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ABSTRACT: The selection of an appropriate nonstationary Generalized 

Extreme Value (GEV) distribution is frequently based on methods, such 

as Akaike information criterion (AIC), second-order Akaike information 

criterion (AICc), Bayesian information criterion (BIC) and likelihood ratio 

test (LRT). Since these methods compare all GEV-models considered 

within a selection process, the hypothesis that the number of candidate 

GEV-models considered in such process affects its own outcome 

has been proposed. Thus, this study evaluated the performance of 

these four selection criteria as function of sample sizes, GEV-shape 

parameters and different numbers candidate GEV-models. Synthetic 

series generated from Monte Carlo experiments and annual maximum 

daily rainfall amounts generated by the climate model MIROC5 (2006-

2099; State of São Paulo-Brazil) were subjected to three distinct fitting 

processes, which considered different numbers of increasingly complex 
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GEV-models. The AIC, AICc, BIC and LRT were used to select “the 

most appropriate” model for each series within each fitting process. 

BIC outperformed all other criteria when the synthetic series were 

generated from stationary GEV-models or from GEV-models allowing 

changes only in the location parameter (linear or quadratic). However, 

this latter method performed poorly when the variance of the series 

varied over time. In such cases, AIC and AICc should be preferred over 

BIC and LRT. The performance of all selection criteria varied with the 

different number of GEV-models considered in each fitting processes. 

In general, the higher the number of GEV-models considered within a 

selection process, the worse the performance of the selection criteria. 

In conclusion, the number of GEV-models to be used within a selection 

process should be set with parsimony.
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INTRODUCTION

Changes in frequency and intensity of extreme 
hydrometeorological events have been observed in virtually 
all regions of the world (Alexander et al. 2006; Fischer 
and Knutti 2015; Pereira et al. 2018). Therefore, it is now 
widely accepted that models assessing the probability of 
extreme weather events (e.g. the Generalized Extreme Value 
(GEV) distribution) should account for the presence of 
nonstationarities, such as those associated with interannual 
or interdecadal climate variabilities or with the global 
warming (Parker et al. 2007; Fischer and Knutti 2015). On 
such context, methods estimating the GEV-parameters 
under nonstationary conditions have been developed and 
used in several studies. Based on the principle of maximum 
likelihood, Coles (2001), Kharin and Zwiers (2005), Wang 
et al. (2004), Felici et al. (2007) and Blain (2011) estimated the 
GEV-parameters as linear, log-linear or quadratic functions 
of a given covariate (e.g. time). El Adlouni et al. (2007) and 
Hundecha et al. (2008) also modelled GEV-parameters as 
polynomial functions of time. However, these latter studies 
used a Bayesian approach known as Generalized Maximum 
likelihood (GML) (Martins and Stedinger 2000; El Adlouni 
et al. 2007), which intends to eliminate invalid values of the 
shape parameter of the GEV distribution. Cannon (2010) 
proposed using a conditional density network (CDN) to 
estimate the GEV-parameters. By using neural networks, 
nonstationary GEV models (CDN-GEV) become capable of 
representing a wide range of linear and nonlinear relationships 
among covariates and the GEV-parameters (Cannon 2010).

The natural consequence of the possibility of modelling 
several combinations of GEV-parameters as a function 
of covariates (Coles 2001) is that several GEV-models 
with varying complexity may be proposed to assess the 
probability of extreme events. Therefore, the selection of 
“the most appropriate” model becomes a key step in the use 
of nonstationary GEV-models (Coles 2001; El Adlouni et al. 
2007; Blain 2011; Kharin et al. 2018). This selection process is 
often based on the principle of parsimony, which states that 
the most parsimonious GEV function – capable of explaining 
as much of the variance in the data as possible – should be 
selected (Coles 2001; El Adlouni et al. 2007; Cannon 2010). 
Thus, increasingly complex GEV-models are proposed and 
the one that best balances the trade-off between improving 
the description of the generating process and increasing the 
number of model parameters, which increases uncertainties 

in quantile estimation, is selected (El Adlouni et al. 2007). 
Several statistical techniques can be used to select from among 
different models. Among these, Akaike information criterion 
(AIC), second-order Akaike information criterion (AICc; also 
known as corrected AIC for small sample sizes), Bayesian 
information criterion (BIC) and likelihood ratio test (LRT) 
are widely used (Coles 2001; Cannon 2010; Strupczewski et al. 
2001 a, b; Sugahara et al. 2009; Villarini et al. 2009, 2010; 
Kharin et al. 2018). AIC, AICc and BIC are derived from the 
Information-Theoretic approach (Burnham and Anderson 
2002) and they can be used to select from among any set 
of GEV-models. LRT is a hypothesis test that is carried out 
under a pre-specified significance level (usually 5%) (Coles 
2001) and it can only be applied to sets of nested models 
(Cahill 2003; Kim et al. 2017).

Panagoulia et al. (2014) evaluated the performance of 
AICc and BIC. This latter study used 16 nonstationary GEV-
models, sample sizes equal to 20, 50 and 100 and shape 
parameter equal to -0.1, 0.0 and 0.1. Panagoulia et al. (2014) 
indicated that BIC tends to select the correct model more 
often, probably because it presents a tendency to select more 
parsimonious models than AICc (a feature that had already 
been observed by other studies such as Kadane and Lazar 
(2004)). AICc presented the best performance only when 
sample sizes were set to their smallest value (Panagoulia et al. 
2014). Kim et al. (2017) evaluated the performance of AIC, 
AICc, BIC and LRT for a larger range of sample sizes (from 
30 to 160), shape parameters (from -0.2 to 0.2) and for four 
increasingly complex GEV models, in which the location and 
the scale parameters were allowed to linearly (log-linearly) 
vary over time. In spite of the difference between the Monte 
Carlo experiments performed by Panagoulia et al. (2014) and 
Kim et al. (2017), this latter study also indicated that AIC 
tends to select more complex GEV-models than the other 
criteria. Therefore, when the true model presented (linear) 
non-stationarities in both location and scale parameters, 
AIC outperformed all other selection criteria, including BIC 
(Kim et al. 2017). For other nonstationary cases evaluated in 
this latter study, AIC also outperformed all other selection 
criteria, including AICc, when the sample sizes were set 
to their smallest values. In such nonstationary cases, BIC 
presented the best performance as the sample sizes increased 
(Kim et al. 2017).

In spite of the methodological differences among AIC, 
AICc, BIC and LRT, they are all based on the comparison of 
all GEV-models used in the selection process. This suggests 
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the hypothesis that the number of candidate GEV-models 
used in a particular selection process affects its own outcome. 
In simple terms, one may argue that if a different number of 
nested candidate GEV-models had been considered within 
a particular selection process, the result of such a process 
would have been different. For instance, suppose a common 
case in which the GEV distribution has been used to detect 
trends in a given long-term extreme rainfall or air temperature 
series (Blain 2011). In such case, three increasingly complex 
models were used to describe the relationships between 
a covariate (e.g. time) and the GEV-parameters. The first 
model assumed all GEV-parameters were constant over 
time (the stationary model); the second model estimated the 
location parameter as a linear function of time (the other 
two parameters remained constant; homoscedastic model) 
and the third model estimated, respectively, the location and 
the scale parameters as linear and log-linear functions 
of time. Finally, suppose the stationary model has been 
selected from a process based on AIC criteria. The above-
mentioned hypothesis leads to the following questions: this 
result, which may be regarded as an evidence suggesting 
the presence of no trend in this hydrometeorological series, 
could be different if more complex models had been used 
within the selection process? This result might be different 
if more complex models and different selection criteria (e.g. 
BIC or AICc) were used?

In order to provide information on this hypothesis, 
the goal of this study was to evaluate the performance of 
these four selection criteria (AIC, AICc, BIC and LRT) as 
function of different sample sizes (30 to 100), different GEV-
shape parameters (-0.50 to 0.50) and different numbers 
of increasingly complex GEV-models used within three 
different selection process. Therefore, as further described 
in Methodology and Data Section, synthetic series were 
generated from five increasingly complex GEV nonstationary 
models for each combination of sample size and shape 
parameter. These nonstationary GEV-models are referred 
to as “true models”. Each synthetic series were subjected to 
three different fitting processes. Within the first fitting 
process, each synthetic series was used to fit the parameter 
of three linear GEV-models. The first GEV-model assumed 
all GEV-parameters are constant; the second GEV-model 
estimated the location parameter as a linear function of time 
(the other two parameters remained constant) and the third 
GEV-model estimated, respectively, the location and the 
scale parameters as linear and log-linear functions of time. 

Among these three linear GEV-models, AIC, AICc, BIC and 
LRT were used to select “the most appropriate” model for 
each synthetic series. Within the second fitting process, the 
same synthetic series were used to fit the parameter of seven 
GEV-models. The first three GEV-models were the same as 
those used in the first process. The other four models allowed 
nonlinear changes in location and scale parameters. From 
among these seven models, AIC, AICc, BIC and LRT were 
again used to select “the most appropriate” model for each 
synthetic series. A third fitting process considered the first 
five models of the second fitting process. Among these five 
models, AIC, AICc, BIC and LRT were again used to select 
“the most appropriate” model for each synthetic series.

Finally, as a case of study, these three above-described 
fitting processes were applied to annual maximum values of 
daily rainfall amounts (2006 to 2099 under RCP 8.5) generated 
by a climate model participating in the 5th Coupled Models 
Intercomparison Project Phase 5 (CMIP5; MIROC5) of 
NASA Earth Exchange Global Daily Downscaled Projections 
(NEX-GDDP) database. These datasets are to provide 
a set of global, high resolution, bias-corrected climate 
change projections that can be used to evaluate climate 
change impacts on processes that are sensitive to finer-scale 
climate gradients and the effects of local topography on 
climate conditions (Thrasher et al. 2012). As further described 
in Methodology and Data Section, the results of these different 
fitting processes were compared to each other.

METHODOLOGY AND DATA
Selection criteria

As previously described, AIC, AICc and BIC are calculated 
for all candidate models considered in a fitting process, and 
the model presenting the smallest value may be selected 
(Burnham and Anderson 2002). On the other hand, LRT can 
only be applied to pairs of nested GEV-models presenting 
different number of parameters (Kim et al. 2017). LRT is a 
hypothesis test and it null hypothesis assumes no difference 
between two nested models. Under such hypothesis, LRT 
is distributed according to a chi-square distribution with 
degrees-of-freedom equal to the difference between the 
number of each model parameters. LRT (Eq. 1) was carried 
out at 5% significance level. Therefore, values of LRT greater 
than the 95th quantile of the chi-square distribution led to the 
conclusion that the Mj model is better than the Mi model.
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where log (ML) is the maximized log likelihood function.
AIC, AICc and BIC are calculated by Eqs. 2 to: 

nonstationarities in GEV-parameters have been proposed 
by several previous studies (Coles 2001; El Adlouni et al. 
2007; Cannon 2010). Among these methods, GEV-CDN 
(Cannon 2010) is capable of representing the widest range 
of relationships among GEV-parameters and covariates. This 
method estimates GEV-parameters by means of a conditional 
density network, which is a probabilistic extension of the 
multilayer perceptron neural network (Cannon 2010). GEV-
CDN is also based on the generalized maximum likelihood 
method, so that GEV-shape parameter ranges from -0.5 to 
0.5 according to a Beta distribution (Martins and Stedinger 
2000; El Adlouni et al. 2007). CDN-GEV can replicate GEV 
models evaluated in other studies (Martins and Stedinger 
2000; Coles 2001; El Adlouni et al. 2007). In addition, it can 
also model other forms of nonlinearity such as higher-order 
polynomial relationships (Cannon 2010). Therefore, CDN-
GEV has been used in this study. Further information on 
GEV-CDN can be found in Cannon (2010). The cumulative 
and quantile function [F-1 (1− p; μ,σ,ξ), 0 < p < 1] of the 
nonstationary GEV distribution can be described by Eqs. 
5 and 6:
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where log (ML) is the maximized log likelihood function 
under the proposed model and k is the number of parameters 
in a given model. When the ratio between sample size (n) 
and number of model’s parameters (k) is less than 40, the 
use of AICc instead of AIC has been suggested (Burnham 
and Anderson 2002; Fabozzi et al. 2014).

Bayesian information criterion (BIC) is also based on 
information theory and it is calculated by Eq. 4:

As previously described, the GEV-model presenting the 
lowest BIC value may be regarded as the best candidate model.

Extreme value distribution (GEV)

Extremal Types Theorem, which within the statistic of 
extreme values is analogous to Central Limit Theorem, states 
that the maxima of independent and identically distributed 
data may be described by the Generalized Extreme Value 
(GEV) distribution (Coles 2001; Wilks 2011). GEV is a three-
parameter function in which location (μ), scale (σ) and shape 
(ξ) parameters define, respectively, the position of the function 
in respect to the origin, spread of the distribution and its 
tail behaviour (Delgado el al. 2010). As others parametric 
distributions, GEV-parameters can be estimated from a data 
sample X comprising xi data (i=1 to n; n is the sample size): 
Pr[x≤X]=GEV(xi|μ,σ,ξ). In this latter form, the use of GEV is 
called classical or stationary approach (Coles 2001; El Adlouni 
et al. 2007; Cannon 2010), because it assumes the underlying 
process is stationary. However, as previously described, there 
has been several efforts adapting and improving the use of 
GEV when the assumption of stationarity may no longer be 
valid (Coles 2001; El Adlouni et al. 2007; Kharin et al. 2018). 
Therefore, as previously described, methods allowing for 
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GEV-parameters. As in several previous studies, including 
Fowler et al. (2010), the shape parameter remained constant 
within each trial (λj=0) and it assumed five distinct values 
among the trials (λ0=-0.5, =-0.25, =0.00, =0.25, =0.5). The 
sample sizes varied from 30 to 100 by steps of 10. Five true 
models, similar to those proposed by El Adlouni et al. (2007) 
and Cannon (2010), have been considered in this study:

parameter of three nonstationary GEV models (Fig. 1). The 
first model (Fig. 1a) assumed all GEV-parameters are constant; 
the second model estimated the location parameter as a 
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the same as those used in the first process (Fig. 1a-c). The 
fourth model (Fig.1d) allowed a nonlinear change only 
on the location parameter. Having only one hidden-layer 
node, this 6-parameter function is the simplest nonlinear 
GEV-CDN model. The fifth model (Fig.1e) also has a single 
hidden-layer node but it allows nonlinear changes in both 
location and scale parameters (it is a 7-parameter function). 
As model 4, the sixth model (Fig. 1f) also allowed nonlinear 
change only on the location parameter; however, it has two 
hidden-layer nodes. Finally, the seventh model (Fig. 1g) 
has two hidden-layer nodes, allowing nonlinear changes in 
both location and scale parameters. This latter model is able 
to approximate second-order polynomial function as well 
as other more complicated functions such as a Z-shaped 
continuous curve (Christiansen 2005; Cannon 2010). Models 
six and seven have, respectively, 9 and 11 parameters. The 
third fitting process considered the first five models of the 
second fitting process (Fig. 1 a-e). Because of the sake of 
brevity, the results of this latter fitting process are presented 
in the Supplementary File. Both second and third fitting 
processes were applied to all series generated from all true 
models. At this point, it becomes worth mentioning that 
the true models GEV(2,0,0) and GEV(2,2,0) are nonlinear 
quadratic GEV models. Therefore, fitting processes using 
only linear models, such as the first fitting process, cannot 
select the correct GEV-function for series that have been 
generated from these two (nonlinear) true models. This is 
the reason why the first fitting process could not be applied 
to the synthetic series generated from the above-mentioned 
nonlinear true models. Finally, AIC, AICc, BIC and LRT were 
used to select “the most appropriate” model for each trial 
and Eq. 15 (Rright) was used to evaluate the performance of 
each selection criteria within each fitting process.

Case study

The three fitting processes described in Fitting Processes 
Subsection were applied to annual maximum values of daily 
rainfall (block maxima approach) generated from a climate 
model – the MIROC model – participating in CMIP5 (Taylor 
et al. (2012). More specifically, the GEV models considered in 
these three fitting process have been fitted to four randomly 
chosen grid points (locations) of the State of São Paulo-Brazil: 
location 10 (48.375W and 25.125S; location 100 (48.625W 
and 23.625S; location 361 (48.125W and 21.625S); location 
500 (47.125W and 20.125S) considering the greenhouse 

gas and aerosol forcing scenario RCP 8.5 for the period of 
2006-2099 (van Vuuren et al. 2011). MIROC5 has already 
been used in studies addressing extreme weather conditions 
in the State of São Paulo (Fontolan et al. 2019). As in the 
simulation experiments, AIC, AICc and BIC were used to 
select the most appropriate model for each grid point and 
within each fitting process. Similar to the proposed method 
by Fowler and Kilsby (2003), the outcomes of each fitting 
processes have been compared to temporal change in both 
location and scale parameters of stationary GEV-models. 
The temporal change in both location and scale parameters 
of stationary GEV-models were evaluated from a 31-year 
moving window as suggested by Kharin and Zwiers (2005).

Finally, since the dispersion of any “real” rainfall series can 
change over time, three additional GEV-models [GEV(0,1,0), 
GEV(0,2,0) 1-hidden layer and GEV(0,2,0) 2-hidden layers] 
presenting changes in the scale parameter were considered in 
the fitting processes. More specifically, while the second fitting 
process also considered these three additional models, the third 
fitting process considered only the additional models GEV(0,1,0) 
and GEV(0,2,0) with 1-hidden layer. The first fitting process 
considered only the additional model GEV(0,1,0). As previously 
described, LRT can only be applied to pairs of nested GEV-models 
presenting different number of parameters (Kim et al. 2017). 
Therefore, this latter test could not be evaluated in this case of 
study, since the models GEV(1,0,0) and GEV(0,1,0) or GEV(2,0,0) 
and GEV(0,2,0) present the same number of parameters.

RESULTS AND DISCUSSION
GEV(0,0,0): The Stationary Model

The performance of all selection criterium were clearly affected 
by the different number of candidate models considered in the 
three fitting processes (Fig. 2 and Supplementary File). In other 
words, the results of Fig. 2 are in line with the hypothesis of this 
study. As can be noted, there was a decrease in the performance of 
all selection criteria when a higher number of candidate models 
were considered in the fitting processes (Fig. 2). This latter statement 
is particularly true for those selection processes based on AIC, 
AICc and LRT, since the decrease in the performance of these 
criteria (fitting process 1 vs fitting process 2) can be observed 
for all combinations of sample sizes and shape parameter. The 
poor performance of both AIC and AICc in the second fitting 
process may be caused by their tendency to select more complex 
models than BIC (Panagoulia et al. 2014 and Kim et al. 2017). For 
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Figure 2. Rate (%) in which a particular selection criteria selected a GEV-model matching the true model used to generated the synthetic 
series. Akaike information criterion (AIC), second-order Akaike information criterion (AICc), Bayesian information criterion (BIC) and likelihood 
ratio test (LRT). The true model is the stationary GEV function.

instance, Model 7, which is the most complex model of this study, 
was the most selected by AIC within the second fitting process 
(not shown). AICc and LRT also selected model 7 at high rates 
within the second fitting process.

Among all selection criteria evaluated in this set of Monte 
Carlo simulations (Fig. 2), BIC was the least affected by the 
different numbers of GEV-models considered in the two fitting 
processes. As observed by Panagoulia et al. (2014), BIC was 
outperformed by AICs only when the sample size was set to 
its smallest value (20). Nevertheless, even this latter selection 
criteria presented Rright rates approaching 90% in the second 
fitting process only for large sample sizes (equal to or larger 
than 80). This suggests that the use of complex nonstationary 
models, as those evaluated in the second fitting process, should 
be avoided when the sample size is smaller than 80. In general, 
all selection criteria improved their performance as GEV 
distribution approaches its second particular case known as 

Frechet or Fischer-Tippett type-II distribution (positive values of 
the shape parameter, considering the notation in Eqs. 5 and 6). 
This latter statement is particularly true for the second fitting 
process and it was also observed by Kim et al. (2017).

GEV(1,0,0): Only the location parameter 
linearly vary over time 

As observed in the stationary case, the performance of all 
selection criteria were clearly affected by the different number 
of GEV-candidate models considered in the three fitting 
processes. Again, the higher number of GEV models considered 
in the second and third fitting processes led to a decrease in 
the performance of all selection criteria. As observed in (stationary 
case), AIC, AICc and LRT performed poorly when linear 
and nonlinear models were considered in the fitting process  
(Fig. 3). BIC was again the least affected by the different numbers 
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of GEV-models considered in the three fitting processes. The 
Rright rates of this latter criteria in the three fitting processes 
became equivalents to each other. They also became higher 
than 90% for sample sizes equal to or larger than 80. Finally, 
the Rright rates presented by BIC in the two fitting processes 
(Fig.3) are in agreement with those found by Panagoulia 
et al. (2014) and in disagreement with those found by 
Kim et al. (2017).

GEV(1,1,0): Location and scale parameters 
linearly vary over time

As observed in the two previous sections, the performance 
of all selection criteria was negatively affected by the higher 
number of candidate models considered in the second 
and third fitting process (Fig. 4 and Supplementary File). 
However, when the results of this section – obtained 

from a GEV(1,1,0) model – are compared with those of 
the previous section – obtained from a GEV(1,0,0) –the 
negative effect of the time-varying scale parameter on 
the performance of all selection criteria becomes evident. In 
other words, the results depicted in Fig.4 allow us to indicate 
that increasing the variance of a series over time, decrease 
the ability of AIC, AICc, BIC and LRT to properly select a  
GEV-model.

Different from what was observed in the previous sections, 
AIC and AICc presented respectively the best and the second 
best performance within the first fitting process. This result 
is in line with those results found by Kim et al. (2017). 
Within the second fitting process, AICc outperformed all 
methods, including AIC, which presented the second best 
performance. The results of this section also suggest that 
when the variance of a series changes over time, both AIC 
or AICc tend to outperformance BIC and LRT.
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Figure 3. Rate (%) in which a particular selection criteria selected a GEV-model matching the true model used to generated the synthetic 
series. Akaike information criterion (AIC), second-order Akaike information criterion (AICc), Bayesian information criterion (BIC) and likelihood 
ratio test (LRT). The true model is a nonstationary GEV function that allows the location parameter to vary linearly over time.
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GEV(2,0,0): Location parameter quadratic 
vary over time

This and the next subsections are based on synthetic 
series generated from nonlinear quadratic GEV models. 
Therefore, as previously described, fitting processes using 
only linear models, such as the first fitting process, can never 
select the correct GEV-function (Rright rates will always be 
equal to zero for any selection criteria). This is the reason 
why Fig. 5 depicts the Rright rates for the second and third 
fitting processes. The nonlinear feature of the true model 
[GEV(2,0,0)] negatively affected the performance of all 
selection criteria (Fig. 5). For instance, no criteria except 
BIC presented Rright rates higher than 75%. This negative 
effect becomes evident when the Rright rates of Fig. 5 are 
compared with those of Fig. 3 which were obtained from 

the true model GEV(1,0,0). This statement holds true for 
any combination of shape parameter and sample size. 
BIC was the only criteria presenting Rright rate above 90%. 
However, these relatively high rates were achieved only 
when the sample size was set to its largest value (100).

In summary, the results of Fig. 5 are in line with those 
found in the previous sections – which were based on the 
homoscedastic GEV-models GEV(1,0,0) and GEV(2,0,0) 
– since they also indicated BIC as the best selection 
criterion. Nevertheless, the results depicted in Fig. 5 
also indicate that even this latter criterion was capable 
of selecting the true quadratic model [GEV(2,0,0) at 
acceptable rates (>90%) only for considerable large sample 
sizes (≥100). The performance of this latter selection 
criterion within each fitting process approached each 
other as the sample size increased.
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Figure 4. Rate (%) in which a particular selection criteria selected a GEV-model matching the true model used to generated the synthetic 
series. Akaike information criterion (AIC), second-order Akaike information criterion (AICc), Bayesian information criterion (BIC) and likelihood 
ratio test (LRT). The true model is a nonstationary GEV function that allows both location and scale parameters to vary linearly over time.
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GEV(2,2,0): Location and scale parameters 
quadratic vary over time.

The Rrates found in this section (Fig. 6) were similar 
to those found for GEV(1,1,0) model, which were based 
on a GEV-model presenting the location as well as the 
scale parameters as function of time. In other words, 
the results of this section also indicate that increasing the 
variance of a series over time, decrease the ability of all 
selection criteria in properly select the correct GEV model 
for this same series. Within the second fitting process, 
no criteria presented Rright rates higher than 90% for any 
combinations of shape parameter and sample size. BIC 
was the only criteria presentig Rright rate close to 85%. 
However, these latter Rright rates were achieved only when 
the sample size was set to its largest value (N=100; Fig. 6). 
As the results of Fig. 4, the results of the third fitting 

process (Fig. 6) also indicated that both AIC and AICc 
outperformed the BIC in identifying the correct model. 
Within the third fitting process, when the sample size 
was set to its largest value, AIC and AICc presented Rright 
rates higher than 95% (Fig. 6). In summary, the results of 
this section are in line with those found for GEV(1,1,0) 
model, suggesting that when there is a temporal change 
in the variance of the series, AIC or AICc are preferred 
over BIC. Nevertheless, it has to be mentioned that this 
latter recommendation hold true only for the third fitting 
process that considered nonlinear models with only one 
hidden layer. When a larger number of GEV-models were 
considered (second fitting process) no selection criteria 
presented Rright rates higher than 90%. This latter result, 
along with those of the previous sections, suggests that 
the number of GEV-models to be used within a selection 
process should be set with parsimony.
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Figure 5. Rate (%) in which a particular selection criteria selected a GEV-model matching the true model used to generated the synthetic 
series. Akaike information criterion (AIC), second-order Akaike information criterion (AICc), Bayesian information criterion (BIC) and likelihood 
ratio test (LRT). The true model is a nonstationary GEV function that allows the location parameter to quadratic vary over time.
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Case study

Previous studies have applied nonstationary GEV-models 
to assess the probability of weather extremes under distinct 
climate scenarios (Kharin et al. 2013, Kharin et al. 2018). 
Some of these studies fitted increasingly complex GEV models 
to 20- or 30-year periods (e.g. 2011-2040; 2041-2070; 2071-
2100) and used at least one of the four selection criteria (AIC, 
AICc, BIC or LRT) to evaluate how frequency and intensity of 
such events varied over time. However, the results of the sets 
of Monte Carlo simulations found in the previous sections 
indicate that these four selection criteria may present a poor 
performance when applied to small sample sizes. Therefore, 
they were applied to select GEV-models, which have been 
fitted from all available period (2006-2099).

The results of the sets of Monte Carlo experiments also 
indicated that the performances of all selection criteria are 

negatively affected when the variance of the series changes 
over time. These simulations also indicated that in such 
cases, both AIC and AICc should be preferred over both 
BIC and LRT. For location 10, the scale parameters of 
the stationary model – which specifies the dispersion of 
the series – significantly changed over time (Fig. 7). In the 
same pixel, the location parameter – which defines the 
central tendency of the distribution – also changed over time 
(Table 1). BIC failed to select nonstationary models describing 
these temporal changes in the variance of the series (2006-
2099; Table 1). This statement holds true for the three 
fitting processes. Considering the first and the third fitting 
processes, both AIC and AICc have detected these changes 
in the central tendency and in the dispersion of the series by 
selecting GEV(1,1,0) models (Fig. 7). However, considering 
the second fitting process, both AIC and AICc failed to detect the 
changes in the dispersion of the series, since these both 
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Figure 6. Rate (%) in which a particular selection criteria selected a GEV-model matching the true model used to generated the synthetic 
series. Akaike information criterion (AIC), second-order Akaike information criterion (AICc), Bayesian information criterion (BIC) and likelihood 
ratio test (LRT). The true model is a nonstationary GEV function that allows both location and scale parameters to quadratic vary over time.
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Table 1. Diff erent GEV-models selected from three distinct criteria (AIC, AICc and BIC). GEV(0,0,0) is the stationary model; GEV(1,0,0) allows 
the location parameter to vary as a linear function of time (the other two parameters are constants); GEV(1,1,0) allows both location and 
scale parameter to vary as a linear function of time and; GEV(2,0,0) allows nonlinear change only in the location parameter. It has two hidden 
layers. Grid-Points 10, 100, 361 and 500 correspond, respectively to the following coordinates: 48.375W and 25.125S; 48.625W and 23.625S; 
48.125W and 21.625S; 47.125W and 20.125S. State of São Paulo-Brazil.

Pixel

Selected Model

1st fi tt ing process

AIC AICc BIC

10 GEV(1,1,0) GEV(1,1,0) GEV(0,0,0)

100 GEV(1,0,0) GEV(1,0,0) GEV(1,0,0)

361 GEV(1,0,0) GEV(1,0,0) GEV(0,0,0)

500 GEV(0,0,0) GEV(0,0,0) GEV(0,0,0)

Pixel
2nd fi tt ing process

AIC AICc BIC

10 GEV(2,0,0) GEV(2,0,0) GEV(0,0,0)

100 GEV(1,0,0) GEV(1,0,0) GEV(1,0,0)

361 GEV(1,0,0) GEV(1,0,0) GEV(0,0,0)

500 GEV(0,0,0) GEV(0,0,0) GEV(0,0,0)

Pixel
3rd fi tt ing process

AIC AICc BIC

10 GEV(1,1,0) GEV(1,1,0) GEV(0,0,0)

100 GEV(1,0,0) GEV(1,0,0) GEV(1,0,0)

361 GEV(1,0,0) GEV(1,0,0) GEV(0,0,0)

500 GEV(0,0,0) GEV(0,0,0) GEV(0,0,0)
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Figure 7. The GEV-parameters (location or scale) estimated from 31-year moving window (solid line). The dashed line is the 95% confi dence 
interval.
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methods selected a GEV(2,0,0) model. This latter result is in 
line with those found in the previous sections, since it also 
supports the general recommendation that the number of 
GEV-models to be used within a selection process should 
be set with parsimony. 

For location 100, the three selection criteria have selected 
the same nonstationary model [GEV(1,0,0)]. In other words, 
AIC, AICc and BIC were able to detect the change in the 
location parameter observed in the same parameter of the 
stationary models (Fig. 7). This statement holds true. At such 
a location, the scale parameter has shown no remarkable 
change throughout the four sub-periods and over the 31-year 
moving window (Fig. 7).

At location 361, while BIC detected no change in GEV-
parameters, both AIC and AICc selected GEV(1,0,0) in the 
three fitting processes (Table 1). In a first analysis, the steady 
increase presented by the location parameter after 2075 (see 
Fig. 7; pixel 361) may indicate that GEV(1,0,0) is indeed the 
best model for such a case. However, during the 2030s, this 
parameter presented values as high as those observed after 
2075 (Fig. 7; pixel 361). Therefore, when compared with 
GEV(1,0,0), a stationary GEV model may be regarded as a 
better option. In location 500, GEV(0,0,0) model has been 
selected for all selection criteria within the three fitting process. 
This is in line with the parameters of the stationaries models 
fitted to the 31-year moving windows, which presented no 
significant change in their values (Fig. 7).

SUMMARY

Methods estimating the parameters of the Generalized 
Extreme Value (GEV) distribution as function of covariates 
have been proposed by several studies so that this 
distribution is now capable of representing a wide range 
of relationships among covariates and its parameters. On 
such background, the selection of “the most appropriate” 
GEV-model has become a key-step in the use of this 
nonstationary distribution. This selection is often based on 
statistical techniques, such as Akaike information criterion 
(AIC), second-order Akaike information criterion (AICc), 
Bayesian information criterion (BIC) and likelihood 
ratio test (LRT). Since all these methods are based on the 
comparison of all candidate GEV-models considered in 
the selection process, the hypothesis that the number of 
candidate GEV-models of a particular selection process 

affects its own outcome has been proposed. The goal of 
this study was to evaluate the performance of these four 
selection criteria as function of different sample size, 
different GEV-shape parameters (-0.50 to 0.50) and different 
numbers of increasingly complex GEV-models. Synthetic 
series generated from several Monte Carlo experiments 
were subjected to three distinct fitting processes, which 
considered different numbers of increasingly complex 
GEV-models. AIC, AICc, BIC and LRT were used to 
select “the most appropriate” model for each synthetic 
series within each fitting process. As a case of study, 
annual maximum daily rainfall amounts (2006 to 2099) 
generated by the climate model MIROC5 have also been 
subjected to the three above-mentioned fitting processes. 
The performance of all selection criteria was strongly 
affected by the different numbers of candidate models 
considered within each process. In general, the higher 
the number of models considered within a selection 
process, the worse the performance of the selection 
criteria. BIC outperformed all other criteria when the 
synthetic series were generated from stationary GEV-
models or from GEV-models allowing changes only in 
the location parameter (linear or nonlinear). However, 
this latter method performed poorly when the variance of 
the synthetic series varied over time. In such cases, AIC 
and AICc should be preferred over BIC and LRT. The use 
of highly flexibly GEV-models based on a conditional 
density network with two hidden layers decreased the 
performance of all selection criteria in respect to that 
observed when only nonlinear GEV-models with one 
hidden layer have been considered. This latter statement 
holds true for the Monte Carlo experiments as well as for 
the case of study. In summary, since the results found in 
this study support our hypothesis, we recommend that 
the number of GEV-models to be used within a selection 
process should be set with parsimony.
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Supplementary File. Third fitting process: rate (%) in which each selection criteria selected a model matching the true model. N is the 
sample size.

  True model: GEV(0,0,0)

AIC AICc BIC LRT 

N
GEV-Shape parameter GEV-Shape parameter GEV-Shape parameter GEV-Shape parameter

-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5

20 35.4 32.6 33.6 34.8 34.6 71.4 72.0 74.0 74.0 72.4 54.6 54.6 55.4 54.4 55.2 48.6 48.0 50.4 49.0 50.8

40 43.8 46.6 45.0 44.4 40.4 58.4 58.8 56.4 56.8 57.0 77.8 78.2 77.2 80.6 76.2 61.4 62.4 59.6 64.8 62.0

60 47.6 55.2 54.6 52.2 52.4 56.6 62.2 62.6 61.8 60.8 86.0 87.4 89.0 88.0 87.4 68.0 72.6 71.0 69.8 70.2

80 56.6 57.2 57.2 54.6 57.6 63.0 61.8 63.2 62.0 64.2 93.6 90.8 91.4 92.8 92.8 76.6 76.4 76.2 75.6 75.2

100 61.2 58.6 57.6 58.8 60.2 65.2 62.6 64.0 65.6 64.4 93.2 92.2 93.8 95.0 94.4 81.0 77.4 79.2 80.4 80.0

  True model: GEV(1,0,0)

AIC AICc BIC LRT 

N
GEV-Shape parameter GEV-Shape parameter GEV-Shape parameter GEV-Shape parameter

-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5

20 10.0 10.4 10.2 10.2 11.0 13.8 13.0 11.4 15.0 13.4 12.0 11.8 9.6 11.8 11.4 6.2 5.0 4.2 8.0 6.6

40 43.6 48.6 47.8 47.4 45.6 54.8 60.0 55.8 59.0 57.4 58.0 62.4 61.0 63.8 62.6 39.8 40.4 42.2 45.2 39.8

60 67.8 66.2 69.0 67.4 62.4 73.8 72.4 77.0 73.6 71.4 89.4 89.6 91.6 91.4 89.6 85.6 87.4 90.0 89.6 86.4

80 70.6 75.8 74.0 74.4 73.4 76.2 80.0 77.8 78.6 77.4 94.0 95.4 95.8 95.8 93.2 94.2 93.8 95.4 95.4 94.2

100 77.0 76.6 75.0 73.6 75.4 82.8 80.2 78.0 77.6 78.6 96.2 96.4 97.2 95.8 95.6 95.6 97.2 97.8 95.4 95.6

  True model: GEV(1,1,0)

AIC AICc BIC LRT 

N
GEV-Shape parameter GEV-Shape parameter GEV-Shape parameter GEV-Shape parameter

-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5

20 5.2 4.8 5.0 5.4 6.2 3.6 4.0 2.8 2.2 3.8 4.0 4.2 2.8 2.6 3.6 3.2 3.2 2.4 1.4 3.0

40 14.0 16.0 14.0 17.6 13.6 11.8 13.8 11.2 15.0 11.6 6.2 7.8 6.0 9.0 6.8 3.8 6.2 3.8 4.6 3.8

60 28.8 30.2 34.0 28.8 31.0 27.4 28.4 29.4 27.6 28.6 15.8 17.8 19.4 16.4 18.2 8.4 8.0 9.4 11.0 10.2

80 53.2 55.2 55.2 53.8 55.4 52.8 54.0 56.0 52.0 54.2 34.8 39.0 38.4 34.8 36.4 20.2 25.2 23.4 21.2 21.2

100 74.8 73.4 75.0 77.0 73.8 75.8 73.4 75.8 77.2 74.2 59.8 56.2 59.2 60.8 54.6 42.0 37.6 40.2 43.8 42.2

SUPPLEMENTARY FILE


