
ABSTRACT: Genetic diversity studies are performed based on information on a set of traits 

measured in a group of genotypes, considering one or more environments. The pattern 

recognition methods allow classifying genotypes from a set of important agronomic 

information. Thus, this study aimed to present and compare pattern recognition methods 

to inquire about the similarity of environments and genotypes in flood-irrigated rice for 

the recommendation of cultivars. The experiments were performed in the municipalities 

of Leopoldina, Lambari, and Janaúba, state of Minas Gerais, Brazil. To evaluate the pattern 

of similarity, 25 rice genotypes in three environments belonging to the flood-irrigated rice 

breeding program were used. Among these genotypes, five cultivars were used as an 

experimental control for the grain yield, the height of the plant, flowering, panicle length, 

grains filled by panicles, percentages of grains filled by panicles, in the 2012/2013 agricultural 

year. The methods used were mixtures of multivariate normal distributions and density-based 

clustering algorithm. It was observed, therefore, that the genotypes are distributed in three 

distinct groups, in which there are intragroup homogeneity and intergroup heterogeneity for 

the agronomic traits of the flooded rice culture. The methods used to assess the dissimilarity 

of environments using pattern recognition methods were efficient in classifying flooded 

rice irrigated environments.

Key words: classification, dissimilarity, environments, Oryza sativa L.

Patterns recognition methods to study genotypic 
similarity in flood-irrigated rice
Antônio Carlos da Silva Júnior1,* , Michele Jorge da Silva1 , Cosme Damião Cruz1 , 
Moyses Nascimento2 , Camila Ferreira Azevedo2 , Plínio César Soares3 
1. Universidade Federal de Viçosa – Departamento de Biologia Geral – Viçosa (MG), Brazil.
2. Universidade Federal de Viçosa – Departamento de Estatística – Viçosa (MG), Brazil.
3. Empresa de Pesquisa Agropecuária de Minas Gerais – Viçosa (MG), Brazil.

INTRODUCTION

Rice (Oryza sativa L.) is one of the most produced and consumed cereals in the world, and is characterized as the main 
food for more than half of the world population. With the increase in the population, the demand for grain productivity 
has increased over the years and it is estimated that by 2050 global rice production should increase from 60 to 110% to 
supply the demand of the world population (Godfray et al. 2010; Tilman et al. 2011; Ray et al. 2013; Santos et al. 2019).

Genetic diversity studies are performed using information from a set of traits measured in a group of genotypes, 
considering one or more environments. These studies are useful for recognizing similarity patterns and quantifying variability 
to explore breeding plants. The similarity pattern is generally attributed to genetic similarity by ancestry or by sharing alleles 
in common, which are fixed by selection.

When performed experiments in more than environment, an approach to the behavior of genotypes are common, 
emphasizing stability and adaptability for a given characteristic of agronomic importance, mainly grain production. Also, the 
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study of dissimilarity of environments is equally important and aims to identify more discriminative and representative 
environments to subsequently analyze the most stable and adapted genotypes.

One way of evaluating the behavior of genotypes, given the dissimilarity of environments, but little explored among breeders, is 
the use of approaches based on pattern recognition methods. In this case, the evaluation of a set of traits relevant to the breeder and the 
influence of the environments on a possible pattern of grouping of the evaluated genotypes are considered. Thus, it is assumed that 
genotypes can be differentiated by genetic causes, within the environment, and by environmental causes, called macrovariations, 
provided by the edaphoclimatic differences to which they were subjected. The pattern recognition methods allow classifying objects, 
within many categories or classes expressed by the environments, from a set of important agronomic information (Bishop 2006).

Pattern recognition between genotypes provided by the dissimilarity of environments allows the breeder to make decisions 
to identify groups of environments in which the interaction genotype × environments (G × E) may not be significant for 
the set of available genotypes.

Thus, this study aimed to use pattern recognition methods (mixture of normal distributions and density-based clustering 
algorithm) to study the similarity of environments and genotypes in flood-irrigated rice for the recommendation of cultivars.

MATERIAL AND METHODS

Description of the experiments

The experiments were conducted in the state of Minas Gerais, Brazil, in the experimental field of the Empresa de 
Pesquisa Agropecuária de Minas Gerais (EPAMIG), in the municipalities of Leopoldina (latitude 21° 31’ 48.01’’ S, 
longitude 42° 38’ 24’’ W), Lambari (latitude 21° 58 ‘11.24’’ S, longitude 45° 20’ 59.6’’ W) and Janaúba (latitude 15° 48’ 77’’ S, 
longitude 43° 17’ 59.09’’ W) (Fig. 1).

To inquire about the pattern similarity, 25 rice genotypes were evaluated in three environments belonging to the flood-
irrigated rice breeding program. Among these genotypes, five cultivars were used as experimental controls (‘Rubelita’, ‘Seleta’, 
‘Ourominas’, ‘Predileta’, and ‘Rio Grande’) for the following traits: grain yield (Kg·ha-1), height of plant (cm), flowering (days), 
panicle length (cm), grains filled by panicles, percentages of grains filled by panicles, in the 2012/2013 agricultural year. 
The experimental design used in all experiments was randomized blocks with three replications. The value for cultivation 
and use (VCU) tests were conducted on floodplain soils with continuous flood irrigation. The cultural treatments were 
carried out according to the recommended for the cultivation of irrigated rice in the evaluated regions (Soares et al. 2005).
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Figure 1. Location of experiments in three regions of Minas Gerais, Brazil.
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In the Leopoldina experimental field, the seedlings were previously formed in nurseries and, later, transplanted at a 
spacing of 0.20 m on the line. In other, sowing was carried out on the planting line with a density of 300 seeds·m-2. The tests 
were carried out in floodplain soils with continuous flood irrigation. Irrigation started around 10 to 15 days after seedling 
emergence, in the case of planting with seeds, or when the seedlings were established in the soil. The irrigation depth was 
gradually increased according to the development of the plants.

Statistical analysis

The statistical model described in Eq. 1 was considered to each original observation:

 Yijl = µ + B/Ejl + Gi + Ej + GEij + eijl (1)

where: Yijl is the observation in the lth block, evaluated in the ith genotype and jth environment; µ is the general average of 
the experiments; B/Ejl is the effect of block l within environment j; Gi is the effect of the ith genotype (i = 1,2 ... g); Ej is the 
effect of the jth environment (j = 1,2 ... k); GEij is the random effect of the interaction between genotype i and environment 
j; eijl is the random error associated with the Yijl observation.

The pattern recognition analysis was made from adjusted values (Y*
ijk =µ̂ + Ĝi + ê ijl), which adjust the phenotypic 

values for the effects of block, environment and the interaction of genotypes and environments. With the adjusted value, 
pattern recognition analyzes were performed using mixtures of multivariate normal distributions and density-based 
clustering algorithm.

Mixtures of multivariate normal distributions

In this analysis, it was considered that there are, in the set of environments, homogeneous subgroups whose data could 
be characterized by probability distributions, supposedly normal. As a whole, a multivariate normal distribution is assigned 
to each component of the mixture. Thus, it is expected that the clusters represent sets of environments with an ellipsoidal 
data arrangement, centered on the mean vector µk, and with other geometric characteristics, such as volume, orientation, 
and shape, determined by the covariance matrix Σk of dimension v × v.

Parsimonious parameterizations of the covariance matrices, for each environment group, can be obtained through Eq. 2:

 Σk= λk DkAkDk
T (2)

where: λk is a scalar that controls the volume of the ellipsoid, Ak is a diagonal matrix that specifies the shape of the density 
contours with det (Ak) = 1 and Dk is an orthogonal matrix that determines the orientation of the corresponding ellipsoid 
(Banfield and Raftery 1993; Celeux and Govaert 1995). In one dimension, there are only two models denoted by E for equal 
variance and V for a variable variance. In the multivariate configuration, the volume, shape, and orientation of covariance can 
be limited to being equal or variable between groups. Thus, 14 possible models with different geometric characteristics 
can be specified. Table 1 presents all of these models with the corresponding distribution structure type, volume, shape, 
orientation, and associated model names.

The model is chosen using the Bayesian information criterion (BIC) (Scrucca et al. 2016), according to Eq. 3:

 BICм,k = 2l(Ψ̂;y)-vм,k log(n), (3)

where, l(Ψ̂;y) is the logarithmic of the maximized likelihood function (Supplemental Material available); vм,k is the number 
of independent parameters to be estimated in the model M; and k is the number of components in the mixture, supposedly 
equal to the number of environments analyzed. According to the BIC expression presented by Scrucca et al. (2016), the 
higher the BIC value, the better the model.
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Density-based clustering algorithm

The density-based clustering algorithm to discover the number of clusters (environments) was created to identify different forms 
of groupings and the presence of noise in the databases (Ester et al.  1996)4. It uses the concept of center-based density since the 
density of a point in the data set is the number of points within a neighborhood radius. This algorithm contains two input parameters, 
the radius and the minimum number of points in a given radius. However, center-based density makes it possible to classify a 
point in dense regions (center point), at the limit of a dense region (limit point) or in a sporadically occupied region (noise point).

To evaluate the classification performance objectively, the confusion matrix was used, in which the frequency observed 
on the diagonal represents the elements correctly classified. The marginal column represents the total of elements classified 
for a category i. On the other hand, the marginal line represents the total of reference elements sampled for a category i.

The GENES software (Cruz 2016) was used to perform the analyses, integrated with Matlab (Matlab 2011) and R (R Core 
Team 2019).

RESULTS AND DISCUSSION

Table 2 shows the result of the joint analysis of variance of 25 rice genotypes evaluated in three environments. The estimate of 
the coefficient of variation (CV%) was low for all characteristics, indicating adequate experimental precision, as demonstrated in 
other studies related to the culture of irrigated rice (Hosan et al. 2010; Silva et al. 2011; 2019; 2020; Costa et al. 2002; Streck et al. 
2017; Santos et al. 2019). For the effect of genotypes, there was statistical significance for the traits of grains filled by panicles and the 
percentage of grains filled by panicles, and no significance was observed for the effect of genotypes in the joint analysis for the other 
traits. The difficulty in detecting differences between the general means of such genotypes can be justified by the advanced stage 
of genetic improvement in which these genotypes are found for these traits. There was significance (p < 0.01) for the effects of the 
environment, except for grains filled by panicles, and for the genotype interaction by environments (G × E), except for the height 
of plant and percentage of grains filled by panicles. Consequently, the behavior of the genotypes was influenced by environmental 
conditions, justifying the use of methodologies that are capable of classifying environments according to clustering methods.

4 Ester, M., Kriegel, H.-P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with 
noise. In: KDD-96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Portland: AAAI.

Table 1. Parameterizations of the intragroup covariance matrix Σk for multidimensional data and the corresponding geometric characteristics.

Model Σk Distribution Volume Shape Orientation

EII λl Spherical Equal Equal -

VII λkl Spherical Variable Equal -

EEI λA Diagonal Equal Equal Coordinate axes

VEI λkA Diagonal Variable Equal Coordinate axes

EVI λAk Diagonal Equal Variable Coordinate axes

VVI λkAk Diagonal Variable Variable Coordinate axes

EEE λDADT Ellipsoidal Equal Equal Equal

EVE λDAkDT Ellipsoidal Equal Variable Equal

VEE λkDADT Ellipsoidal Variable Equal Equal

VVE λkDAkDT Ellipsoidal Variable Variable Equal

EEV λkDADk
T Ellipsoidal Equal Equal Variable

VEV λkDkADk
T Ellipsoidal Variable Equal Variable

EVV λDkAkDk
T Ellipsoidal Equal Variable Variable

VVV λkDkAkDk
T Ellipsoidal Variable Variable Variable
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Among all the adjusted models presented in Table 1, the two that presented the highest Bayesian information criterion 
(BIC) values were VEI (diagonal distribution, variable volume, equal shape, and coordinate axis orientation; BIC = -2901.55) 
and VVI (diagonal distribution, variable volume, variable shape and the orientation of coordinate axes; BIC = -2918.59), 
associated with five and three components of mixtures, respectively (Fig. 2).

Table 3 shows the number of genotypes allocated to each of the five and three components of mixtures considering, 
respectively, the VEI and VVI models.

The model considering a mixture with three components allocated approximately 25 genotypes in each component. 
This result is interesting since, due to the edaphoclimatic differences in each location, such as temperature and humidity, 
it is expected to obtain a mixture composed of three components. On the other hand, the mixture model composed of five 
components divided the genotypes into two other groups.

Therefore, Table 4 shows a confusing matrix of classification of genotypes in the different environments, which obtained 
a prediction accuracy of 97.33% (representing the number of correct classifications on the total genotypes). In this table, 
environment 1 obtained 100% classification of the 25 genotypes, while environments 2 and 3 presented an error when 
classifying the genotypes in their respective environments.

Table 2. Result of the joint variance analysis for grain yield (GY), height of plant (HP), flowering (FLO), panicle length (PL), grains filled by 
panicles (GP), percentages of grains filled by panicles (GPO) of the 25 flood-irrigated rice genotypes evaluated in three environments in 
the state of Minas Gerais.

SV DF
Mean Square

GY HP FLO PL GP PGP

Genotype 24 682447ns 237ns 65.91ns 8.11ns 477* 0.00614**

Environment 2 49408974** 15951** 13556** 6.48** 3447ns 0.01265**

G×E 48 1384692** 315ns 51.03 ** 8.84** 272** 0.00114ns

Residue 144 419169 311 3.41 2.34 160 0.00161

CV(%) 14.26 18.70 2.01 6.49 13.03 4.34

Average 4539 94.35 91.94 23.59 97.10 0.88

**, *, ns: significant at 1%, 5% and not significant by the F test; SV: source of variation; DF: degrees of freedom; CV: coefficient of variation.
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Figure 2. Bayesian information criterion (BIC) of the adjusted models considering different numbers of components of mixtures.



361

Methods to study the genotype similarity

Bragantia, Campinas, v. 79, n. 3, p.356-363, 2020

Figure 3 shows the density-based clustering algorithm to identify the number of clusters. It was possible to observe three 
different groups of classification of environments. However, based on center density, it was possible to classify a point in 
dense regions (center point), at the limit of the region or in a sporadically occupied region (noise point).

The environment can be classified as favorable or unfavorable depending on the conditions in which it is found, thus being 
able to influence the classification of the genotypes. Therefore, the favorable environment corresponds to all the conditions 
that a given gene has to express the desirable characteristics since the genotypes perform better in these environmental 
conditions. Another issue that must be taken into account is the minimization of the response to uncontrollable factors 
since the breeder aims to produce cultivars with greater capacity for genetic resilience and more responsiveness. To the 
unfavorable environment, environmental conditions do not provide an expected performance, that is, a given gene is not 
expressed depending on the conditions in which it is exposed. For example, the genotype interaction by the environment, 

Figure 3. Density-based clustering algorithm.

Table 3. The number of genotypes allocated to each of the five and three components of mixtures considering the models VEI and VVI, 
respectively.

VEI model with five components VVI model with three components

Components NC Components NC

1 11 1 25

2 9 2 26

3 25 3 24

4 13

5 17

NC: number of components; VEI: diagonal distribution, variable volume, equal shape, and coordinate axis orientation; VVI: diagonal distribution, variable volume, 
and variable shape and the orientation of coordinate axes.

Table 4. Confusion matrix of classification of 25 genotypes in the different environments.

Environment 1 2 3

1 25 0 0

2 0 24 1

3 1 0 24

-4 -3 -2 -1 0 1 2
PC1

PC
2

3

2

1

0

-1

-2
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in which the different behavior of the genotypes in the face of environmental variations is observed. In this case, it makes 
it difficult to decide to recommend a specific cultivar.

In this context, based on the results obtained, one can consider only one of the environments in the next evaluations, and 
the breeder should choose the best environment for the needs of his flood-irrigated rice breeding program. Criteria such 
as proximity to the research center and ease of access can be adopted. Also, the decrease in the number of environments 
will reduce the cost of evaluating the cultivars, in addition to allowing more judicious evaluations to be carried out in the 
remaining trials. Thus, the methods used to assess the dissimilarity of environments through pattern recognition methods 
provided a better classification between environments.

CONCLUSION

The methods used to assess the dissimilarity of environments using pattern recognition methods were efficient in 
classifying flooded rice environments.
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