II. GENÉTICA E MELHORAMENTO DE PLANTAS

NOTA

INDUÇÃO DE MUTANTE PARA MAIOR ALTURA BASAL EM FEIJOEIRO ATRAVÉS DE RAIOS GAMA(1)

AUGUSTO TULMANN NETO (²), AKIHIKO ANDO (²) e JOSÉ CARLOS SABINO (³)

RESUMO

Para a indução de mutantes com maior altura basal (soma das alturas do hipocótilo e epicótilo), sementes de feijoeiro (*Phaseolus vulgaris* L.) cultivar Carioca 80 foram irradiadas com raios gama. Um mutante que apresentou altura basal 1,7 vez maior que o controle foi obtido na geração M2, do tratamento com 24 krad. A mutação foi monogênica devido a um alelo recessivo. Trata-se do primeiro mutante obtido por indução de mutação, para tal característica.

Termos de indexação: feijociro, *Phaseolus vulgaris* L., cultivar Carioca 80, indução de mutação, melhoramento, hipocótilo, epicótilo.

ABSTRACT

INDUCTION OF MUTANT FOR INCREASED BASAL HEIGHT IN THE COMMON BEAN USING GAMMA RAYS

Seeds of the bean cultivar (*Phaseolus vulgaris* L.) Carioca 80 were irradiated with gamma-rays to induce mutants with higher basal height (sum of hypocotyl and epycotyl). A mutant with 1.7 time greater basal height was obtained in the M2 generation from 24 krad treatment. Genetic studies showed that the mutation was a monogenic recessive allele. This is the first report of an induced mutant with this characteristic.

Index terms: common bean, *Phaseolus vulgaris* L., cultivar Carioca 80, induced mutation, breeding, hypocotyl, epicotyl.

⁽¹⁾ Trabalho recebido para publicação em 28 de março e aceito em 24 de agosto de 1994.

⁽²⁾ Seção de Radiogenética do Centro de Energia Nuclear na Agricultura (CENA), USP, Caixa Postal 96, 13400-970, Piracicaba (SP).

⁽³⁾ Estação Experimental de Tietê, Instituto Agronômico de Campinas, Caixa Postal 18, 18530-000, Tietê (SP).

A indução de mutação, através de mutagênicos químicos ou físicos, tem sido aplicada com sucesso no melhoramento do feijoeiro em vários países (Tulmann Neto,1990). Entre os mutantes obtidos, observam-se vários relacionados à arquitetura da planta. O objetivo deste trabalho foi induzir, pelo uso de raios gama, mutantes com maior altura basal (soma do comprimento do hipocótilo e epicótilo), os quais podem ter interesse para melhorar a arquitetura da planta, facilitando a colheita mecânica e permitindo maior altura de inserção de vagens.

Material e Métodos

'Carioca 80' foi usado pela boa produtividade, podendo ser vantajosa para esse cultivar a inclusão de maior altura de porte basal. Sementes com 12% de umidade foram irradiadas no CENA com 20, 24 e 28 krad de raios gama (taxa de dose de 78 kR/hora) utilizando 7.200, 9.600 e 14.400 sementes por tratamento respectivamente. Uma amostra de cem sementes de cada dose foi levada para casa de vegetação com o objetivo de medir a altura das plantas aos 15 dias após a semeadura - um dos critérios usados em trabalhos com indução de mutação visando determinar os efeitos fisiológicos dos tratamentos utilizados (Tulmann Neto, 1990). O restante das sementes foi semeado no campo na Estação Experimental de Tietê, do Instituto Agronômico de Campinas, para a obtenção da geração M1, cuja colheita foi feita pelo sistema massal, retirando-se, em função da área disponível, uma amostra de sementes (4.800 por dose) para a obtenção da geração M2. Esta foi semeada em Tietê, alternando-se, a cada dez linhas, uma linha do controle 'Carioca 80'. Nessas plantas, anotou-se o número de mutantes de clorofila, como usualmente feito em trabalhos com indução de mutação para avaliar a eficiência dos tratamentos (Motto et al., 1975). A seleção foi feita nas plantas M2, observando-se visualmente (sem notas ou medições) a altura basal vinte dias após a semeadura, colhendo-se individualmente as plantas que apresentavam altura basal maior do que o controle. Suas progênies (geração M3) e o cultivar original foram observados em vasos em casa de vegetação, semeando-se duas sementes por vaso e realizando-se, posteriormente, o desbaste para uma

planta em cada um dos dez vasos por material utilizado. Nessas plantas, com o objetivo de caracterizar o mutante obtido, efetuaram-se medidas do comprimento do hipocótilo, do epicótilo, dos pecíolos da folha primária e das folhas do primeiro e do segundo internódio, além do comprimento do primeiro e do segundo internódio.

Resultados e Discussão

O quadro 1 apresenta os resultados das medições da altura das plantas da geração M1, em casa de vegetação. Como esperado, devido aos efeitos fisiológicos dos mutagênicos para a geração M1, ocorreu uma redução na altura com o aumento da dose. Esse efeito, assim como outros que podem ser avaliados (redução na sobrevivência, aumento na esterilidade), não é genético e é restrito à geração M1 proveniente diretamente das sementes tratadas.

Na geração M2, contaram-se os mutantes de clorofila e selecionaram-se plantas com maior altura basal do que o controle. Para o controle, não se observaram mutantes de clorofila, enquanto, para as doses de 20, 24 e 28 krad, foram obtidas as freqüências de 0,10, 0,15 e 0,12% respectivamente, observando-se, portanto, o efeito mutagênico dos tratamentos utilizados em relação ao controle.

Nos três tratamentos, selecionaram-se plantas com altura basal maior do que o controle. Na geração M3, porém, observada em casa de vegetação, apenas em uma planta do tratamento com 24 krad

Quadro 1. Avaliação, quinze dias após a semeadura, da altura das plântulas da geração
M1 provenientes da irradiação de sementes de 'Carioca 80' com raios gama

Tratamento	Altura, cm (1)			
	Hipocótilo	Epicótilo	Basal	
krad				
0	3,2 (100,0)	3,2 (100,0)	6,4 (100,0)	
20	2,6 (81,3)	2,7 (84,4)	5,3 (82,8)	
24	2,7 (84,4)	1,9 (59,4)	4,6 (71,9)	
28	2,5 (78,1)	1,8 (56,3)	4,3 (67,2)	

⁽¹⁾ Valores do controle (0 krad) foram considerados como 100,0 para comparação com os diferentes tratamentos.

(freqüência de 0,021% em relação ao número de plantas da geração M2), confirmou-se tal característica, com todas as plantas da progênie mostrando altura bem superior ao controle, e este mutante foi denominado de ABL-1. Os resultados das medidas efetuadas nas plantas do controle e de ABL-1 encontram-se no quadro 2. Observa-se, portanto, que a mutação proporcionou um aumento de 1,7 vez na altura basal e também no comprimento das outras características analisadas, em relação ao cultivar Carioca 80 original.

Aproveitando as plantas da casa de vegetação, realizou-se o cruzamento entre o mutante ABL-1 e 'Carioca 80', para estudar o controle genético envolvido na mutação ocorrida, classificando-se as plantas da geração F1 e F2 em normais ou mutantes, de acordo com o tipo de altura basal. Todas as plantas da geração F1 foram normais com relação à altura basal, encontrando-se, no quadro 3, os resultados da segregação na geração F2. Concluiu-se, portanto, com base nos resultados de F1 e F2, que a mutação foi devida a um alelo recessivo, responsável pelo aumento da altura basal da planta e do comprimento dos pecíolos e internódios. Alberini & Mohan (1979) selecionaram um mutante espontâneo com altura basal três vezes maior que o normal, sendo tal característica controlada por um único alelo recessivo. Relatam os autores que, além dessa alteração, o mutante apresentou arquitetura distinta do original, com ramificação mais ereta, não mencionando outras alterações no comprimento de internódios e pecíolos. O mutante ABL-1, além das alterações citadas, apresentou uma tonalidade de cor das folhas ligeiramente mais clara que o original, o mesmo tipo de arquitetura e sementes de 'Carioca 80', e diferindo deste pela maior altura de inserção de vagens. Em revisões sobre a indução de mutação em feijão (Micke, 1988; Tulmann Neto, 1990; Maluszynski, 1991), não se encontraram referências a mutante semelhante ao ABL-1. É possível que, no mutante espontâneo selecionado por Alberini & Mohan (1979), o alelo recessivo responsável pela maior altura basal seja o mesmo de ABL-1. Ensaios com o mutante ABL-1 indicarão os possíveis efeitos da mutação em outras características, como produtividade, resistência a doenças, ciclo, teor de proteína etc.

Quadro 2. Medidas de características de 'Carioca 80' e do mutante ABL-1, em casa de vegetação

O	Comprimento, cm		
Característica	'Carioca 80'	ABL-1(1)	
Hipocótilo	5,4	8,4 (155,6)	
Epicótilo	4,9	8,7 (177,6)	
Altura basal	10,3	17,1 (166,0)	
Pecíolo (folhas primárias)	6,1	7,4 (121,3)	
Primeíro internódio	2,7	5,2 (192,6)	
Pecíolo das folhas(2)	8,9	13,2 (148,3)	
Segundo internódio	1,8	3,3 (183,3)	
Pecíolo das folhas(3)	8,7	13,7 (157,5)	

⁽¹⁾ Valores entre parênteses em relação a 'Carioca 80' (100,0).

Quadro 3. Resultados da segregação na geração F2 do cruzamento entre 'Carioca 80' e o mutante ABL-1

Arc d 1 c	Altura basal				
Número de plantas	Normal	Mutante	Total		
Observado	143	44	187		
Esperado (3:1)	140	47	187		
	$X^2 = 0.07$				
	0.7 < P < 0.9				

REFERÊNCIAS BIBLIOGRÁFICAS

ALBERINI, J.L. & MOHAN, T. Caráter altura basal longa: herança e utilidade no melhoramento da arquitetura de planta em feijoeiro. *Pesquisa Agropecuária Brasileira*, Brasilia, **14**(4): 339-341, 1979.

MALUSZYNSKI, M. Mutant varieties-Data Bank FAO/IAEA data base. *Mutation Breeding Newsletter*, Vienna, 34:16-19, 1991.

MICKE, A. Genetic improvement of grain legumes using induced mutations. In: IMPROVEMENT OF GRAIN LEGUME PRODUCTION USING INDUCED MUTATIONS, Pulmann, 1986. *Proceedings*. Vienna, IAEA, 1988. p.1-51.

⁽²⁾ Do primeiro internódio. (3) Do segundo internódio.

MOTTO, M.; SORESSI, G.P. & SALAMINI, F. Mutation frequencies and chimeric formation in *Phaseolus vulgaris* after EMS treatment of dormant seeds. *Radiation Botany*, Oxford, **15**:291-299, 1975.

TULMANN NETO, A. Genetic improvement of beans (*Phaseolus vulgaris* L.) through mutation induction. In: NIZAN, J., ed. Genetic improvement of pulse crops. India, 1990. p.297-327.