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ABSTRACT: Maize is one of the species with greater genetic 

diversity among cereals and possibly the most diverse crop species 

known. Accessing this variability is essential for maize breeding, 

allowing breeders to achieve progress of yield increasing, overcome 

environmental challenges or deal with pests and diseases. Among 

the maize diseases, southern rust is one of the most important, 

causing significant losses in yield and presenting severe epidemics 

worldwide. In the present study, the AFLP technique was applied to 

analyze population structure and genetic diversity among 145 tropical 

maize inbred lines, and to test for preliminary evidence of association 

between AFLP markers and the reaction to southern rust. Disease 

severity was evaluated in two crop seasons and the accessions 

were genotyped through AFLP using four primer combinations. 
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The clusters obtained based on the Jaccard genetic distance and 

Ward’s hierarchical clustering and those achieved by structure 

simulations had high concordance and were capable of establish 

two big clusters, one predominantly of common maize and another 

of popcorn. The association analysis was performed using four 

different statistical models. The more complete model containing both 

population structure and genetic relatedness narrowed the number 

of significant associations, demonstrating its importance to control 

false associations. A total of 19 significant marker associations were 

identified from which three (EactMctg18, EactMctg205, EactMctg169) 

are interesting candidates for further investigations.
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INTRODUCTION

Maize (Zea mays L.) is one of the species with greater 
genetic diversity among cereals. The huge diversity is 
shown by more than 350 races and multiple varieties, 
which carry many distinct characteristics (Vigouroux 
et al. 2008), allowing the worldwide crop growing in 
various environmental conditions (Ranum et al. 2014).

The conservation and identification of the genetic 
diversity remaining within the germplasm pools of crop 
species are crucial for the breeding process. Therefore, 
many efforts have been made over the recent decades in 
order to assess genetic variability of many species, such 
as maize, using morphological and molecular markers 
(Fu 2015). Despite the large genetic diversity of maize, 
the popcorn germplasm has a narrow genetic base 
(Ziegler 2001). This lack of diversity is a serious problem 
in breeding programs and can implicate the capacity of 
yield increasing, overcome environmental challenges or 
even in deal with pests or diseases.

One of the most important diseases that affect maize 
is the Southern rust, a fungal disease caused by Puccinia 
polysora Underw, which is considered the most destructive 
maize rust, historically presenting worldwide yield losses 
(Dudienas et al. 2013; Raid et al. 1988; Rhind et al. 1952). 
The ideal conditions for P. polysora development involve 
temperatures around 23 °C and long leaf wetness (Godoy 
et al. 1999). Thus the disease has been reported mostly 
in tropical and subtropical areas (Abadassi 2014).

The high variability and the great spreading of 
P. polysora are confirmed by the documentation of at 
least ten physiological races. Most of the resistance 
cases to P. polysora are race-specific and controlled by 
genes nominated Rpp (Brewbaker et al. 2011). Although 
the race-specific genes are more practical to work in 
breeding programs and usually confer a significant level 
of resistance, the horizontal resistance commonly is more 
durable and provides protection against greater range of 
races. Therefore, in tropical areas as Brazil, considering 
the high incidence and severity of southern rust, the 
horizontal resistance should be considered as a long-term 
strategy (Casela and Ferreira 2002).

Understanding the relationship between DNA 
polymorphism and variation in phenotypes is important 
for increasing the speed of selective breeding programs. 
Genome wide association studies (GWAS) can be used 

to identify significant association between molecular 
markers across the genome and phenotypic traits in 
panel of unrelated genotypes. This approach has been 
successfully applied to identify QTLs and genomic regions 
related to maize resistance to many important diseases, 
including southern rust (Zhou et al. 2018).

Although high-throughput genotyping technologies 
are becoming increasingly cheaper and can provide a vast 
number of SNPs, according to Zhang et al. (2014) the 
traditional markers, such as AFLP, can still act as easy-
going approaches for many labs. For some studies, such 
as genetic diversity analysis, the resolution requirement 
for distinguishing the individuals can be reached by AFLP, 
and sequencing all genomes would be unnecessary and 
inflate the costs. Thus the AFLP technique has still been 
considerably applied in many investigations as genetic 
diversity access, population structure analysis and also 
association studies (Achleitner et al. 2008; Dadras et 
al. 2014; Ebrahimi et al. 2017; Saeed and Darvishzadeh 
2017; Sharma et al. 2016)

Therefore, the aim of the present study was to analyze 
the population structure and genetic diversity among 
145 tropical maize inbred lines from the germplasm 
collections of Universidade Estadual de Maringá, and 
test for preliminary evidence of association between 
AFLP markers and the maize reaction to southern rust.

MATERIAL AND METHODS
Field experiments

Field experiments were conducted in two crop seasons 
and evaluated in a randomized complete block design 
with two replicates. We tested 145 maize inbred lines 
derived from the germplasm collections of Universidade 
Estadual de Maringá among which 77 were previously 
classified as common maize and 68 as popcorn. The 
experiment performed in the first crop season was sown 
on November 30th 2014, while the second crop season 
experiment was sown on January 19th 2015, both by 
manual sown without any fungicide application. The 
experimental units consisted of two six-meter rows 
with 0.2 m × 0.9 m spacing between plants and rows, 
respectively.

Both experiments were performed at Iguatemi Research 
Station in Maringá, Paraná, Brazil, located at 23°25’ S 
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and 51°57’ W. The region’s climate is classified as Cfa 
following Köppen classification and the soil is categorized 
as Typical Red Dystrophic Argisol. The crop management 
and the fertilization were realized following the technical 
recommendation for maize crop. The climatological data 
of precipitation and average high and low temperatures 
were obtained by the weather station of the Iguatemi 
Research Station.

Regarding the high inoculum pressure of Puccinia 
polysora in the region, there was no necessity of artificial 
inoculation (Figure 1). Anyway, aiming to guarantee 
great inoculum pressure and high dispersion of the 
pathogen, the genotype IAC 112, previously classified 
as susceptible, was cultivated within and in the boarders 
of the experimental area. The southern rust severity 
evaluation was held by the infected leaf tissue area 
according to the referential scale proposed by Fantin5 
(1997). On average, five plants per treatment were scored 
when reached the VT stage.

DNA extraction and AFLP analysis

Around 30 days after emergency, leaves from five 
plants of each accession were collected in bulk and 
immediately frozen in liquid nitrogen until the storage 
at –80 °C. For DNA isolation, 300 mg of leaf tissue were 
powdered into liquid nitrogen and extracted using CTAB 

buffer according to Doyle and Doyle (1987) with minor 
modifications. DNA integrity and concentration was 
confirmed by electrophoresis in a 1% agarose gel and 
using the spectrophotometer NanoDrop 2000/2000c 
(Thermo Scientific, USA).

The AFLP reactions were performed following the 
protocol described by Vos et al. (1995), with some 
modifications. Approximately 700 ng of DNA from 
each accession was doubly digested with EcoRI and 
MseI enzymes (5 U each) in a 20 μL volume system 
for 18 h at 37 °C. The resulting DNA fragments were 
ligated with T4 DNA ligase (1 U) to EcoRI (0.5 μM) and 
MseI (5 μM) adapters in a mix containing 1X T4 DNA 
ligase buffer, NaCl (0.05 M), BSA (50 ng/μL), and DTT 
(0.25 mM) in a final volume of 10 μL. The reaction was 
carried in a thermocycler at 37 °C for 3 h, 17 °C for 30 
min, and 70 °C for 10 min and then diluted (1:4) with 
ultrapure water.

Subsequently, the fragments were amplified using a 
pair of primers with one selective base in a step known 
as pre-amplification. This reaction was performed using 
3.5 μL of GoTaq®Green Master Mix (Promega, USA), 
0.58 μL of the pre-selective primer (4.75 μM), 3.0 μL of 
the restriction/binding dilution and ultrapure water for 
a total volume of 10 μL. The pre-amplification program 
was 2 min at 72 °C, 20 cycles of 1 s at 94 °C, 30 s at 
56 °C, and 2 min at 72 °C, followed by a final stage of 
30 min at 60 °C. The pre-amplified product was diluted 
in ultrapure water (1:4).

Finally, selective amplification was carried out using 
diluted pre-amplified product and four primer pairs with 
three selective nucleotides (E-ACG/M-CAG, E-AGC/M-CAG, 
E-ACT/M-CTG and E-AAG/M-CTG) wherein the primers for 
EcoRI were labeled with fluorophores: NED, PET, VIC and FAM, 
respectively. In this process, a 2.5 μL aliquot of the previous 
dilution was mixed with: 0.54 μL of each selective primer 
(5μM MseI and 1μM EcoRI), 3.5 μLGoTaq® Green Master 
Mix (Promega, USA) and ultrapure water, in a final volume of 
10 μL. For the reactions the thermocycler was programmed 
as follows: one initial cycle of 2 min at 94 °C, 30 s at 64 °C and 
2 min at 72 °C, followed by eight cycles of 1 s at 94 °C, 
30 s at 64 °C (as touchdown with 1 °C lowering for each 
cycle) and 2 min at 72 °C, further 23 cycles of 1 s at 

Figure 1. Pustules of Puccinia polysora on the upper surface of 
a maize leaf infected under natural inoculation.

5Fantin, G. M. (1997). Avaliação de resistência do milho a ferrugem 

causada por Puccinia polysora Underw. (PhD Thesis). Piracicaba: 

Escola Superior de Agricultura “Luiz de Queiroz”.
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94 °C, 30 s at 56 °C and 2 min at 72 °C, and finally the last 
step of 30 min at 60 °C.

The products of selective reactions (0.2 μL of each) 
were subjected to capillary electrophoresis using 
the automated system ABI 3500 xL Genetic Analyzer 
(Applied Biosystems, USA) in a solution containing 0.2 μL 
of size standard 600-LIZ (GeneScan v2.0) and 8.8 μL of 
highly deionized (Hi-Di) formamide. The results of the 
electrophoresis were combined in a binary matrix, scored 
for presence (1) or absence (0) of polymorphic bands, using 
the software GeneMapper® v.4.1 (Applied Biosystems, USA) 

Data analysis

When considered the phenotypic data, since the southern 
rust severity showed heteroscedasticity between classes 
according to Bartlett’s test and non-normality of residuals 
according to Shapiro–Wilk’s test, the data were transformed 
by the expression: y = √x + 0.5.

Analysis of variance (ANOVA) was conducted to determine 
the main effects and interactions using F test (p < 0.05). The 
following mixed model equation was used (Eq. 1):

          Yijk = μ + Gi + R/Ejk + Ej+ GEij + εijk,      	   (1)

where Yijk is the severity measurement for the ith accession, 
in the jth crop season, on the kth block; μ is the general mean; 
Gi is the random effect of the ith accession; Ejis the fixed 
effect of the jth crop season; R/Ejk is the random effect of 
the kth block within the jth crop season; GEij is the random 
effect of the genotype by crop season interaction of the ith 
accession and the jth crop season; and εijk is the residual 
effect. The ANOVA, as well as the estimation of the genetic 
parameters of: broad-sense heritability (H2), genotypic 
variance (σ2

g), genotype by environment variance (σ2
ge), 

environmental variance (σ2
e), intraclass correlation coefficient, 

genotypic coefficient of variation (CVg), environmental 
and genotypic and environmental coefficient of variation 
ratio (CVg/CVe) were computed using GENES software 
(Cruz 2006).

Analyses of the AFLP data were performed using the 
Jaccard genetic distance matrix and Ward’s cluster analysis. 
These analyses were performed using the packages ade4 
on R statistical computing environment (R Development 
Core Team 2008). For the population structure analysis, 
the program STRUCTURE v2.3.4 was used to identify K 

discrete subpopulations based on admixture model with 
correlated allele frequencies. Marker data were coded as 1 
or 0 and individuals were treated as haploids to avoid any 
assumptions about dominance or heterozygotes. Values of 
K ranging from 1 to 11 were tested, with 11 independent 
interactions for each grouping. Each numerical solution 
was optimized setting burn-in of 50,000 repetitions and 
Markov Chain Monte Carlo (MCMC) simulations of 
500,000 iterations. The number of K groups that best fit 
the data set was determined according to the ∆k value by 
Evanno method (Evanno et al. 2005). The membership 
in subpopulations was compared for reliability among 
replications and subsets. A representative solution was 
selected, and the membership of each accession in the K 
subpopulations was designated using a numerical index, 
establishing the Q matrix.

The pairwise relative kinship matrix (K matrix) of the 
association panel was obtained following Hardy (2003) 
by running SPAGeDi v1.4. All negative values between 
two individuals in the output from SPAGeDi were set 
to 0 and the matrix was formatted to a text file readable 
by TASSEL software v.5.2.

The association analysis between AFLP markers and 
maize reaction to P. polysora was performed in TASSEL 
v.5.2 using four different approaches. The first approach 
consisted in using a simple general linear model (GLM), 
known as naïve, which did not account for population 
structure or relative kinship as a potential cause of the 
genotype–phenotype relationship (GLM: G + P). In 
the second framework, GLM was tested taking population 
structure matrix (Q) as a cofactor (GLM: G + P+Q). The 
other two approaches consisted in utilizing mixed linear 
models (MLM) as suggested by Yu et al. (2006). Both have 
included the kinship matrix (K) among all accessions 
as random effect, initially not involving the population 
structure matrix (MLM: G + P + K) and then containing 
the kinship matrix plus the structure matrix (MLM: G 
+ P+Q + K). The markers with minor allele frequency 
(MAF) < 0.05 were not taken into consideration for the 
analyses.

In this study, two thresholds were considered: Bonferroni 
test criterion assuming an alpha of 0.05, typically considered 
very strict; and the Bonferroni-corrected threshold 
(p = 1/n, where n = marker number), considered moderately 
conservative and thus widely adopted in the literature (Liu 
et al. 2016; Wang et al. 2012; Yang et al. 2014).
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RESULTS AND DISCUSSION
Southern rust severity

Maize southern rust severity was scored in the diversity 
panel of 145 inbred lines across two crop seasons, with 
two replications in each environment. Analysis of 
variance identified significant effect (p < 0.05) between 
accessions, crop seasons and for the interaction between 
accessions and crop seasons (Table 1). The P. polysora 
severity in the first crop season was lower than in the 
second (0.96% and 5.11%, respectively). If we consider 
the frequency distribution of the severity performing 
class scores as proposed by Fantin (1997), we can see 
the variability of the association panel for the resistance 
to southern rust. It is possible to note a great difference 
in the frequency distribution in each crop season. In the 
first crop, among the 145 inbred lines evaluated, disease 
incidence was absent in ten lines which received score 1, 
and only eight were scored with notes higher than 5.  
These results showed that in the first crop, despite the 
high incidence of P. polysora, the disease severity was 
not high (Figs. 2a and 2b). In the second crop only lines 
A2560-65H23.3-176 and A2560-62H23.2-167 showed 
no signal or symptom of southern rust, while 86 had 
scores superior to 5 (Fig. 2b).

Taking into consideration the 145 lines, 13 were 
classified as highly resistant (A2560-62H23.2-167, 
A2560-63H23.2-170, W57, A2560-65H23.3-176, CD303-
89H4.2-258, 30F33-69H26.1-188, 30F33-70H23.1-191, 
CML12, AVANT-14H5.5-24, DKB350-78H30.1-219, 
CML19, DAS2C599-95H34.4-276, DKB747-42-104A2560-
62H23.2-167), presenting scores lower than 2 in both 
crop seasons. Of the 13 genotypes, the line A2560-
62H23.2-167 showed no symptom of the disease (score 1) 
in both crops, revealing the potential of the usage of this 
material as source of resistance for breeding program, 
focusing in resistance to P. polysora.

Higher severity of southern rust in the second crop 
was also reported by Kurosawa et al. (2016) in a field 
experiment evaluating 37 popcorn inbred under natural 
inoculation. The climatic conditions more favorable to 
the pathogen development and its previous presence 
in the experimental area may have contributed to this 
occurrence. Precipitation and monthly minimum and 
maximum temperatures in the first crop experiment 
(Dec-Feb) were higher than those of the second crop 

season (Jan-Apr) (data not shown). The high temperatures 
observed in the first crop might be inadequate to the 
P. polysora development, exceeding the 25 °C, described 
as optimum to the pathogen (Godoy et al. 1999; Raid 
et al. 1988). Furthermore, according to Godoy et al. (2003) 
late sowings commonly show higher inoculum presence 
which, associated to ideal weather conditions, can result 
in severe epidemics of southern rust.

The genetic parameters associated with the reaction 
of maize to southern rust were estimated to ascertain 
the genetic variability in the diversity panel and to predict 
genetic gains from selection. We detect the prevalence 
of genotypic variance (σ2

g) in relation to environmental 
variance, showing wide genetic differences between 
the accessions. This vast variability may be result of the 

Table 1. Analysis of variance for the severity of southern rust 
and estimation of the genetic parameters of 145 maize inbred 
lines and two crop seasons.

SV DF Sum of 
square

Mean 
square F Sig

Blocks/Crop season 2 0.283 0.141 

Accession (G) 144 234.28 1.627 5.941 **

Crop season (E) 1 164.147 164.147 17.079 **

G*E 144 118.188 0.820 2.997 **

Residual 288 78.866 0.273

General mean 3.35

First crop season 
mean 0.96

Second crop 
season mean 5.11

CV (%) 33.04

Genotypic variance 
(σ 2 

g) 0.3382

Genotype by 
environment variance 

(σ 2 
ge)

0.1367

Environmental 
variance (σ 2 

e) 0.2738

Broad-sense 
heritability (H2) 83.168

Intraclass correlation 
coefficient 55.263

Genotypic coefficient 
of variation (CVg) 36.726

Environmental 
coefficient of 

variation (CVe)
33.04

Ratio CVg/CVe 1.111        
 
** Significant at 1% probability level
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existence of resistance genes in some genotypes, allowing 
the identification of ones with higher levels of southern 
rust resistance and thus the association studies.

The estimated broad sense heritability (H2) was 83.17%. 
This result corroborates with other authors who observed H2 
values from 72% to 93% (Kurosawa et al. 2016; Wanlayaporn 
et al. 2013) and indicates that the resistance to southern rust 
can be mostly attributed to genetic rather than environmental 
factors. The high heritability value suggests the possibility 
of achieving great genetic gains, enabling the phenotypic 
selection of genotypes resistant to P. polysora.

Considering the genotypic coefficient of variation 
(CVg), we observed a value of 33.8%. For southern rust 
severity, similar values were found by Kurosawa et al. 

(2016), who asserted that this parameter is important 
because it allows the comparison of the genetic variability 
for different traits and helps to more precisely define 
the breeding strategies. For the best interpretation 
of the results, CVg might be analyzed in conjunction with 
CVe by means of the ratio CVg/CVe, to accurately assess 
the condition of the trait for genetic breeding. In this 
study we observed a ratio CVg/CVe of 1.11, indicating the 
presence of wide genetic variability and suggesting good 
genetic gain with selection.

Genetic diversity and population structure

The four primer pairs used for AFLP analysis resulted in 
1008 bands, of which 975 were polymorphic, representing 
97% polymorphism. The combinations E-AGC/M-CAG, 
AAG/M-CTG, E-ACG/M-CAG, E-ACT/M-CTG produced 
321, 214, 232, and 241 bands, respectively, what shows 
the high efficiency of these primers in detecting genetic 
polymorphisms in maize.

The Jaccard similarity coefficient used to calculate the 
genetic distance among the 145 maize accessions ranged 
from 0.51 to 0.84, with a mean distance of 0.74. By Ward’s 
hierarchical clustering analysis, two groups were well defined; 
clusters I and II, composed predominantly of common 
maize and popcorn, respectively. Cluster I consisted of 69 
accessions of which 68 were previously classified as common 
maize (Table 2). Cluster II comprised 76 accessions of 
which 67 were previously defined as popcorn (Table 3). 
Within the Cluster II was observed the formation of two 
sub-clusters (Fig. 3). The first sub-cluster involved 47 
accessions, all described as popcorn, while the second 
consisted of 29 accessions, amongst which 20 of popcorn 
and nine of common maize. This result suggests that the 
inbred lines belonging to the last sub-cluster share genetic 
similarities of common maize and popcorn.

The clustering of the popcorn showed that the 
accessions were not grouped according to their origin. 
As reported by Kantety et al. (1995) a relatively small 
number of popcorn inbred lines were developed from flint 
corn germplasm and selected to popping expansion and 
quality. Thus, the association pattern of the accessions 
was possibly a result of the narrow genetic base of the 
popcorn germplasm (Ziegler 2001).

Based on the simulations performed with the software 
STRUCTURE and the Δk value methodology proposed 

Figure 2. Histogram showing the frequency distribution of 
southern rust severity score across the maize diversity panel 
for (a) the first and (b) the second crop seasons.
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Table 2. Identification, name and origin of 77 common maize accessions from Universidade Estadual de Maringá germplasm collection.

ID Accession Origin ID Accession Origin

L4 AG8080-7H3.1-3 – L80 AVANT-13H5.4-21 –

L5 AVANT-14H5.5-24 – L81 W57 –

L6 POP103 -88.1 AS1572 L83 PREMIUM-28H13.2-67 –

L7 30F33-71H26.2-194 – L84 CML19 CIMMYT

L10 POP101-201-3 GARRA L86 DKB747-45H17.5-115 –

L11 DKB350-78H30.1-219 – L88 FORT-85H6.2-242 –

L12 DKB747-50H17.6-130 – L89 DKB747-29H17.3-95 –

L15 FORT-87H6.4-248 – L90 AG8080-8H3.2-6 –

L20 STRIKE-67H25.1-182 – L92 DKB747-37H17.2-89 –

L22 POP201-195.1 P30R50 L95 CD303-88H4.1-255 –

L23 30F33-69H26.1-188 – L99 30F33-70H23.1-191 –

L28 DKB747-43H17.4-107 – L105 CD303-90H4.3-261 –

L29 CD303-89H4.2-258 – L107 TORK-53H20.2-143 –

L34 AVANT-10H5.1-12 – L108 POP203-56.1 SG6015

L38 DKB350-76H30.1-213 – L109 POP102-166.5 P30B39

L39 AG6018-23H12.1-55 – L110 A2560-62H23.2-167 –

L42 AVANT-12H5.3-18 – L111 POP101-195.2 GARRA

L45 DKB747-38H17.2-92 – L113 FLASH-22H11.1-52 –

L50 POP202-177.1 AS1570 L116 A2560-63H23.2-170 –

L51 FLASH-20H11.1-46 – L119 TORK-55H20.3-149 –

L52 DAS422-80H31.2-227 – L121 FORT-84H6.1-239 –

L56 30-23 P30P70 x Dow8460 L124 DAS2C599-95H34.4-276 –

L57 POP201-198.4 P30R50 L125 CML12 CIMMYT

L58 A2560-66H23.4-179 – L127 A2560-65H23.3-176 –

L62 POP102-90.1 P30B39 L129 SPEED-81H33.1-230 –

L63 29-14 Penta x P30F53 L132 POP102-91.2 P30B39

L64 POP202-88.2 AS1570 L133 30.11 P30P70 x Dow846

L65 30-15 P30P70 x Dow8460 L134 POP101-197.1 GARRA

L67 POP201-192.1 P30R50 L135 29-154 Penta x P30F53

L68 29-92 Penta x P30F53 L136 DAS422-79H31.1-222 –

L69 POP203-51.2 SG6015 L137 A2560-170 –

L70 CML13 CIMMYT L138 A2560-164 –

L71 POP103-80.5 AS1572 L139 DKB747-41-101 –

L72 30-29 P30P70 x Dow8460 L140 DKB747-47-121 –

L73 POP103-81.4 AS1572 L141 DKB747-48-124 –

L74 POP202-76.1 AS1570 L142 DAS422-8-222 –

L75 31-33 Penta L143 DKB747-42-104 –

L77 CML22 CIMMYT L145 53f-p37 –

L79 DKB350-19H9.1-43 -
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by Evanno et al. (2005), all 145 analyzed genotypes could 
be split into two groups (Figs. 4a and 4b). The percentage of 
membership for the K clusters for each individual was obtained 
and utilized to assign the accessions to each group (Fig. 4c). 
A genotype was assigned to a cluster when its percentage of 
membership was higher than 0.7, otherwise it was defined as 

admixed (Bitocchi et al. 2012; Dadras et al. 2014; Silva et al. 
2015). Figure 4 shows that among the 145 accessions, 76 were 
assigned to group I, being the vast majority previously classified 
as common maize (Table 2). The group II was composed by 41 
genotypes, most of them classified as popcorn (Table 3). 
Other 28 genotypes were classified as admixture.

Table 3. Identification, name and origin of 68 popcorn accessions from Universidade Estadual de Maringá germplasm collection.

ID Accession Origin ID Accession Origin

L1 GP1 Zélia L59 P7-4-5 UEM-M2

L2 GP4 CMS43 L60 P9-12-1 IAC112

L3 P9-4-6 IAC112 L61 P9-6-3 IAC112

L8 P7-L7-1 UEM-M2 L66 P9-3-2 IAC112

L9 P16 P1283 L76 P8-2-2-4 Zaeli

L13 P8-1-1 Zaeli L78 P19 -

L14 P20 - L82 P7-2-3 UEM-M2

L16 P1-9 Zélia L85 P1-3 Zélia

L17 P11-1 IAC125 L87 ANGELA-L70 Ângela: Embrapa

L18 P3-3T CMS42 L91 BEIJAFLOR-L54 Beija-Flor: UFV

L19 P8-2 Zaeli L93 BEIJAFLOR-L59 Beija-Flor: UFV

L21 P8-1-5-4 Zaeli L94 GP14 Maradona

L24 P1-12 Zélia L96 VIÇOSA-L77 Viçosa: UFV

L25 GP13 Jade L97 P15 Colombiana

L26 P9-1 IAC112 L98 ANGELA-L71 Ângela: Embrapa

L27 P7-2-4 UEM-M2 L100 UFV-L80 Viçosa: UFV

L30 P9-4-5 IAC112 L101 ANGELA-L66 Ângela: Embrapa

L31 VIÇOSA-L75 Viçosa: UFV L102 P3-1-2 CMS42

L32 P6-1 Catedral L103 P1-8 Zélia

L33 GP15 Colombiana L104 BEIJAFLOR-L52 Beija-Flor: UFV

L35 P8-1-5-9 Zaeli L106 P9-5-3 IAC112

L36 P1-19 Zélia L112 P9-1-3 IAC112

L37 P18 - L114 P9-11-1 IAC112

L40 P4-4 CMS43 L115 BEIJAFLOR-L76 Beija-Flor: UFV

L41 P8-2-2-2 Zaeli L117 P8-1-5-5 Zaeli

L43 P9-7-2 IAC112 L118 P9-8-1 IAC112

L44 P8-2-MULT Zaeli L120 P7-2-1 UEM-M2

L46 P11-2 IAC125 L122 P8-1-5-13 Zaeli

L47 GP10 Ângela L123 GP3 CMS42

L48 P7-4-11 UEM-M2 L126 GP12 IAC125

L49 P9-5-1 IAC112 L128 GP5 UEM-J1

L53 P8-2-2-5 Zaeli L130 P6-11 Catedral

L54 P8-1-5-10 Zaeli L131 P1780 -

L55 P9-1-2 IAC112 L144 P9-1-6 IAC112
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Figure 3. Ward’s hierarchical clustering analysis of 145 maize inbred lines, based on Jaccard distances generated by the polymorphism 
of 975 AFLP markers.
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Figure 4. Population structure of 145 maize inbred lines inferred by STRUCTURE software and 975 AFLP markers data. (a) Formation of 
two groups according to the structure membership; (b) value of Δk and optimal number of K; and (c) membership of each genotype 
for the two groups.
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In this study, the clusters obtained by the Ward’s 
hierarchical clustering analysis and those achieved by 
structure analysis had high concordance to each other 
and were capable of establishing two big clusters, one of 
them predominantly of common maize and another 
of popcorn. Therefore, the apparent structure might be 
used to associate with other methods of clustering and 
showed been fairly consistent. Access the population 
structure has been frequently applied in many genetic 
studies as those which aim: to understand the genetic 
diversity among maize genotypes (Bracco et al. 2016), 
to determine heterotic groups of maize germplasm 
lines (Larièpe et al. 2017) and to control false positive 
associations between marker loci and phenotypic traits 
(Achleitner et al. 2008; Dadras et al. 2014; Kang et al. 
2008; Saeed and Darvishzadeh 2017).

Association Analysis

Significant associations between AFLP markers 
(MAF > 0.05) and maize response to southern rust 
for the four tested models are reported in Table 4. The 
models detected differences in relation to the markers 
associated to the maize response and to the number of 
significant associations. Due to the relatively low sample 
size, which may result in limited statistical power, two 
thresholds were considered: the usual Bonferroni test 
(p < 8.82 × 10–5) and a cutoff value with a moderately 
stringent threshold (p < 1.76 × 10–3).

The independent analysis to each crop season also 
resulted in different associations. In the second crop 
season, the number of markers associated to the accessions 
response to the disease was higher than in the first crop 
(Table 1). A possible explanation for this phenomenon 
is the greater levels of severity verified in the second 
crop, what may be resulted in better representation of 
the genotypes reaction to southern rust.

Regarding all the models used in this study, the highest 
rate of significant markers were found by the model 
GLM: G + P, known as naïve, which did not account for 
population structure or relative kinship, as a potential 
cause of the genotype–phenotype relationship. When 
using this model in the first crop season, we identified two 
AFLP markers (EactMctg187, EaagMctg36), while in the 
second crop this number was much higher, and 15 markers 
were found (EaagMctg4, EagcMcag129, EactMctg18, 

EactMctg186, EaagMctg90, EactMctg207, EagcMcag117, 
EaagMctg162, EaagMctg131, EactMctg81, EaagMctg201, 
EactMctg158, EaagMctg94, EaagMctg148, EaagMctg140) 
(Table 4). Although the naïve model do not consider the 
presence of associations caused by population structure 
and genetic relatedness, it may lead to a considerable 
number of false positives (Yu et al. 2006).

In the model GLM: G + P+Q, the structure coefficient 
membership (Q) was incorporated as a cofactor. This model 
narrowed the number of significant associations when 
compared to the naïve model, showing the importance 
of the population structure control in reducing false 
associations. Using this model, for the first crop season 
the same two markers (EactMctg187, EaagMctg36) were 
identified as occurred with the naïve model. Although, 
for the second crop experiment the number of significant 
associations were cut down to five (EaagMctg117, 
EactMctg205, EactMctg18, EaagMctg4, EactMctg169), 
among which two (EactMctg205, EactMctg169) were 
not observed when applying the naïve model.

When considering the mixed linear model MLM: G + 
P+ K, which did not contemplate the population structure 
information, but contained the information of genetic 
relatedness by means of kinship matrix (K), a stronger 
impact was verified over the number of associations than 
that produced by GLM: G + P+Q. In the model MLM: G + 
P+ K, for the first crop experiment there were no significant 
associations, while for the second crop, three markers were 
found (EactMctg18, EactMctg205, EactMctg169). This result 
shows that when the kinship matrix was incorporated to the 
model, it was capable of reducing the inflation of p-values.

Finally, we tested the model MLM: G + P+Q + K, which 
incorporated both kinship matrix and population structure. 
This model is considered the most complete and usually results 
in better fit with the data (Yu et al. 2006). When applying the 
MLM: G + P+Q + K to the first crop season data, as well as 
observed in the MLM: G + P+ K, no significant association 
was found. For the second crop data, the significant markers 
(EactMctg18, EactMctg205, EactMctg169) were the same 
verified by MLM: G + P+ K.

If we consider all the models applied in this study, the 
number of significant marker associations under the moderately 
stringent threshold was 19, of which two were significant for 
the first crop season and 17 were significant for the second 
crop. The more complete model MLM: G + P+Q + K, which fits 
both population structure and kinship matrix, narrowed the 
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number of significant associations to three, all in the second 
crop data. The results of association analysis demonstrated 
that considering both factors, population structure and genetic 
relatedness, arising from common kinship, is important 
to control false positive associations between markers 
and phenotype. This result is in agreement with other 
association studies using AFLP markers (Achleitner et al. 
2008; Dadras et al. 2014; Ebrahimi et al. 2017; Saeed and 
Darvishzadeh 2017).

Among the 19 significant markers, the majority (13) was 
associated to maize susceptibility to P. polysora. Between 
these associations, the markers EactMctg205 (328 bp) and 
EactMctg169 (293 bp) were highlighted, once they were 
identified by means of the model MLM: G + P+Q + K 
and presented the highest effects of susceptibility, with a 
percentage of phenotypic variance (r2) of 8.4% and 7.8%, 
respectively (Table 4).

Concerning all the markers associated to maize response to 
P. polysora, only six (EactMctg18, EactMctg186, EagcMcag117, 
EaagMctg162, EaagMctg201, EactMctg158) were associated 
to maize resistance. Among these markers, EactMctg18 
(78bp) should be highlighted, once it was associated by the 
most complete model MLM: G + P+Q + K and had r2 of 
8.2% (Table 4).

Although further validation tests are required, the 
results of this study provided at least three (EactMctg18, 
EactMctg205, EactMctg169) interesting candidates for 
further investigations, considering its inclusion in plant 
breeding strategies as marker assisted selection. Regarding 
this application, one of the issues that would need to be 
determined is if the linkage between the markers and QTLs 
is small enough and permits the employment of these 
markers for reliably selection for southern rust resistance.

The main reason for the few (GLM) or the absence 
(MLM) of significant association for the first crop season 
data is attributed to the lower severity of southern rust, 
consequence of the weather conditions that were not 
favorable to the disease aggressiveness. For the second 
crop season, the weather conditions were more beneficial 
to the disease expression resulting in a higher number of 
significant associations.

It is important to emphasize that for the effective use of 
AFLP markers in assisted selection, these markers should 
be converted into sequence characterized amplified region 
(SCAR). SCAR markers, which are detected by single loci, 
are less laborious, can be identified in agarose gel, and are 

Table 4. Portion of phenotypic variance (r2), p-values (p) and size 
of AFLP markers significantly associated with maize reaction to 
southern rust based on four statistical models in two crop seasons.

First crop season

Marker Size p-value r2

GLM: G + P

EactMctg187 346pb 5.71E-05** 0.107

EaagMctg36 104pb 0.00134* 0.071

GLM: G + P+Q

EactMctg187 346pb 5.42E-05** 0.109

EaagMctg36 104pb 0.00143* 0.069

Second crop season

Marker Size p-value r2

GLM: G + P

EaagMctg4 54pb 4.89E-05** 0.109

EagcMcag129 197pb 7.48E-05** 0.104

EactMctg18 78pb 1.40E-04* 0.097

EactMctg186 345pb 2.95E-04* 0.088

EaagMctg90 185pb 4.93E-04* 0.082

EactMctg207 393pb 6.97E-04* 0.078

EagcMcag117 183pb 8.08E-04* 0.076

EaagMctg162 327pb 8.32E-04* 0.075

EaagMctg131 247pb 8.74E-04* 0.075

EactMctg81 154pb 9.86E-04* 0.073

EaagMctg201 412pb 0.0012* 0.071

EactMctg158 261pb 0.00146* 0.069

EaagMctg94 194pb 0.0015* 0.068

EaagMctg148 282pb 0.00169* 0.067

EaagMctg140 273pb 0.00171* 0.067

GLM: G + P+Q

EaagMctg117 227pb 1.24E-04* 0.091

EactMctg205 328pb 2.91E-04* 0.081

EactMctg18 78pb 5.39E-04* 0.074

EaagMctg4 54pb 7.18E-04* 0.071

EactMctg169 293pb 0.00145* 0.063

MLM: G + P+ K

EactMctg18 78pb 6.72E-04* 0.084

EactMctg205 328pb 9.10E-04* 0.081

EactMctg169 293pb 0.00139* 0.074

MLM: G + P+Q + K

EactMctg205 328pb 6.98E-04* 0.084

EactMctg18 78pb 7.66E-04* 0.082

EactMctg169 293pb 9.79E-04* 0.078
 
GLM = General linear model; G = Genotyping data matrix based on AFLP; 
P = Phenotyping data of southern rust severity; Q = Population structure 
inferred by STRUCTURE software; MLM = Mixed linear model; K = Kinship 
matrix estimated according to Hardy (2003). ** p-value significant for 
Bonferroni test; * p-value significant for the moderately conservative test.
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more reproducible, which makes these markers suitable for 
large-scale screening (Wei et al. 2009).

CONCLUSION

Th e AFLP markers are effi  cient to access the genetic 
diversity of maize accessions from the Universidade Estadual 
de Maringá germplasm, allowing the identifi cation of two 
clusters composed of common maize and popcorn. Th e 
mixed linear model, MLM: G + P+Q + K, which fi ts both 
population structure and kinship, narrowed the number of 
signifi cant associations, reducing the chance of obtaining false 
associations. Th ree AFLP markers: EactMctg18, EactMctg169, 
and EactMctg205 are associated with the maize response 
to southern rust and are considered promising for further 
studies, for genetic validation and for carrying out marker-
assisted selection.
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