RESISTÊNCIA DE SOJA A INSETOS: VI. COMPORTAMENTO DE GENÓTIPOS EM RELAÇÃO A PERCEVEJOS (1)

CARLOS JORGE ROSSETTO (2. 5), TOSHIO IGUE (3), MANOEL ALBINO COELHO DE MIRANDA (4. 5) e ANDRÉLUIZLOURENÇÃO (2. 5)

RESUMO

O comportamento de trinta e cinco genótipos de soja foi estudado em condições de campo, em Campinas, SP, em relação ao ataque dos percevejos pentatomídeos Euschistus heros (F.), Piezodorus guildinii (Westwood) e Nezara viridula (L.). A infestação natural do campo experimental foi suplementada com a liberação de percevejos adultos. Em 1983/1984, o dano médio sofrido pelos genótipos foi moderado e, em 1984/1985, severo. Três critérios foram utilizados para avaliar a resistência das variedades: a porcentagem de área foliar retida após a maturação das vagens, o índice porcentual de dano de vagem e a produção de grãos. A testemunha suscetível usada foi o cultivar Paraná, que produziu apenas 402kg/ha e 31kg/ha em 1983/1984 e 1984/1985 respectivamente. A linhagem IAC 80/4228 apresentou uma resistência estável, tendo produzido 1.675kg/ha e 1.639kg/ha em 1983/1984 e 1984/1985 respectivamente.

Termos de indexação: soja, Glycine max (L.) Merrill, percevejos, Pentatomidae, resistência de planta, Piezodorus guildinii (Westwood), Nezara viridula (L.), Euschistus heros (F.).

⁽¹⁾ Trabalho apresentado no X Congresso Brasileiro de Entomologia, 26-31 de janeiro de 1986, Rio de Janeiro. Recebido para publicação em 11 de novembro de 1985.

⁽²⁾ Seção de Entomologia Fitotécnica, Instituto Agronômico (IAC), Caixa Postal 28, 13001 Campinas (SP), Brasil.

⁽³⁾ Seção de Técnica Experimental e Cálculo, IAC.

⁽⁴⁾ Seção de Leguminosas, IAC.

⁽⁵⁾ Com bolsa de suplementação do CNPq.

1. INTRODUÇÃO

O controle de insetos através de genótipos resistentes é ideal pelas seguintes razões (ROSSETTO et alii, 1981): (1) É gratuito para o agricultor, representando custo apenas para o Governo ou para os produtores de semente que realizam a pesquisa. Por esta razão, o controle de pragas com variedades resistentes representa uma economia para o agricultor e uma possibilidade de aumento de sua renda líquida. (2) Não é poluente nem acarreta problemas de resíduos tóxicos nos alimentos produzidos. (3) Não apresenta problemas de transferência de tecnologia, indo através da semente melhorada diretamente da pesquisa para o usuário. (4) Beneficia indistintamente todos os agricultores, pequenos ou grandes, pois não é uma medida de controle que requeira investimento de infra-estrutura ou mão-de-obra para ser aplicada por parte do produtor. (5) Atua contra qualquer nível de infestação da praga, não havendo necessidade de aguardar a população atingir o nível de dano econômico para ser utilizado. (6) Não interfere com outras práticas agrícolas, especialmente com a colheita, inexistindo tempo de carência entre sua aplicação e a data da colheita. (7) Em geral é uma tecnologia nacional. (8) O uso de cultivar resistente, por via de regra, é compatível com qualquer outra medida de controle que necessite ser usada na lavoura.

Por essas razões, o cultivar resistente é um componente desejável em todo programa racional e cientificamente elaborado de controle de pragas, atualmente chamado de manejo integrado, controle integrado ou simplesmente manejo.

Foi iniciado, em 1976, no Instituto Agronômico, um programa de pesquisas com participação das Seções de Entomologia Fitotécnica e Leguminosas, com o objetivo de obter cultivares de soja resistentes a insetos, especialmente a percevejos pentatomídeos, que constituem a principal praga da cultura no Estado de São Paulo. Nesse programa de melhoramento, têm sido utilizadas como fontes de resistência linhagens derivadas do cruzamento Hill x Pl 274454, sobretudo as linhagens IAC73-227, IAC73-228 e IAC73-231 (MIRANDA et alii, 1979; PANIZZI et alii, 1981; ROSSETTO et alii, 1984; LOURENÇÃO et alii, 1985).

O objetivo deste trabalho foi avaliar o comportamento em relação a percevejos dos principais cultivares de soja plantados no Estado de São Paulo, assim como de algumas introduções e de linhagens já obtidas pelo referido programa de melhoramento.

2. MATERIAL E MÉTODOS

Foram feitos dois experimentos em condições de campo no Centro Experimental de Campinas, o primeiro plantado em 18 de novembro de 1983 e o segundo, em 22 de novembro de 1984.

Utilizaram-se treze linhagens selecionadas para resistência a percevejos (IAC80/55-1, IAC80/95-0-2, IAC80/596-2, IAC80/612-5-2, IAC80/598-2-4, IAC80/508-3, IAC80/572-2-1, IAC78/2318, IAC78/2286, IAC79/1823, IAC80/4228, IAC80/4213 e IAC73/228), dezesseis cultivares (Paraná, UFV-1, IAC-2, IAC-7, IAC-8, IAC-9, IAC-10, IAC-11, IAC-12, IAC Santa Maria 702, IAC Foscarim-31, Santa Rosa, Cristalina, IAS-5, Bossier e São Carlos) e seis introduções (PI 171451, PI 227687, PI 229358, PI 274453, PI 274454 e D72/9601-1).

Utilizou-se delineamento em blocos completos ao acaso com 35 tratamentos e quatro repetições. A parcela foi constituída de uma linha de 2m de comprimento. Plantaram-se 50 sementes por metro, inoculadas com *Rhizobium japonicum*. No desbaste, deixaram-se vinte plantas por metro. Fez-se adubação no sulco de plantio, utilizando-se uma fórmula granulada com 0–28–15 de NPK e aplicando-se 12,5 gramas por metro linear.

Para evitar acamamento, os tratamentos mais altos foram mantidos eretos mediante armação de tutores de bambu.

Quando os cultivares mais precoces iniciaram a formação de vagens, foram liberados trinta adultos de percevejos pentatomídeos por parcela, ou seja, cinco adultos por metro linear. No segundo experimento, além dessa liberação, foi feita uma segunda, vinte dias depois, usando-se a mesma quantidade de insetos. No primeiro experimento (1983/1984), 75% dos percevejos liberados eram *P. guildinii* coletados em soja no Centro Experimental de Campinas, e 25%, *N. viridula* criados sobre soja. No segundo experimento (1984/1985), 80% dos percevejos liberados eram *E. heros* coletados em Aguaí sobre soja. Em ambos, devido à infestação natural, havia *P. guildinii*, *E. heros* e *N. viridula* no campo experimental: no primeiro, houve predominância de *P. guildinii* e no segundo, de *E. heros*. Não se fez nenhuma pulverização de inseticida ou fungicida nos dois ensaios.

Utilizaram-se três critérios para comparar a resistência dos tratamentos: o índice porcentual de dano de vagens (!PDV); a porcentagem de retenção foliar (PRF) e o peso de grãos comerciais.

IPDV - Após a maturação das vagens, retirou-se uma amostra de cem vagens de cada parcela, da região média das plantas (ROSSETTO et alii, 1984), procurando-se retirar vagens de vinte ou mais plantas da linha central da parcela, para determinar o índice porcentual de dano de vagens (IPDV) através da fórmula:

IPDV = 1/2 (% vagens intermediárias) + % vagens planas.

Em trabalho anterior (ROSSETTO et alii, 1984), o índice de dano de vagens (IDV) foi obtido pela fórmula:

IDV = % vagens intermediárias + 2 (% vagens planas).

O IDV assim definido varia de 0 a 200. Dividindo-o por 2, ele vai variar de 0 a 100. Esse índice, que se denominou índice porcentual de dano de vagens (IPDV = IDV/2), foi utilizado neste trabalho para comparar o dano causado às

vagens pelos percevejos. O IPDV é mais racional, pois equivale a se atribuir peso zero a vagens sadias, peso um a vagens totalmente danificadas e peso meio a vagens intermediárias.

PRF - No mesmo dia da retirada da amostra de vagens, atribuiu-se visualmente a cada parcela uma porcentagem de retenção foliar (PRF).

Peso - Colocaram-se as plantas colhidas dentro de um saco de tela plástica, malhando-as com um bastão de madeira. A seguir, peneiraram-se e escolheram-se os grãos, eliminando-se os tipos 3 e 4, deformados pela ação dos percevejos, e pesaram-se os grãos comerciais, tipo 1 e 2 (ROSSETTO et alii, 1984).

Para fins de análise estatística, o IPDV e a PRF foram transformados em arco seno $\sqrt{\text{(IPDV ou PRF)/100}}$.

3. RESULTADOS E DISCUSSÃO

Os tratamentos estudados, suas origens, altura e ciclo do plantio até a colheita estão no quadro 1. O ciclo em geral foi mais longo devido ao ataque de percevejos. O do cultivar Paraná, por exemplo, quando não infestado por percevejos, é de 120 dias; com infestação, atingiu 158 dias em 1983/1984 e 144 em 1984/1985. O ponto de colheita em soja é evidenciado pela queda das folhas e maturação das vagens. A infestação de percevejos nos tratamentos suscetíveis, como o 'Paraná', provoca retenção foliar, tornando-se difícil determinar o ponto de colheita. Devido à destruição das vagens, a planta floresce novamente e produz novas vagens. Numa mesma planta atacada, encontram-se vagens já maduras e vagens ainda verdes da segunda florada, e isso também dificulta a determinação do ponto de colheita. Por essas razões, o ciclo dos genótipos neste trabalho não serve como referência nem foi analisado estatisticamente.

O quadro 2 – resultados da análise conjunta dos dois anos de experimento – mostra que o efeito de ano deu os maiores valores de F.

No quadro 3, encontra-se a porcentagem de área foliar retida após a maturação das vagens; no quadro 4, o índice percentual de dano de vagens (IPDV) e, no quadro 5, a produção expressa em quilogramas de grãos comerciais por hectare.

Observa-se que o dano dos percevejos foi muito maior no segundo experimento (1984/1985) do que no primeiro. A porcentagem média de retenção foliar foi de 10,6 em 1983/1984 e de 57,5 em 1984/1985. O índice porcentual de dano de vagem (IPDV) foi de 29,4 em 1983/1984 e de 64,6 em 1984/1985. A produção média foi de 2,036kg/ha em 1983/1984 e de 1.010kg/ha em 1984/1985.

QUADRO 1. Origem, ciclo médio do plantio à colheita e altura média do germoplasma de soja. Campinas

Tratamento	Origem	Ciclo		Altura	
		1983/1984	1984/1985	1983/1984	1984/1985
		dias		cm	
IAC 80-55-1	Paraná x IAC 73-228*	141	146	65	64
IAC 80-95-0-2	Paraná x IAC 73-228*	141	146	74	70
IAC 80-596-2	IAC 73-228* x UFV-1	141	162	59	56
IAC 80-612-5-2	IAC 73-228* x UFV-1	158	162	60	61
IAC 80-598-2-4	IAC 73-228* x UFV-1	158	156	60	60
IAC 80-508-3	Paraná x IAC 73-228*	141	144	60	65
IAC 80-572-2-1	IAC 7 x IAC 73-228*	146	154	62	69
IAC 78-2318	D72-9601 x IAC 73-227*	146	151	61	65
IAC 78-2286	D72-9601 x UFV-1	158	166	62	67
Paraná	Hill x (Roanoke x Ogden)	158	144	66	60
UFV-1	Seleção em Viçoja	158	167	70	80
IAC-2	La 41-1219 x Yelnando	158	167	116	122
IAC-7	Seleção em RB 72-1**	158	165	85	94
IAC-8	Bragg x (Hill x PI 240664)	159	165	81	90
IAC-9	Seleção em RB 72-1**	168	167	101	101
IAC-10	Hardee x Hill	158	164	71	76
IAC-11	Paraná x (Davis x IAC 73-1334)***	158	162	97	99
IAC-12	Paraná x IAC 73-231*	158	146	69	70
Santa Rosa	D49-772 x La 41-1219	158	163	79	72
Cristalina	Provavel UFV-1 x Davis	158	166	94	97
IAC Foscarim-31	Seleção em Halle-7	158	146	85	87
IAS-5	Hill x (Roanoke x Ogden)	148	144	55	54
Bossier	Seleção em Lee	154	149	59	61
IAC Santa Maria 702	Seleção em Santa Maria	155	167	117	120
IAC 79-1823	IAC 70-308 x D72-9601	158	168	82	99
IAC 80-4228	IAC 73-231* x Santa Rosa	161	163	101	102
IAC 80-4213	IAC 73-231* x Santa Rosa	158	157	65	69
PI 171451	Japão	141	145	47	31
PI 227687	Okinawa, Japão	140	139	150	145
PI 229358	Tóquio, Japão	141	144	47	26
PI 274454	Okinawa, Japão	186	170	185	170
PI 274453	Okinawa, Japão	186	180	172	167
IAC 73-228	Hill x PI 274454	158	154	66	62
D72-9601-1	D66-8666 x (Bragg x PI 229358)	158	151	51	45
São Carlos	Seleção em Davis	158	154	69	66
Média		155,2	157,1	81,4	81,3

IAC 73-227, IAC 73-228 e IAC 73-231 foram originadas de Hill x PI 274454.

A infestação de percevejos em 1983/1984 foi moderada, enquanto em 1984/1985 foi forte. Isso se refletiu em sintomas de dano maiores e produção menor no segundo ano do experimento. Houve efeito significativo dos genótipos (Quadro 2), confirmando a expectativa de que alguns materiais são mais resistentes a percevejos que outros. O maior valor do teste F para genótipos foi do IPDV (Quadro 2), mostrando que este índice é um critério bom e prático para discriminar variedades resistentes e suscetíveis. A interação genótipo x ano foi significativa (Quadro 2),

^{**} RB significa Romeu Bulk. Este bulk foi composto a partir dos seguintes cruzamentos; E70-46 x Viçoja, E70-46 x Pickett, E70-47 x Viçoja, E70-47 x F65-1376, Hill x E70-47, Davis x E70-48. As linhagens E70-46, E70-47, E70-48 foram selecionadas do cruzamento Hill x PI 240664.

^{***} IAC 73-1334 foi originada de Davis x (Hill x PI 240664).

talvez por ter o nível de infestação sido moderado no primeiro ano e severo no segundo e por ter predominado no primeiro ano a espécie *P. guildinii* e, no segundo, a *E. heros*.

O quadro 6 apresenta um sumário das médias de dois anos da PRF, IPDV e produção, sem análise estatística; todavia, como ocorreu interação significativa com ano, a discriminação estatística das médias foi feita dentro de cada ano.

A infestação severa do segundo ano do experimento permitiu melhor discriminação dos tratamentos, sendo as médias ordenadas com base nele. O cultivar Paraná confirmou sua alta suscetibilidade a percevejos, sendo recomendado para uso como testemunha suscetível. A linhagem IAC73-228, utilizada como fonte de resistência a percevejos, confirmou sua resistência. Duas linhagens obtidas no programa de melhoramento contra percevejos se destacaram: a IAC80-4228, derivada do cruzamento IAC73-231 x Santa Rosa, e a IAC 80-598-2-4, derivada do cruzamento IAC73-228 x UFV-1 (LOURENÇÃO et alii, 1985). A IAC80-4228 mostrou boa estabilidade na produção (Quadro 5): ela apresenta defeito grave de acamamento, não avaliado no presente estudo porque se utilizaram tutores para escorar os genótipos mais altos. A linhagem IAC80-598-2-4 é baixa (Quadro 1) e sensível a fotoperíodo. Por causa desses defeitos, não podem ser recomendadas para cultivo, conquanto apresentem boas características para emprego em programa de melhoramento.

QUADRO 2. Valores do coeficiente de variação da média geral e do teste F obtido da análise conjunta de dois experimentos, realizados em 1983/1984 e 1984/1985, com 35 genótipos de soja infestados por percevejos. Campinas

	Variáveis			
Fatores	Índice porcentual de dano de vagem	Porcentagem de retenção foliar	Produção	
Ano	59,8*	65,5*	39,1*	
Genótipos	10,1*	3,3*	4,9*	
Ano x Genôtipo	4,4*	5,3*	3,2*	
Coeficiente de variação	12,5%	38,1%	29,5%	
Média geral	43,7%	33,0%	1523kg/ha	

^{*} Valores do teste F significativos ao nível de 5%.

QUADRO 3. Porcentagem média de retenção foliar (PRF) em 35 germoplasmas de soja infestados por percevejos (médias de quatro repetições). Campinas

	Retenção foliar*		
Tratamento	1983/1984	1984/1985	
	%	%	
IAC 73-228	0,7h	8 , 7j	
IAC 80-4228	4,2gh	10 , 0j	
IAC 80-598-2-4	0,0h	10,5j	
PI 274453	23,7cd	13,7ij	
IAC 80-508-3	0,0h	20 , 0ij	
IAC 78-2318	0,0h	22 , 0ij	
IAC 80-95-0-2	2,0h	23 ,2 ij	
PI 274454	2,5h	22,5hij	
IAC 80-596-2	0,0h	21,2hij	
IAC 80-55-1	0,0h	30 , 2ghij	
IAC-11	2,7h	27,5ghij	
PI 171451	0,0h	28,7ghij	
PI 227687	0,0h	30 , 0ghij	
IAC 80-612-5-2	0,0h	31 ,2 ghij	
PI 229358	1,2h	46 , 2fghij	
IAC 78-2286	0,0h	53,7efghi	
IAC 80-572-2-1	0,7h	63,7defgh	
IAC-7	1,2h	63,7cdefgl	
IAC 80-4213	0,5h	62,5bcdef	
IAC-2	4,7gh	60,0bcdef	
IAC-79-1823	6,7efgh	70,0abcde	
IAC-10	2,5h	72,5abcdet	
Santa Rosa	1,2h	80.0abcde	
Cristalina	18,0cde	86,2abcde	
UFV-1	3,0gh	87,5abcde	
D72-9601-1	7,2fgh	91,2abcd	
IAC-9	16,2cdef	92,5abcd	
IAC Santa Maria 702	29,5c	92,5abcd	
IAC-12	22,7cde	95,0abc	
IAC-8	0,0h	96,2ab	
São Carlos	15,0defg	100 . 0a	
Bossier	22,2cd	100,0a	
IAS-5	69 , 0b	100,0a	
IAC Foscarim 31	22,5cd	100,0a	
Paraná	91,7a	100 , 0a	
Média	10,6	57,5	
Coeficiente de variação	51,2%	31,3%	

^{*} Médias seguidas pela mesma letra não diferem entre si pelo teste de Duncan a 5%.

QUADRO 4. Índice porcentual de dano de vagem (IPDV) de 35 germoplasmas de soja infestados por percevejos (média de quatro repetições). Campinas

	Índice porcentual de dano de vagem*		
Tratamento	1983/1984	1984/1985	
	%		
PI 274453	11 , 6pq	10,60	
PI 274454	7,3q	16,90	
AC 80-4228	19,9jklmnop	32,8n	
AC 80-598-2-4	16,9klmnop	37,1mn	
PI 227687	12,9nopq	39,3mn	
AC 73-228	17,9klmnop	43,3lmn	
AC 80-612-5-2	19,4jklmnop	50,1klm	
AC 78-2318	14,5mnopq	50,8klm	
AC 80-4213	12,3opq	51,0klm	
AC 80-596-2	16,4lmnop	53 , 0jklm	
Santa Rosa	21,5ijklmno	57 , 1ijkl	
AC-7	22,0ijklmn	58,6hijkl	
AC 80-572-2-1	19,5jklmnop	58,9hijkl	
AC 80-95-0-2	26,3ghijkl	59,6ghijkl	
AC-9	27,0ghijk	60,9ghijkl	
AC-80-55-1	22 , 4ijklmn	62,1ghijk	
(AC 80-508-3	26,3ghijkl	66,0fghijk	
AC-8	29,4fghij	65,9efghii	
Cristalina	26,9ghijk	65,5efghij	
AC-11	34,9efg	65,8efghij	
UFV-1	16,6klmnop	70,4defgh	
AC 78-2286	23,4hijklm	70,1defgh	
AC 79-1823	23,6hijklm	70,0defgh	
AC Santa Maria 702	33,4efgh	74,0defgh	
PI 229358	31,8efghi	76,1defg	
PI 171451	30 , 9efghi	78,3cdef	
AC-10	32,0efghi	81,5cde	
AC-2	30,3fghij	82,4cd	
072-9601-1	51,3cd	81,9cd	
AC-12	56,4bc	88,9bc	
São Carlos	42,1de	93,8ab	
AS-5	64,3b	93,8ab	
Bossier	40,9def	94,8ab	
AC Foscarim 31	55,9bc	97,6ab	
Paraná	92 , 6a	99 , 4a	
Média	29,4	64,6	
Coeficiente de variação	13,5%	11,5%	

^{*} Médias seguidas pela mesma letra não diferem entre si pelo teste de Duncan a 5%.

QUADRO 5. Produção de grãos comerciais* de 35 germoplasmas de soja infestados por percevejos (média de quatro repetições). Campinas

	Produçã	ão**
Tratamento	1983/1984	1984/1985
	kg/ha	kg/ha
PI 274453	3.675ab	2.967a
AC 80-598-2-4	2.003efgh	1.866b
Cristalina	2.804cde	1.691bc
AC-9	3.527abc	1.639bcd
AC 80-4228	1.675fghij	1.639bcd
PI 274454	4.144a	1.535bcde
AC 73-228	1.530ghij	1.419bcdef
AC 80-508-3	1.920fgh	1.286bcdefg
AC 78-2318	1.639fghij	1.285bcdefg
AC-7	2.206defg	1.266bcdefg
AC 80-596-2	1.817fghi	1.256cdefg
AC-11	3.038bcd	1.235cdefg
AC 80-95-0-2	2.322defg	1.224cdefg
AC 80-4213	1.667fghij	1.195cdefg
AC 79-1823	1.984efgh	1.173cdefg
AC-10	2.156efgh	1.152cdefg
PI 227687	2.253defg	1.048defgh
J FV-1	2.519def	1.048defgh
AC 78-2286	1 . 647fghij	954efghi
AC 80-55-1	2.783cde	905fghij
AC 80-612-5-2	1.505ghij	878fghijk
AC 80-572-2-1	2.009efgh	867fghijk
Santa Rosa	2.785cde	816fghijk
AC Santa Maria 702	1.851fghi	799fghijk
AC-8	1.668fghij	798fghijk
072-9601-1	1.521ghij	726ghijk
AC-2	1.741fghi	666ghijkl
São Carlos	2.307defg	438hijklm
AC-12	1.519ghij	404ijklm
AS-5	816jk	334jklm
PI 229358	1.546ghij	322jklm
PI 171451	1.895fghi	280klm
Bossier	1.278hij	128lm
AC Foscarim 31	1 . 025ijk	85lm
Paraná	402k	31m
Média	2.036	1.010
Coeficiente de variação	25,3%	36,1%

^{*} São os grãos sem nenhum defeito mais os grãos com sinal de ataque de percevejos, mas sem deformação.

^{**} Médias seguidas pela mesma letra não diferem entre si pelo teste de Duncan a 5%.

QUADRO 6. Altura, produção, índice porcentual de dano de vagens (IPDV) e porcentagem de retenção foliar (PRF) de 35 genótipos de soja infestados por percevejos (médias de dois anos, quatro repetições cada ano). Campinas, 1983/1984 e 1984/1985

Tratamento	Altura	Produção	IPDV	PRF
	cm	kg/ha	%	%
PI 274453	169,5	3.321	11,1	18,7
PI 274454	177,5	2.839	12,1	12,5
IAC-9	101,0	2,583	43,9	54,3
Cristalina	95, 5	2,247	46,2	52,1
IAC-11	98,0	2.136	50,3	15,1
IAC 80-598-2-4	60,0	1.934	27,0	5,2
IAC 80-55-1	64,5	1.844	42,2	15,1
UFV-1	75, 0	1.783	43,5	45,2
IAC 80-95-0-2	72,0	1.773	42,9	12,6
IAC-7	89,5	1.736	40,3	32,4
Santa Rosa	75,5	1.700	39,3	40,6
IAC 80-4228	101,5	1.657	26,3	7,1
IAC-10	73 , 5	1.654	56,7	37,5
PI 227687	147,5	1.650	26,1	15,0
IAC 80-508-3	62,5	1.603	46,1	10,0
IAC 79-1823	85,5	1.578	46,8	38,3
IAC 80-596-2	<i>5</i> 7 , 5	1.536	34,7	10,6
IAC 73-228	64, 0	1.474	30,6	4,7
IAC 78-2318	63,0	1.462	32, 6	11,0
IAC 80-572-2-1	65,5	1.438	39,2	32,2
IAC 80-4213	67, 0	1.431	31,6	31,5
São Carlos	67,5	1.372	67 , 9	57,5
IAC Santa Maria 702	118,5	1.325	53,7	61,0
IAC 78-2286	64, 5	1.300	46,7	26,8
IAC-8	85,5	1.233	47 , 6	48,1
IAC-2	119,0	1.203	56,3	32,3
IAC 80-612-5-2	60,5	1.191	34,7	15,6
D72-9601-1	48,0	1.123	66,6	49,2
PI 171451	39,0	1.087	54, 6	14,3
IAC-12	69,5	961	72 , 6	58,8
PI 229358	36,5	934	53,9	23,7
Bossier	60,0	703	67,8	61,1
IAS-5	54,5	575	79,0	84,5
IAC Foscarim 31	86,0	555	76,7	61,2
Paraná	63,0	216	96,0	95,8

A introdução PI 274453 é muito tardia (Quadro 1), e embora se tenha destacado pela produção e pouco dano sofrido, seu uso como fonte de resistência é duvidoso com base nesses resultados, porque foi a última a frutificar, e o baixo dano pode ser devido à evasão hospedeira.

Os coeficientes de correlação simples (r) entre a produção, índice porcentual de dano de vagem (IPDV) e porcentagem de retenção foliar (PRF) calculados acham-se no quadro 7. O dano provocado às vagens, estimado pelo IPDV, e a retenção foliar, pela PRF, são efeitos do ataque dos percevejos e estão correlacionados entre si. O dano causado às vagens reduz a produção. As equações de regressão linear entre essas variáveis foram as seguintes, respectivamente em 1983/84 e 1984/85:

Produção (kg/ha) = 2822 - 26,7 IPDV Produção (kg/ha) = 2485 - 22,9 IPDV.

A retenção foliar também está relacionada com menor produção, embora esta relação seja menor que a anterior, entre o IPDV e a produção. As equações obtidas através de regressão linear entre a produção e a porcentagem de retenção foliar em 1983/1984 e 1984/1985 foram respectivamente:

Produção (kg/ha) = 2192 - 15,4 PRF Produção (kg/ha) = 1592 - 10,1 PRF.

QUADRO 7. Valores do coeficiente de correlação r, entre três variáveis, produção, porcentagem de retenção foliar (PRF) e índice porcentual de dano de vagens (IPDV), obtidos com 35 germoplasmas de soja infestados de percevejos. Campinas, 1983/1984 e 1984/1985

**	Valores de r	de r
Variáveis	1983/84	1984/85
IPDV x PRF	0,81*	0,74*
Produção x IPDV	-0,60*	-0,84*
Produção x PRF	-0,39*	-0,57*

^{*} Valores significativos ao nível de 5% pelo teste t.

SUMMARY

RESISTANCE OF SOYBEAN TO INSECTS. VI. PERFORMANCE OF VARIETIES IN RELATION TO STINK BUGS

The performance of 35 soybean germplasms including 16 cultivars, 6 plant introductions and 13 lines derived from the soybean improve-

ment program against stink bugs, was evaluated for two consecutive years, 1983/1984 and 1984/1985, in relation to the stink bugs (Hemiptera, Pentatomidae) species Piezodorus guildinii (Westwood), Euschistus heros (F.) and Nezara viridula (L.). The two experiments were conducted under field conditions at the Experimental Center of Instituto Agronômico located in Campinas, State of São Paulo, Brazil. A complete randomized block design with 35 treatments and 4 replications was used. The individual plot was a single row 2 meters long. Artificial infestations with adults were made to supplement the natural field infestation of stink bugs. The infestation level was moderate in the first year and severe in the second. Three criteria were used to judge the resistance to stink bugs: the percentual index of pod damage, the percentage of foliar retention after pod maturation and yield. The percentual index of pod damage is given by the formula 1/2 (% of pods with intermediate damage) + % of pods completely damaged. The percentage of foliar retention was visually estimated upon maturation of the pods. The cultivar Paraná was the most susceptible treatment being recommended for use as a susceptible check for stink bugs. The lines IAC80-4228 and IAC80-598-2-4, obtained through the soybean breeding program for resistance to stink bugs, had good performance. They still present however some undesirable agronomic features and cannot be recommended for distribution to the farmers.

Index terms: soybean, Glycine max (L.) Merrill, stink bugs, Pentatomidae, plant resistance, Piezodorus guildinii (Westwood), Nezara viridula (L.), Euschistus heros (F.).

AGRADECIMENTOS

Agradecimentos são devidos a Maria Oliveira de Barros, Archangelo Marion, Maria Inês Fonseca Jorge, João Luiz da Silva e Aldo Fernandes, funcionários da Seção de Entomologia Fitotécnica, pelo auxílio na realização deste trabalho, e à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pelo auxílio concedido.

REFERÊNCIAS BIBLIOGRÁFICAS

- LOURENÇÃO, A.L.; ROSSETTO, C.J. & MIRANDA, M.A.C. de. Resistência de soja a insetos. III. Seleção de linhagens resistentes a percevejos. Bragantia, Campinas, 44(1): 77-86, 1985.
- MIRANDA, M.A.C. de; ROSSETTO, C.J.; ROSSETTO, D.; BRAGA, N.R.; MASCARENHAS, H.A.A.; TEIXEIRA, J.P.F. & MASSARIOL, A. Resistência de soja a *Nezara viridula* e *Piezodorus guildinii* em condições de campo. Bragantia, Campinas, 38:181-188, 1979.
- PANIZZI, M.C.C.; BAYS, I.A.; KIIHL, R.A.S. & PORTO, M.P. Identificação de genótipos fontes de resistência a percevejos-pragas da soja. Pesquisa Agropecuária Brasileira, Brasília. 16(1):33-37, 1981.

- ROSSETTO, C.J.; LOURENÇÃO, A.L.; MIRANDA, M.A.C. de & IGUE, T. Resistência de soja a insetos. II. Teste de livre escolha entre a linhagem IAC 73/228 e o cultivar Paraná, infestados por *Nezara viridula* (L.) em telado. Bragantia, Campinas, 43(1):141-153, 1984.
- ——; NAGAI, V.; IGUE, T.; ROSSETTO, D. & MIRANDA, M.A.C. de. Preferência de alimentação de adultos de *Diabrotica speciosa* (Germar) e *Cerotoma arcuata* (Oliv.) em variedades de soja. Bragantia, Campinas, 40:179-183, 1981.