecheyana	22,4	36,6	54,0	66,4	74,0	50,

c v. % = 9.6

Scheffé a 5% para espécies = 1,70

QUADRO 6. — Resistência à tração, expressa pelo comprimento de autoruptura, em metros, de celulose sulfato de quatro espécies de Bambusa (média de cinco cozimentos), de acôrdo com cinco intervalos de refinação

	Т	empo de	refinação	(minutos)		
Espécie	30	45	60	75	90	Média
Bambusa nutans	5561	5966	6928	7005	7910	6674
B. tulda	5160	5799	6593	7006	7570	6426
B. stenostachya	5598	6193	6996	7793	7876	6877
B. beecheyana	4805	5335	6358	6709	7371	6116

C.V.% = 7.4

Scheffé a 5% para espécies = 311

Comprimento de auto-ruptura — A celulose sulfato das quatro espécies de bambu estudadas apresentou resistência à tração, medida em comprimento de auto-ruptura, pouco elevada, conforme se constata pelos dados apresentados no quadro 6. Tanto o

BAMBU PARA PAPEL. III.

tempo de refinação como as espécies exerceram influência na resistência do papel à tração. *Bambusa beecheyana* mostrou-se inferior às demais, enquanto *B. tulda* foi superada apenas por *E. stenostachya*, que apresentou maior comprimento de auto-ruptura.

Indice de rasgo — A resistência ao rasgo é uma das principais características do papel feito com pasta celulósica de bambu. Embora valores elevados de resistência tenham sido a regra, a análise estatística dos dados revelou existirem diferenças altamente significativas entre espécies. A diferença mínima significativa, entre espécies, determinada para a média de cinco cozimentos e cinco tempos de refinação, foi de 37,17. Assim sendo, *Bambusa nutans* foi superior a *B. tulda* e a *B. beecheyana*, esta última espécie inferior também a *B. stenostachya*. No quadro 7 são apresentadas as resistências ao rasgo, das pastas das espécies de bambu estudadas, em função do grau de refinação.

QUADRO 7. — Índice de rasgo da celulose sulfato de quatro espécies de **Bambusa** (média de cinco cozimentos), de acôrdo com cinco tempos de refinação

Espécie	30 .	45	60	75	90	Média.
Bambusa nutans	318	384	254	216	195	254
B. tulda	271	234	203	184	159	210
B. stenostachya	321	. 260	226	199	171	235
B. beecheyana	237	210	194	175	162	196

C.V. % = 11,96

Scheffé a 5% para espécies = 57.17

îndice de arrebentamento — Constatou-se haver efeito da refinação e das espécies na resistência do papel ao arrebentamento, conforme dados apresentados no quadro 8, com a respectiva análise de variância. Determinou-se, pelo teste de Scheffé, diferença mínima significativa de 4,0, entre espécies. *B. beecheya-va* mostrou-se inferior às demais, e *B. tulda* inferior apenas a *B. stenostachya*.

QUADRO 8. — fndice de arrebentamento da celulose sulfato de quatro espécies de Bambusa (média de cínco cozimentos), de acôrdo com cinco tempos de refinação

	Г	'empo de	refinação	(minutos)		
Espécie	30	45	60	75	90	Média.
Bambusa nutans	41,7	46,8	58,4	62,0	70,3	56,1
B. tulda	39,4	49,1	53,7	59,3	64,4	53,2
B. stenostachya	41,4	53,8	62,2	67,8	73,3	59,6
B. beecheyana	34,6	42,3	51,2	54,8	58,7	48,3

C.V.% = 13,57Scheffé a 5% para espécies = 4,0

Resistência ao dobramento — A resistência do papel ao dobramento, expressa pelo número de dobras duplas, aumentou com a refinação, conforme se constata pelos dados apresentados no quadro 9 e pela sua análise de variância. Houve também efeito de espécies, tendo-se determinado, pela análise estatística dos dados, que apenas B. beecheyana foi inferior às demais espécies estudadas, as quais não diferiram entre si.

QUADRO 9. — Resistênia ao dobramento, expressa pelo número de dobras duplas da celulose sulfato de quatro espécies de **Bambusa** (média de cinco cozimentos), de acôrdo com cinco intervalos de refinação

	T					
Espécie	30	45	60	75	90	Média.
Bambusa nutans	508	1028	1832	1932	2872	1638
B. tulda	519	1088	1978	2278	2449	1662
B. stenostachya	514	1204	2065	2488	3490	1952
B. beecheyana	213	474	907	1402	1988	997

C.V. % = 25,4Scheffé a 5% para espécies = 495

BAMBU PARA PAPEL. III.

QUADRO 10. — Pêso específico aparente do papel produzido com celulose sulfato de quatro espécies de **Bambusa** (média de cinco cozimentos), de acôrdo com cinco tempos de refinação

	т					
Espécie	30	45	60	75	90	M édia
Bambusa nutans	0,475	0,496	0,525	0,555	0,588	0,528
B. tulda	0,493	0,518	0,546	0,578	0,620	0,552
B. stenostachya	0,484	0,508	0,545	0,571	0,606	0,543
B. beecheyana	0,480	0,499	0,531	0,550	0,587	0,529

C V. % = 3,48

Scheffé a 5% para espécies = 0,0088

Pêso específico aparente — Tanto a espécie botânica como o grau de refinação exerceram influência sôbre o pêso específico aparente do papel obtido com pasta celulósica de bambu. Além de aumentar com a refinação, o pêso específico aparente do papel apresentou diferenças significativas, conforme a espécie considerada. B. nutans e B. beecheyana não diferiram entre si, produzindo papel menos denso que as outras duas espécies. Bambusa tulda diferiu significativamente das demais, produzindo papel mais denso, conforme se pode constatar pelos dados do quadro 10 e pela sua análise de variância.

4 — CONCLUSÕES

Para o estudo em relato foram escolhidas espécies de bambu introduzidas em nosso País há poucos anos e que estão apresentando bom desenvolvimento nas condições ecológicas do Estado de São Paulo. Pela observação de algumas touceiras e determinação das dimensões dos colmos constatou-se melhor desenvolvimento para Bambusa tulda e Bambusa stenostachya. Esses dados são preliminares, fazendo-se necessários estudos agrícolas mais detalhadas para determinar a produtividade das espécies que apresentarem as melhores características tecnológicas.

Constatou-se haver diferenças entre as espécies, tanto no rendimento de celulose sulfato como nas características físico-mecânicas do papel. *Bambusa tulda*, com 42,35% de celulose e número de permanganato de 15,7, em média, foi a espécie que apresentou o maior rendimento de celulose sulfato branqueável.

Bambusa nutans foi superior às demais, em relação à resistência ao rasgo; Bambusa stenostachya mostrou-se superior quanto ao comprimento de auto-ruptura e índice de arrebentamento. Quanto à resistência às dobras duplas apenas Bambusa beecheyana diferiu significativamente das demais, mostrando-se menos resistente.

Bambusa tulda, com maior rendimento de celulose e com características físico-mecânicas intermediárias entre as demais, parece ser a espécie de bambu com maiores possibilidades para a indústria de celulose e papel, das quatro estudadas.

BAMBOO AS A RAW MATERIAL FOR THE PULP AND PAPER INDUSTRY.

III — STUDY OF BAMBUSA NUTANS Wallich, B. TULDA Roxb.,

B. STENOSTACHYA Häckel AND B. BEECHEYANA Munro, IN THE PRODUCTION OF KRAFT PULP

SUMMARY

Culms 2-3 years old of Bambusa nutans, B. tulda, B. stenostachya and B. beecheyana were studied in the production of kraft pulp. All these species proved to grow well in the soil and climate conditions of São Paulo State. Dimensions of the culms, their basic density and the dimension of the fibers are given.

Coockings, in number of 5 for each specie, were made by the sulfate process for 60 minutes at 160 \pm 2°C, using 13.55% NaOH and 4.4% Na₂S.

The results showed differences among species, relating to the yield and permanganate number of the pulp. The best yield was 42.35% of umbleached cellulose with 15.7 NP for Bambusa tulda and the worst was 35.27 with 17.24 NP, for Bambusa beecheyana.

Handmade sheets, with 60 g/s.m., were submited to the mechanical tests showing effect of species on the quality of pulp.

LITERATURA CITADA

- CAMUS, E. G. Les bambusées: monographie, biologie, principaux usages. Paris, Paul Lechevalier, 1913. 215p.
- CIARAMELLO, D. & AZZINI, A. Bambu como matéria prima para papel. Estudos sôbre o emprêgo de Bambusa vulgaris Schrad, Bambusa vulgaris Schrad var. vittata A. & C. Riv. e Bambusa oldhami, Munro, na produção de celulose sulfato. O Papel 32(2):33-40, 1971.
- 3. LIN, WEI-CHIH. The bamboos of Thailand. Taipei, Taiwan Forestry Research Institute, 1968. 52p. (Special bulletin 6)