
ABSTRACT: The determination of leaf area is fundamental for studies related to plant growth and physiology. Thus, non-destructive methods 

allow an accurate estimate of the leaf area through linear dimensions of the leaves. The research objective was to construct allometric 

equations to estimate the leaflet area of peanut cultivars. Then, 2,605 leaflets were collected from six peanut cultivars (IAC Caiapó, IAC 

8112, Runner IAC 886, BRS Havana, BRS 151 L7, and IAC Tatuí), with more than 400 leaflets sampled for each cultivar. We measured the 

length, width, product between length and width, and leaflet area. Linear and non-linear models (linear, linear without intercept, power, 

and exponential) were built, and the best equation was chosen using the statistical criteria: highest coefficient of determination (R2), 

Pearson’s linear correlation coefficient (r), Willmott’s agreement index (d), lowest Akaike information criterion (AIC), and root mean square of  

the error (RMSE). It was found that the models that used the product between length and width were the most suitable for estimating the 

leaflet area of peanut cultivars. Given the little intraspecific morphological variability, it was possible to group the cultivars, and model  

 ̂=  0.875 * LW0.929 was indicated to estimate the peanut leaflet area accurately, regardless of the cultivar.
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INTRODUCTION

The nutritional importance and productive potential of peanut (Arachis hypogaea L.) classifies this crop as a multipurpose 
oilseed, offering several medicinal and economic benefits (Akram et al. 2018). The chemical and nutritional composition 
of peanuts includes vitamins, folic acid, thiamine, and tocopherols (Akram et al. 2018). In addition, its seeds are sources of 
fatty acids, with great importance for the composition of its oil (Toomer 2017). There is a great diversity of peanut genotypes, 
which differ in oil quality and morphological structure (Krishna et al. 2015).

Because of the relevance of the peanut crop, studies related to growth and development are of great need to estimate the 
productive potential of its different genotypes (Akram et al. 2018). Among the aspects required to indicate plants’ growth 
status and physiological behavior, leaf area is characterized as an essential parameter (Keramatlou et al. 2015).

The leaf area directly influences the vital processes of plants, which include gas exchange and the interception of irradiance 
(Córcoles et al. 2015). The shape and amount of intercepted light is a determining factor for photosynthesis and directly 
interferes with acquiring essential resources for the formation of carbohydrates (Mattos et al. 2020). Therefore, the light 
energy captured by the leaves of a crop is critical to shaping its growth (Liu et al. 2021).
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For physiological and ecophysiological studies, the measurement of leaf area provides an estimate of the transpiration 
rate and net absorption and ensures an understanding of the interaction between the growth of the species and its 
developmental environment (Sabouri and Sajadi 2022). Carrying out studies with leaf area modeling involves processes of 
plant community composition, evolution, competition, and adaptation and provides clarification of fruit quality attributes 
(Keramatlou et al. 2015).

Methods for estimating leaf area can be direct or indirect and differ in plants destructive or non-destructive 
sampling (Zhang 2020). Direct methods are economically unfeasible, limited by logistical factors, and prevent successive 
measurements of leaves (Hernandéz-Fernandez et al. 2021). On the other hand, a non-destructive indirect method of 
determining leaf area is through allometric relationships and considers the proportionality of the linear dimensions  
of the leaves (Santos et al. 2021).

To monitor leaf development and quantify a regression model that estimates leaf area, it is necessary to use digital 
processing methods, viable, accurate, and economic tools for crops (Sauceda-Acosta et al. 2017). Using this approach, 
Sabouri and Sajadi (2022) evaluated the use of image processing and regression methods to estimate the leaf area of chia 
(Salvia hispanica L.), quinoa (Chenopodium quinoa Willd.), and bitter melon (Momordica charantia L.).

In addition, the approach to leaf area estimation by these methods covers studies with pepper (Yeshitila and Taye 2016), 
cactus forage (Lucena et al. 2021), cocoa (Salazar et al. 2018), fava beans (Peksen 2007), and mango (Ghoreishi et al. 2012). 
However, for a critical evaluation of models to estimate the leaf area, it is necessary to use many leaves or leaflets to validate 
the model (Hernandéz-Fernandez et al. 2021).

For peanuts, there is a lack of studies that contemplate a more significant number of cultivars and demonstrate morphological 
differences and provide a regression model that facilitates subsequent studies with this species. We formulated that the 
linear and non-linear models are reliable for estimating the leaflet area (LA) of peanut cultivars. Thus, the objective of this 
work was to propose an equation that accurately estimates the leaf area of peanut cultivars through linear dimensions of 
the leaflets using several linear and non-linear models.

MATERIAL AND METHODS

Plant material and experimental conditions

The experiment was conducted in an experimental area of the didactic garden belonging to the Agricultural Sciences 
Center of the Universidade Federal Rural do Semi-Árido, RN, Brazil (5°12’25.26”S, 37°19’6.42”W). The region’s climate is 
classified as BSh, being dry and very hot, with a dry and rainy season (Alvares et al. 2013). It has an average temperature of 
28 °C and annual rainfall of around 695 mm. The soil in the region is classified as Eutrophic Red-Yellow Argisol (Embrapa 
2018).

For the construction of the models, peanut cultivars with an erect growth habit were planted, with sowing in September 
2021 and harvesting in December 2021. Each experimental plot consisted of a cultivar sown in a 15-m planting row, with 
the density of 15 seeds per linear meter and spacing of 0.90 m between rows.

Plant sampling and image processing

At 85 days after planting, a total of 2,605 leaflets (n) mature, expanded, free from damage or pests, were collected 
from six peanut cultivars [1: IAC Caiapó (n = 427); 2: IAC 8112 (n = 433); 3: Runner IAC 886 (n = 422); 4: BRS 
Havana (n = 441); 5: BRS 151 L7 (n = 465); and 6: IAC Tatuí (n = 417)] (Fig. 1), with more than 400 leaflets randomly 
sampled for each cultivar. We selected leaflets in different shapes and sizes to test the model’s generality and seek 
greater variability in the data. The leaves were placed in plastic envelopes and kept in the shade immediately after 
collection to maintain turgidity.
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1. IAC Caiapó

1.0 cm

4. BRS Havana

2. IAC 8112

5. BRS 151 L7

3. Runner IAC 886

6. IAC Tatuí

Figure 1. Representative leaflets of peanut cultivars. Sampling information is shown in Fig. 2. The vertical line represents the length on each 
leaf, and the dashed line represents the leaflet width. The scale bar refers to 1 cm.

The leaflets were separated from the leaves and then digitalized in a scanner (Epson model L395, Tokyo, Japan) with a 
resolution of 1,200 × 1,200 dpi, with the images processed and analyzed individually using the ImageJ software (National 
Institutes of Health, United States of America). The digitalized images included three rulers as reference indicators for 
measurements. We calculated the maximum length (L) (distance between the petiole insertion end and the opposite distance 
from the midrib), and maximum width (W) (largest measure perpendicular to the midrib), and LA were calculated (cm2) 
for each leaflet. Then, we calculated the product between length and width (LW) (cm2).

Data analysis

To compare the foliar parameters between the cultivars (L, W, LW, and LA), a unidirectional analysis of variance was 
performed, and then the honestly significant difference (HSD) was performed using the Tukey’s test at the level of 5% 
probability (Zar 1996).

To verify whether there is accuracy in the estimates of the regression coefficients between L and W, we evaluated the degree 
of collinearity between these parameters. Therefore, we calculated the variance inflation factor (VIF) (Eq. 1) (Marquardt 
1970) and the tolerance value (T) (Eq. 2) (Gill 1986). In this case, if the VIF is greater than 10 and the T is less than 0.1, it 
indicates that L and W have multicollinearity to affect the estimate of the leaflet area and, consequently, should be disregarded 
one of these two leaf parameters (L or W) for fitting regression models in the prediction of leaflet area (Gill 1986).

					                𝑉𝑉𝑉𝑉𝑉𝑉 = 	
1

1 − 𝑟𝑟²
 � (1)

						      T = !
"#$

  � (2)

in which: r: Pearson’s linear correlation coefficient between L and W.
To estimate leaflet area based on linear dimensions, tests were performed with 90 linear and non-linear regression 

models between LA (dependent variable) and length, width, and product (LW) (independent variables) of each cultivar, 
and later they were tested with the grouped data (all the grouped cultivars). Among the models tested, 25 presented 
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satisfactory criteria for estimating the leaflet area. Logarithmic and polynomial models from second to fifth order were 
excluded. Thus, for greater data precision and speed in the analysis, 10 equations from four models were used for each 
cultivar and the grouped data.

The regression models used were linear (y	"	=β0	+	β1*x	+	εi ), linear without intercept ( y" 	= 	β! ∗ x	 +	ε" ), power 
( y" 	= 	β! ∗ x"!	+	ε# ), and exponential ( y" 	= 	β! ∗ β"

#	+	ε$ ). Therefore, the value of yˆ estimated the LA as a function 
of x, which corresponds to the linear dimensions of the leaflets (L, W, and LW). To validate the models, we randomly 
collected 350 independent leaflets among the cultivars during the same leaflet collection period, to estimate the 
leaflet area.

To analyze whether the model was chosen to accurately estimate the leaflet area for all cultivars with distinct leaf 
characteristics, the hypotheses (H0) β0 = 0 versus (Ha) β0 ≠ 0 and (H0) β1 = 0 versus (Ha) β1 ≠ 1 were tested. From Student’s 
t-test at 5% probability, β0 and β1 are regression coefficients.

The criteria for choosing the best model to estimate the peanut leaflet area were: higher coefficient of determination (R2) 
(Eq. 3), more elevated Pearson’s linear correlation coefficient (r) (Eq. 4), lower Akaike information criterion (AIC) (Eq. 5), 
higher Willmott’s agreement index (d) (Eq. 6), and lower root mean square error (RMSE) (Eq. 7).

					     R² = 1 −
∑ (yᵢ − y*ᵢ)²!
"	$	%	

∑ (y	́i )²!
"	$	%	

  � (3)

				    r = 	
∑ (yᵢ − y))(xᵢ − x))!
"	$	%	

,∑ (yᵢ − y))& 	∑ (xᵢ − x))&		!
"	$	%	 	!

"	$	%	
 � (4)

				                 AIC = −	2ln	L+x\θ/0 + 2(p)  � (5)

				                 𝑑𝑑 = 1 −
∑ (y(ᵢ	 − 	yᵢ)²!
"	$	%	

∑ (|y(	́i | 	+ 	 |y	́i |)²!
"	$	%	

 � (6)

				                   RMSE = &∑ (y*i − yi)²!
"#$

n   � (7)

in which: y"ᵢ : estimated values of LA; yi: observed values of LA; y"ᵢ : average of observed values; y"	́i = y"ᵢ − y(;	 ; y	́i = yᵢ − y' ; 
L"x\θ&' : maximum likelihood function; p: number of model parameters; n: observation numbers; xi and yi: ith observations 
of the variables y and x; y"ᵢ  and 
r = 	

∑ (yᵢ − y))(xᵢ − x))!
"	$	%	

,∑ (yᵢ − y))& 	∑ (xᵢ − x))&		!
"	$	%	 	!

"	$	%	
 

: means of variables y and x.
Descriptive analyses were performed to calculate maximum and minimum values, median, and coefficient of variation 

(CV), and data normality was verified by the Shapiro-Wilk’s test. The observed and estimated LA were compared using 
Student’s t-test for paired samples (p < 0.01). We performed statistical data analysis with the software R® v.4.1.2 (R Core 
Team 2022).

RESULTS

The high number of leaflets of the cultivars used in this study (n = 2,605) provided a high data variation for constructing 
models to estimate the peanut LA (Fig. 2). The leaflets of the cultivars showed a length range of 0.82-8.38 cm (IAC Caiapó), 
1.99-8.59 cm (IAC 8112), 0.98-8.50 cm (Runner IAC 886), 1.20-8.45 cm (BRS Havana), 1.44-8.64 cm (BRS 151 L7), and 
1.78-8.58 cm (IAC Tatuí) (Fig. 2). The LW ranges were 0.60-4.34, 0.68-3.86, 0.63-4.60, 0.67-3.81, 0.96-4.11 and 0.91-4.07 cm  
for the same cultivars (Fig. 2). Regarding the LA of the cultivars, averages of 12.2 ± 0.26, 11 ± 0.21, 10.6 ± 0.24, 11.8 ± 0.21, 
11.7 ± 0.27, and 11.1 ± 0.22 cm2 were observed, with coefficients of variation above 30% (Fig. 2).
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*Significant at 5% probability; **significant at 1% probability; nsnot significant; 1: IAC Caiapó; 2: IAC 8112; 3: Runner IAC 886; 4: BRS Havana; 5: BRS 151 L7; 6: IAC Tatui.
Figure 2. Descriptive analysis of (a) length, (b) width, (c) product between length and width, and (d) leaflet area for peanut cultivars. The 
upper and lower ends of each box represent the ¼ and ¾ quartiles; the horizontal line of each box refers to the median. The distribution 
of upper and lower points and the bars represent extreme values (maximum and minimum) of the data set. The numbers inside the boxes 
represent the averages of the cultivars. The numbers below the dots refer to the coefficients of variation. In each panel, cultivars with the 
same letter do not differ from each other by Tukey’s test at the level of 5% probability. The significance above the points refers to the Shapiro-
Wilk’s normality test. 

Regarding the comparison of L, W, LW, and LA between the cultivars, significant differences were observed in all leaf 
parameters, such as the cultivar IAC Caiapó, which had greater W, LW, and LA, while its L was the second largest, and the 
cultivar Runner IAC 886 had the most petite L and size of leaflets compared to the other cultivars (Fig. 2). The data for L 
and W did not adjust to the normal distribution in all cultivars, while for LW the data showed normal distribution in the 
cultivars IAC Caiapó, AIC 8112, and Runner IAC 886. In LA, there was an adjustment of the normal distribution only for 
the cultivar IAC 8112 (Fig. 2).

Linear and non-linear association patterns between L, W, LW, and LA were observed in the data used to build 
the regression model to estimate the peanut LA (Fig. 3). We observed linear patterns between LW and LA, non-
linear patterns between L and LA, and between W and LA, thus evidencing the need to use different models for data 
adjustment and validation (Fig. 3). According to the preliminary analysis for model calibration, the VIF values ranged 
from 1.66 to 8.24, and the T values ranged from 0.12 to 0.60, respectively. Thus, for all cultivars, VIF values were < 10 and  
T was > 0.10, showing that the collinearity between L and W is considered negligible, and we can include these parameters 
in the regression models.
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Figure 3. Matrix with histograms (diagonal) and scatter plots between length, width, product between length and width, and leaflet area of 
2,605 leaflets (pooled data) used for the generation of models to estimate the peanut leaflet area.

Regarding the regression models obtained to estimate the peanut LA, it was observed that the determination 
coefficients (R2) and linear correlation coefficients (r) were in the ranges of 0.7397-0.9904 and 0.8601-0.9641 (IAC 
Caiapó), 0.8973-0.9984 and 0.9416-0.9925 (IAC 8112), 0.7630-0.9776 and 0.8735-0.9351 (Runner IAC 886), 0.8868-
0.9975 and 0.9417-0.9890 (BRS Havana), 0.9286-0.9982 and 0.9636-0.9944 (BRS 151 L7), and 0.8968-0.9975 and 
0.9470-0.9910 (IAC Tatuí) (Table 1). According to the criteria for choosing the best models, models #9 and #10 
are not indicated to accurately estimate the LA of any of the cultivars, as they presented the lowest coefficients of 
determination, correlation coefficients linear, and Willmott’s concordance index, and higher AIC and RMSE, confirming 
the ineffectiveness of these models (Table 1). For each cultivar individually, Eq. 7, obtained with the power model 
using the product between leaflet length and width (LW), was the most suitable for estimating the LA with greater 
precision (> 97%). However, other models can also be indicated to estimate the LA of each cultivar individually, such 
as models #3 and #4 (Table 1).

It was observed in the principal components analysis (PCA) that there was concentration of 98.01% data 
variability in the two main axes, corresponding to 69.94% in the first and 28.07% in the second (Figs. 4a and b). PCA 
showed clustering among cultivars, evidencing similar phylogenetic characteristics between them. This analysis  
indicated slight morphological variation between the peanut cultivars’ leaflets, confirmed by the leaflet morphotypes 
of each cultivar (Fig. 4c). These results and the established criteria made it possible to create a generalized model 
covering all cultivars. The power model y"ᵢ  = 0.875 * LW0.929 was the most suitable to estimate the peanut LA with an 
accuracy of 99%, regardless of cultivar.
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Table 1. Statistical models, regression coefficients (β0 and β1), coefficient of determination (R2), Pearson’s linear correlation coefficient (r), 
Akaike information criterion (AIC), Willmott’s agreement index (d), root mean square error (RMSE), and equations for estimating leaflet area 
of peanut cultivars as a function of linear leaflet dimensions (length and width).

Equation
code      Model

Coefficients
R2 r AIC d RMSE Estimator of LA ( )β0 β1

IAC Caiapó

1 y"ᵢ  = β0 + β1 * L + εi
-5.528 3.127 0.8964 0.9469 1,148.85 0.9721 1.5018 y"ᵢ  =-5.528 + 3.127 * L

2 y"ᵢ  = β0 + β1* W + εi
-6.473 6.545 0.7669 0.8761 1,402.66 0.9305 2.2527 y"ᵢ  =-6.473 + 6.545 * W

3 y"ᵢ  = β0 + β1 * LW + εi
0.735 0.677 0.9280 0.9634 1,034.75 0.9810 1.2516 y"ᵢ  = 0.735 + 0.677 * LW

4 y"ᵢ  = β1 * LW + εi
--- 0.715 0.9295 0.9634 1,046.82 0.9812 1.2800 y"ᵢ  =0.715 * LW

5 y"ᵢ  = β0 * Lβ1 + εi
0.741 1.596 0.9073 0.9525 1,114.87 0.9750 1.4225 y"ᵢ  = 0.741 * L1.596

6 y"ᵢ  = β0 * Wβ1 + εi
2.186 1.619 0.7683 0.8765 1,402.23 0.9293 2.2511 y"ᵢ  = 2.186 * W1.619

7 y"ᵢ  = β0 * LWβ1 + εi
0.914 0.918 0.9904 0.9641 1,029.15 0.9813 1.2404 y"ᵢ  = 0.914 * LW0.918

8 y"ᵢ  = β0 * β1
L + εi

2.423 1.315 0.8884 0.9425 1,176.70 0.9682 1.5701 y"ᵢ  = 2.423 * 1.315L

9 y"ᵢ  = β0 * β1
W  + εi

2.470 1.721 0.7397 0.8601 1,440.54 0.9160 2.3932 y"ᵢ  = 2.470 * 1.721W

10 y"ᵢ  = β0 * 1
LW + εi

4.943 1.052 0.7397 0.8601 1,233.43 0.9160 2.3932 y"ᵢ  = 4.943 * 1.052LW

IAC 8112

1 y"ᵢ  = β0 + β1 * L + εi
-7.808 3.319  0.9489 0.9741 990.95 0.9867 0.9093 y"ᵢ  =-7.808 + 3.319 * L

2 y"ᵢ  = β0 + β1* W + εi
-8.899 7.745  0.8863 0.9416 1,288.50 0.9691 1.3564 y"ᵢ  =-8.899 + 7.745 * W

3 y"ᵢ  = β0 + β1 * LW + εi
0.276 0.705 0.9850 0.9924 534.88 0.9962 0.4925 y"ᵢ  = 0.276 + 0.705 * LW

4 y"ᵢ  = β1 * LW + εi
--- 0.720  0.9851 0.9924 544.86 0.9961 0.5005 y"ᵢ  =0.720 * LW

5 y"ᵢ  = β0 * Lβ1 + εi
0.562 1.701 0.9493 0.9743 989.92 0.9866 0.9080 y"ᵢ  = 0.562 * L1.701

6 y"ᵢ  = β0 * Wβ1 + εi
1.696 1.941 0.9044 0.9510 1,224.97 0.9744 1.2454 y"ᵢ  = 1.696 * W1.941

7 y"ᵢ  = β0 * LWβ1 + εi
0.784 0.971 0.9984 0.9925 531.24 0.9962 0.4901 y"ᵢ  = 0.784 * LW0.971

8 y"ᵢ  = β0 * β1
L + εi

2.285 1.310 0.9258 0.9622 1,136.19 0.9794 1.1053 y"ᵢ  = 2.285 * 1.310L

9 y"ᵢ  = β0 * β1
W  + εi

1.692 2.027 0.8973 0.9472 1,253.23 0.9715 1.2936 y"ᵢ  = 1.692 * 2.027W

10 y"ᵢ  = β0 * 1
LW + εi

4.652 1.056 0.8973 0.9472 1,055.37 0.9715 1.2936 y"ᵢ  = 4.652 * 1.056LW

Runner IAC 886

1 y"ᵢ  = β0 + β1 * L + εi
-4.988 3.038 0.8007 0.8951 1,630.58 0.9421 2.1232 y"ᵢ  =-4.988 + 3.038 * L

2 y"ᵢ  = β0 + β1* W + εi
-5.189 5.800  0.7800 0.8835 1,667.54 0.9350 2.2308 y"ᵢ  =-5.189 + 5.800 * W

3 y"ᵢ  = β0 + β1 * LW + εi
1.080 0.640 0.8742 0.9351 1,458.52 0.9655 1.6869 y"ᵢ  = 1.080 + 0.640 * LW

4 y"ᵢ  = β1 * LW + εi
--- 0.700 0.8745 0.9351 1,482.79 0.9658 1.7472 y"ᵢ  =0.700 * LW

5 y"ᵢ  = β0 * Lβ1 + εi
0.692 1.642 0.8207 0.9059 1,592.24 0.9491 2.0171 y"ᵢ  = 0.692 * L1.642

6 y"ᵢ  = β0 * Wβ1 + εi
2.138 1.568 0.7885 0.8879 1,653.90 0.9374 2.1905 y"ᵢ  = 2.138 * W1.568

7 y"ᵢ  = β0 * LWβ1 + εi
0.974 0.888 0.9776 0.9351 1,458.47 0.9661 1.6868 y"ᵢ  = 0.974 * LW0.888

8 y"ᵢ  = β0 * β1
L + εi

2.127 1.347 0.8121 0.9011 1,611.14 0.9441 2.0688 y"ᵢ  = 2.127 * 1.347L

9 y"ᵢ  = β0 * β1
W  + εi

2.432 1.679 0.7630 0.8735 1,699.11 0.9252 2.3270 y"ᵢ  = 2.432 * 1.679W

10 y"ᵢ  = β0 * 1
LW + εi

4.704 1.052 0.7630 0.8735 1,598.30 0.9252 2.3270 y"ᵢ  = 4.704 * 1.052LW

BRS Havana

1 y"ᵢ  = β0 + β1 * L + εi
-7.238 3.197 0.9170 0.9577 1,245.41 0.9779 1.1526 y"ᵢ  =-7.238 + 3.197 * L

2 y"ᵢ  = β0 + β1* W + εi
-7.311 7.073 0.9084 0.9532 1,284.32 0.9755 1.2105 y"ᵢ  =-7.311 + 7.073 * W

3 y"ᵢ  = β0 + β1 * LW + εi
0.527 0.676 0.9774 0.9886 728.93 0.9942 0.6014 y"ᵢ  = 0.527 + 0.676 * LW

4 y"ᵢ  = β1 * LW + εi
--- 0.704 0.9782 0.9886 759.23 0.9940 0.6264 y"ᵢ  =0.704 * LW

5 y"ᵢ  = β0 * Lβ1 + εi
0.456 1.806 0.9377 0.9683 1,131.88 0.9836 0.9990 y"ᵢ  = 0.456 * L1.806

6 y"ᵢ  = β0 * Wβ1 + εi
2.114 1.707 0.9114 0.9546 1,273.23 0.9759 1.1937 y"ᵢ  = 2.114 * W1.707

7 y"ᵢ  = β0 * LWβ1 + εi
0.840 0.940 0.9975 0.9890 714.36 0.9944 0.5904 y"ᵢ  = 0.840 * LW0.940

8 y"ᵢ  = β0 * β1
L + εi

1.952 1.341 0.9218 0.9601 1,227.91 0.9783 1.1274 y"ᵢ  = 1.952 * 1.341L

9 y"ᵢ  = β0 * β1
W  + εi

2.183 1.835 0.8868 0.9417 1,374.45 0.9676 1.3560 y"ᵢ  = 2.183 * 1.835W

10 y"ᵢ  = β0 * 1
LW + εi

4.659 1.055 0.8868 0.9417 1,216.86 0.9676 1.3560 y"ᵢ  = 4.659 * 1.055LW

continue...
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Table 1. Continuation...

Equation
code      Model

Coefficients
R2 r AIC d RMSE Estimator of LA ( )

β0 β1

BRS 151 L7

1 y"ᵢ  = β0 + β1 * L + εi
-7.607 3.298 0.9305 0.9647 1,221.39 0.9817 1.3467 y"ᵢ  =-7.607 + 3.298 * L

2 y"ᵢ  = β0 + β1* W + εi
-7.411 7.159  0.9366 0.9678 1,188.54 0.9834 1.2857 y"ᵢ  =-7.411 + 7.159 * W

3 y"ᵢ  = β0 + β1 * LW + εi
0.192 0.693 0.9880 0.9943 575.27 0.9971 0.5407 y"ᵢ  = 0.192 + 0.693 * LW

4 y"ᵢ  = β1 * LW + εi
--- 0.702 0.9888 0.9943 580.50 0.9971 0.5462 y"ᵢ  =0.702 * LW

5 y"ᵢ  = β0 * Lβ1 + εi
0.366 1.928 0.9599 0.9797 1,027.09 0.9896 1.0235 y"ᵢ  = 0.366 * L1.928

6 y"ᵢ  = β0 * Wβ1 + εi
1.884 1.812 0.9468 0.9730 1,127.54 0.9860 1.1795 y"ᵢ  = 1.884 * W1.812

7 y"ᵢ  = β0 * LWβ1 + εi
0.750 0.978 0.9982 0.9944 573.87 0.9971 0.5396 y"ᵢ  = 0.750 * LW0.978

8 y"ᵢ  = β0 * β1
L + εi

1.743 1.363 0.9432 0.9711 1,160.53 0.9841 1.2358 y"ᵢ  = 1.743 * 1.363L

9 y"ᵢ  = β0 * β1
W  + εi

1.898 1.914 0.9286 0.9636 1,239.21 0.9800 1.3811 y"ᵢ  = 1.898 * 1.914W

10 y"ᵢ  = β0 * 1
LW + εi

4.466 1.055 0.9286 0.9636 1,232.40 0.9800 1.3811 y"ᵢ  = 4.466 * 1.055LW

IAC Tatuí

1 y"ᵢ  = β0 + β1 * L + εi
-6.688 3.147 0.9260 0.9623 1,295.45 0.9804 1.2127 y"ᵢ  = -6.688 + 3.147 * L

2 y"ᵢ  = β0 + β1* W + εi
-8.659 7.411 0.9086 0.9533 1,379.91 0.9755 1.3477 y"ᵢ  = -8.659 + 7.411 * W

3 y"ᵢ  = β0 + β1 * LW + εi
0.164 0.692 0.9821 0.9910 727.08 0.9954 0.5959 y"ᵢ  = 0.164 + 0.692 * LW

4 y"ᵢ  = β1 * LW + εi
--- 0.701 0.9822 0.9910 729.29 0.9954 0.5991 y"ᵢ  =0.701 * LW

5 y"ᵢ  = β0 * Lβ1 + εi
0.493 1.774 0.9447 0.9719 1,179.73 0.9856 1.0494 y"ᵢ  = 0.493 * L1.774

6 y"ᵢ  = β0 * Wβ1 + εi
1.635 1.914 0.9213 0.9598 1,321.40 0.9788 1.2527 y"ᵢ  = 1.635 * W1.914

7 y"ᵢ  = β0 * LWβ1 + εi
0.739 0.982 0.9975 0.9910 726.21 0.9954 0.5953 y"ᵢ  = 0.739 * LW0.982

8 y"ᵢ  = β0 * β1
L + εi

1.942 1.344 0.9306 0.9646 1,276.71 0.9808 1.1846 y"ᵢ  = 1.942 * 1.344L

9 y"ᵢ  = β0 * β1
W  + εi

1.790 1.937 0.8968 0.9470 1,436.96 0.9702 1.4474 y"ᵢ  = 1.790 * 1.937W

10 y"ᵢ  = β0 * 1
LW + εi

4.380 1.057 0.8968 0.9470 1,284.08 0.9702 1.4474 y"ᵢ  = 4.380 * 1.057LW

Pooled data

1 y"ᵢ  = β0 + β1 * L + εi
-6.200  3.114  0.8709 0.9332 9,980.91 0.9644 1.6427 y"ᵢ  = -6.200 + 3.114 * L

2 y"ᵢ  = β0 + β1* W + εi
-5.859 6.411 0.7771 0.8815 11,403.4 0.9341 2.1587 y"ᵢ  = -5.859 + 6.411 * W

3 y"ᵢ  = β0 + β1 * LW + εi
0.660 0.674 0.9183 0.9583 8,789.13 0.9783 1.3067 y"ᵢ  = 0.660 + 0.674 * LW

4 y"ᵢ  = β1 * LW + εi
--- 0.709 0.9189 0.9583 8,880.40 0.9786 1.3303 y"ᵢ  = 0.709 * LW

5 y"ᵢ  = β0 * Lβ1 + εi
0.564 1.714 0.8882 0.9424 9,606.55 0.9696 1.5288 y"ᵢ  = 0.564 * L1.714

6 y"ᵢ  = β0 * Wβ1 + εi
2.297 1.593 0.7806 0.8835 11,363.9 0.9345 2.1423 y"ᵢ  = 2.297 * W1.593

7 y"ᵢ  = β0 * LWβ1 + εi
0.875 0.929 0.9883 0.9586 8,770.83 0.9784 1.3021 y"ᵢ  = 0.875 * LW0.929

8 y"ᵢ  = β0 * β1
L + εi

2.107 1.332 0.8723 0.9340 9,976.25 0.9633 1.6412 y"ᵢ  = 2.107 * 1.332L

9 y"ᵢ  = β0 * β1
W  + εi

2.456 1.735 0.7544 0.8685 11,675.9 0.9219 2.2746 y"ᵢ  = 2.456 * 1.735W

10 y"ᵢ  = β0 * 1
LW + εi

4.700 1.054 0.7544 0.8685 10,184.6 0.9219 2.2746 y"ᵢ  = 4.700 * 1.054LW

The equation proposed to estimate the area of peanut leaflets presented high adjustment (R2 = 0.9883) of the  
data about the adjustment of the line, in which the residual variance was homogeneous with low dispersion of the data 
(normal distribution) (Fig. 5). The area of leaflets estimated from the equation recommended in the present study 
showed positive correlation with the observed area of leaflets (determined by digital images), with the coefficient of 
determination (R2) of 0.9791, confirming a significant relationship between these parameters (Figs. 6a and 6b). Thus, 
regardless of the cultivar, the equation y"ᵢ  = 0.875 * LW0.929 can efficiently estimate the area of peanut leaflets by speed 
using product dimensions between LW.
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Figure 4. (a) Principal component analysis of six peanut cultivars leaf parameters. The large circle represents the cluster formed by the 
Euclidean similarity distance. (b) Loading plot between length, width, product between length and width, and leaflet area of peanut cultivars. 
(c) Design of peanut cultivars: IAC Caiapó (1), IAC 8112 (2), Runner IAC 886 (3), BRS Havana (4), BRS 151 L7 (5), and IAC Tatuí (6). 
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Figure 5. Relation between the observed leaflet area and the product between length and width of leaflets of peanut cultivars (pooled data), 
from the model LA = 0.875*LW0.929. The analysis of the dispersion pattern of the residues is presented in the insert.
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Figure 6. (a) Relationship between the observed leaflet area and the leaflet area estimated by the model as a function of the product of 
length and width (LA = 0.875*LW0.929). The analysis of the dispersion pattern of the residues is presented in the insert. (b) Observed and 
estimated leaflet areas compared with each other using Student’s t-test (p < 0.01).

DISCUSSION

This study describes a non-destructive method to estimate the LA of peanut cultivars, seeking to build a single model 
that allows estimating the LA of six cultivars. Therefore, we observed that the cultivars showed little intraspecific difference 
in leaflet morphology, confirming the possibility of building a single model to estimate the peanut LA.

The wide variability observed in the data of LW and LA (CV > 33.9%) is fundamental for studies related to allometric 
modeling to estimate the leaf area of plant species (Dalmago et al. 2019, Toebe et al. 2019). This high variability allows for 
more representative models and precise equations for leaves of different shapes and sizes, which can measure at different 
phenological stages during the plant cycle (Cargnelutti Filho et al. 2021). Although the implemented experiment was in 
only one area, it is considered that the total number of leaflets sampled (2,605) in all parts of the plants (middle, lower and 
upper thirds) was adequate for the construction of models that determine the area of peanut leaflets as a function of linear 
dimensions (L, W and or LW). Some studies have reported that a small number of samples (leaves or leaflets) to build 
allometric models can generate biased and unreliable equations for estimating the leaf area of plants (Pompelli et al. 2012).

The present study showed that the best equations to estimate the LA of peanut cultivars were those that used LW, 
compared to equations that used only one leaflet dimension (L or W), with the best criteria and adjustments of the models 
used (Guimarães et al. 2019, Macário et al. 2020, Goergen et al. 2021), except for the exponential model, in which the best 
equations were those that used L of the leaflets (Ribeiro et al. 2020).

Leaf area can also be estimated using only a single dimension of the leaf surface (L or W), simplifying the analyses. 
However, using equations with only one size can lead to a loss of model precision for the leaf area estimation (Pompelli 
et al. 2012), which was observed in the present study with the minor adjustments of the proposed models, except for the 
exponential model, in which the equation using leaflet L was the most adequate to estimate LA.

Generally, linear models are the most used to estimate the leaf area of agricultural and forest species (Gomes et al. 2020, 
Goergen et al. 2021, Hernandéz-Fernandez et al. 2021, Mela et al. 2022). However, it is assumed that these models are 
used with losses in precision, which often occurs due to the high values of the intercepts (β0) of the regression line (Santos 
et al. 2021). Therefore, in this study, we observed that we disregarded the use of linear models #1 and #2 for all peanut 
cultivars. According to Zuur et al. (2010), linear models show high residual dispersion, indicating that these models are not 
recommended to estimate leaf area during leaf development throughout the crop cycle, whereas nonlinear models are the 
most suitable for determining leaf area. The nonlinear Eq. 8, obtained through the power model, was the most appropriate 
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to estimate the LA of the cultivars individually and in general. This model was also the most suitable for estimating the leaf 
area of other plant species (Trachta et al. 2020, Toebe et al. 2021).

The proposed equations can estimate the LA of peanut cultivars at different phenological stages and crop planting 
conditions. Thus, the data obtained are fundamental for researchers who seek to evaluate this species vegetative growth 
and development, physiology, and production, in different environments and planting conditions.

CONCLUSION

We can apply the non-destructive method using allometric models accurately to estimate the peanut LA from the linear 
dimensions of the leaflet. Peanut LA can be more accurately estimated using the equation y"ᵢ  = 0.875 * LW0.929 using LW. 
This equation will allow researchers to make non-destructive measurements or repeat measurements on the same leaves 
or plants during the crop cycle.
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