Acessibilidade / Reportar erro

Coleopterous galls from the Neotropical region

Abstracts

Data on Neotropical coleopterous galls were compiled from the literature, which showed that 82 galls have so far been recorded among 77 plant species. The Fabaceae and Asteraceae plant families display the greatest richness in galls. Most galls are induced on stems or buds, while leaves constitute the second most attacked plant organ. Only 16 coleopteran gallers have been identified at the species level; most records are presented at the order level. The identified species belong to four families: Apionidae, Buprestidae, Curculionidae and Erirhinidae. The galls are found in Argentina, Brazil, Belize, Chile, Colombia (probably), Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama and Venezuela. Eighteen species of Coleoptera are inquilines of galls and are associated with 18 plant species, most frequently with Asteraceae, Melastomataceae and Fabaceae. The inquilines were recorded mainly in leaf galls induced by Cecidomyiidae (Diptera). The identity of these weevils is poorly known. General data indicate a lack of taxonomic studies in the Neotropical region.

Coleoptera; Diversity; Galler; Inquiline; Neotropics


Informações sobre galhas induzidas por Coleoptera na região neotropical foram compiladas a partir da literatura. Oitenta e duas galhas foram assinaladas em 77 espécies de plantas. Fabaceae e Asteraceae foram as famílias botânicas que apresentaram maior riqueza de galhas. A maioria das galhas desenvolveu-se em caule ou gema; as folhas foram o segundo órgão vegetal mais atacado. Apenas 16 indutores estão identificados em nível de espécie, estando a maior parte dos registros em nível de ordem. As espécies identificadas pertencem a quatro famílias: Apionidae, Buprestidae, Curculionidae e Erirhinidae. As galhas foram coletadas na Argentina, Brasil, Belize, Chile, Colômbia (provavelmente), Costa Rica, El Salvador, Guatemala, Honduras, México, Nicarágua, Panamá e Venezuela. Dezoito espécies de Coleoptera são inquilinas de galhas e estão associadas com 18 espécies de planta, sendo mais freqüentes em are Asteraceae, Melastomataceae e Fabaceae. Os inquilinos ocorreram principalmente em galhas foliares induzidas por Cecidomyiidae (Diptera). O conhecimento taxonômico desses besouros é escasso, indicando a carência de estudos na região neotropical.

Coleoptera; Diversidade; Galhador; Inquilino; Neotropical


Coleopterous galls from the Neotropical region

Valéria Cid Maia

Museu Nacional, Departamento de Entomologia. Quinta da Boa Vista, São Cristóvão, CEP 20940-040, Rio de Janeiro, RJ, Brasil. E-mail: maiavcid@acd.ufrj.br

ABSTRACT

Data on Neotropical coleopterous galls were compiled from the literature, which showed that 82 galls have so far been recorded among 77 plant species. The Fabaceae and Asteraceae plant families display the greatest richness in galls. Most galls are induced on stems or buds, while leaves constitute the second most attacked plant organ. Only 16 coleopteran gallers have been identified at the species level; most records are presented at the order level. The identified species belong to four families: Apionidae, Buprestidae, Curculionidae and Erirhinidae. The galls are found in Argentina, Brazil, Belize, Chile, Colombia (probably), Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama and Venezuela. Eighteen species of Coleoptera are inquilines of galls and are associated with 18 plant species, most frequently with Asteraceae, Melastomataceae and Fabaceae. The inquilines were recorded mainly in leaf galls induced by Cecidomyiidae (Diptera). The identity of these weevils is poorly known. General data indicate a lack of taxonomic studies in the Neotropical region.

Key-Words: Coleoptera; Diversity; Galler; Inquiline; Neotropics.

RESUMO

Informações sobre galhas induzidas por Coleoptera na região neotropical foram compiladas a partir da literatura. Oitenta e duas galhas foram assinaladas em 77 espécies de plantas. Fabaceae e Asteraceae foram as famílias botânicas que apresentaram maior riqueza de galhas. A maioria das galhas desenvolveu-se em caule ou gema; as folhas foram o segundo órgão vegetal mais atacado. Apenas 16 indutores estão identificados em nível de espécie, estando a maior parte dos registros em nível de ordem. As espécies identificadas pertencem a quatro famílias: Apionidae, Buprestidae, Curculionidae e Erirhinidae. As galhas foram coletadas na Argentina, Brasil, Belize, Chile, Colômbia (provavelmente), Costa Rica, El Salvador, Guatemala, Honduras, México, Nicarágua, Panamá e Venezuela. Dezoito espécies de Coleoptera são inquilinas de galhas e estão associadas com 18 espécies de planta, sendo mais freqüentes em are Asteraceae, Melastomataceae e Fabaceae. Os inquilinos ocorreram principalmente em galhas foliares induzidas por Cecidomyiidae (Diptera). O conhecimento taxonômico desses besouros é escasso, indicando a carência de estudos na região neotropical.

Palavras-Chave: Coleoptera; Diversidade; Galhador; Inquilino; Neotropical.

INTRODUCTION

From an evolutionary standpoint, galls can be seen as adaptations that allow some insect taxa to feed on high quality tissues and protect themselves from natural enemies and harsh abiotic factors (Price et al., 1986; Fernandes et al., 1994). Galling insects are among the most specialized herbivores. They are typically "host, organ and tissue specific" (Shorthouse & Rohfritsch, 1992). In fact, galling insects have an intimate relationship with their host plant that enables them to induce proliferation of plant cells (the gall) in a pattern characteristic of the galling species. Due to this, several authors have used gall morphotypes as a surrogate for the galling species (Fernandes & Price, 1988; Hanson & Gómez-Laurito, 2005), as well as tools in plant systematics [Raman, 1996; Abrahamson et al., 1998).

Coleopterous galls generally attack branches while cecidomyiideans galls occur more frequently on leaves. This pattern was indicated by Houard in 1933, and corroborated by Maia & Oliveira, 2004. Other insect orders with galling species also show preference for some plant organs; e.g. Lepidoptera for bud and stem, Hemiptera and Thysanoptera for leaves (Maia, 2006).

Many coleopterous galls have been recorded in the Neotropical region, but data are scattered in the literature. Therefore, the diversity of these gallers is poorly understood. Many hypotheses have been suggested to explain insect gall diversity, considering global, regional and local patterns (Fagundes & Fernandes, 2011), as well as different ecological levels (intra-specific, interspecific and community) (Fleck & Fonseca 2007). Among them, the hypotheses of plant species richness (Southwood, 1960, 1961), plant architecture (Lawton, 1983), harsh environment (Fernandes & Price, 1991), and hygrothermic stress (Fernandes & Price, 1988) have been tested, but the results are still controversial.

The main objective of this study was to compile the available information on coleopterous galls in the Neotropics, and to discuss inquilines, host plant preferences and distribution patterns.

MATERIAL AND METHODS

A search of the Thompson ISI database on papers published from 1934 through 2010 was conducted in July 2011, using 'Coleoptera (title) AND gall (topic)' as key-words. Among these papers, those focusing on the Neotropics were verified. Data before 1934 were extracted from the gall catalog of Houard, 1933.

The available information was organized into 10 tables that comprised host plant identification (family, genus and plant species), number of gall morph types per plant species, galled plant organ, galling species, distribution and references.

RESULTS AND DISCUSSION

A total of 82 coleopterous galls have been recorded in the Neotropics. These galls were distributed among 77 species of host plants (50 genera and 28 families) (see Table 1).

Fabaceae and Asteraceae were plant families with the greatest richness of galls (15 and 10 morphotypes, respectively). The other families displayed one to five gall morphotypes. Ten families (Alismaceae, Amaranthaceae, Anacardiaceae, Apocynaceae, Araceae, Bombacaceae, Curcubitaceae, Hippocrateaceae, Malvaceae, and Viscaceae) exhibited only one gall morphotype, while eleven families (Ebenaceae, Euphorbiaceae, Fagaceae, Gnetaceae, Malvaceae, Piperaceae, Rubiaceae Sapindaceae, Solanaceae, Sterculiaceae and Vitaceae) showed two morphotypes. A single family (Myrtaceae) presented four morphotypes; four families (Annonaceae, Lauraceae, Malpighiaceae and Myrtaceae) presented three; and three families (Bignoniaceae, Melastomataceae and Solanaceae) showed five morphotypes (Table 1). Fabaceae and Asteraceae are among the largest families of flowering plants in the world, as they are very diverse in the Neotropical region. Other gall-inducing insects commonly attack these plant families as well, including cecidomyiids (Diptera) and coccoids (Hemiptera) among others. The result corroborated the hypothesis that plant families with the greatest species richness display the greatest richness of galls (Southwood, 1960, 1961).

Most plant species demonstrate only one gall morphotype. Exceptions are Baccharis concinna Barroso (Asteraceae), Helicteres guazumaefolia H.B.K. (Sterculiaceae), Notophagous obliqua Blume (Fagaceae), and Tibouchina pulchra Cogn. (Melastomataceae) (Table 1), which demonstrate two morphotypes.

The galls are found in diverse biomes, occurring at dry as well as wet sites, but the majority was collected in xeric habitats (such as steppe, cerrado, restinga, caatinga, monte and semi-arid chaco forest). This corroborates the harsh environment hypothesis, which predicts that "gall formation evolves in response to harsh environments so that galling species richness will be greater in xeric habitats than in mesic habitats" (Fernandes & Price, 1991).

Most galls (about 62%) were induced on stems or buds, while leaves were the second most attacked plant organ (about 29%), followed by roots, flowers and tendrils, each with less than 3% (Table 2). No galls have been observed to occur on fruits. The number of gall morphotypes recorded (n = 76) was lower than the total number of galls (n = 82) because the plant organ has not been recorded for some galls (Table 2). The preference for stems has already been pointed out for gall-inducing coleopteran species (Houard, 1933; Maia & Oliveira, 2004). The stem was also the most attacked organ by galling lepidopteran species (Houard, 1933; Maia, 2006), contrasting with cecidomyiids (Diptera), which induce galls mainly on leaves (Gagné, 1994).

About 96% of gall inducers attacked a specific plant organ, except three species that have been observed attacking stems and leaves (petiole and midvein) simultaneously, as well as buds and leaves, corroborating plant organ specificity (Shorthouse & Rohfritsch, 1992).

Only 16 coleopteran gallers (about 20%) have been identified at the species level (Table 3). The other records have been presented at genera (n = 5), subfamily (5), family (n = 18), and order level (n = 38 or about 46%). These data demonstrate how poorly known the taxonomy of the galling species is.

The identified species belonged to thirteen genera distributed among four families (Table 4): Apionidae – Apion Herbst, 1797 (2 spp.) and Noterapion Kissinger, 2002 (1 sp.); Buprestidae – Hylaeogena Obenberger 1923 (1 sp.); Curculionidae – Collabismus Schoenherr, 1837 (1 sp.); Conotrachelus Dejean, 1835 (2 spp.); Craspedotus Schönh., 1844 (1 sp.); Cyrionyx Faust 1896 (1 sp.); Eurhinus Illiger 1807; HexacoIus Hagedorn, 1909 (1 sp.); Pacholenus Schoenherr, 1826 (2 spp.); Prospoliata Hustache, 1949 (1 sp.); Pseudomopsis Champion, 1905 (1 sp.); and Erirhinidae – Hypselus Schoenherr, 1843 (1 sp.). All of them were included in the same superfamily Curculionoidae. The identified galling species were associated with only one host plant species or with two congeneric species. Five galling weevils have been identified at the genus level: Apion (4 spp.) and Camptocheirus Lacordaire 1863 (1 sp.).

Coleopterous galls from the Neotropics had been recorded in 11 countries, most of them in Brazil (n = 53), followed by Costa Rica (n = 14), Argentina (n = 10), and Panama (n = 5). The other countries had one to three records, while no information was available for the other Neotropical localities (Table 5). The number of records (n = 93) was higher than the number of gall morphotypes (n = 82) because some galls had been recorded in two or more countries.

Data from Brazil was restricted to seven states, with Minas Gerais showing the majority of records (about 45%), followed by Mato Grosso do Sul, São Paulo, Rio de Janeiro, Pernambuco, Goiás and Bahia (Table 6). Data show the greatest number of gall morphotypes in the southeastern region of this country (Minas Gerais, São Paulo and Rio de Janeiro), which could be explained by the high amount of research in this area.

Eighteen species of Coleoptera were inquilines of galls. They were associated with 14 plant species (distributed in 14 genera and 10 different families), being more frequent on Asteraceae (n = 4), Fabaceae (n = 3) and Melastomataceae (n = 3). Two inquilines have been recorded on Myrtaceae and only one on Bignoniaceae, Boraginaceae, Clusiaceae, Fagaceae, Lamiaceae and Solanaceae (Table 7).

Inquilines have been recorded on leaf, stem and bud galls, and the majority (about 83%) on specific organs of host plant. Most inquilines were associated with leaf galls (72%), followed by stem and bud galls (Table 8). This reveals a difference between galling weevils and inquilines: the former occur mainly on buds and the latter preferentially on leaves.

Inquilines occurred mainly on galls induced by Cecidomyiidae (Diptera) (about 78%), while only one record has been associated with hymenopterous, lepidopterous and coleopterous galls (Table 9). This can be explained by the fact that the majority of insect galls in the world are induced by gall midges (Felt, 1940).

Inquilinous weevils were mainly identified at the family level (about 83%). (Table 10) There are two records at the species level and one at the order level, again demonstrating poor knowledge about the taxonomy of this group.

CONCLUSION

A total of 82 coleopterous galls are known in the Neotropical region. The majority is associated with Fabaceae. Most galls are induced on stems or buds. The taxonomy of galling weevils is poorly known, as well as data on their geographical distribution. Inquiline weevils of galls have been recorded in the Neotropics, but their identification is also deficient.

ACKNOWLEDGEMENT

I am grateful to the Conselho Nacional de Desenvolvimento Científico e Tecnológico for financial support (Proc. 300237/2010-3).

Aceito em: 01.03.2012

Publicado em: 29.06.2012

  • ABRAHAMSON, W.G.; MELIKA, G.; SCRAVORD, R. & CSÓKA, G. 1998. Gall inducing insects provide insights into plant systematic relationships. American Journal of Botany, 85:1159-1165.
  • ALMEIDA-CORTEZ, J.S.; ALVES-ARAÚJO, A.G.; SILVA, S.C.L. & IANNUZZI, L. 2006. Nota biológica e novo registro de Prospoliata bicolorata (Coleoptera, Curculionidae, Baridinae) em um fragmento de Mata Atlântica de Pernambuco. Biociências, 14(2):228-230.
  • CARNEIRO, M.A.A.; BORGES, R.A.X.; ARAÚJO, A.P.A. & FERNANDES, G.W. 1996. Insetos indutores de galhas da porção sul da Cadeia do Espinhaço, Minas Gerais, Brasil. Revista Brasileira de Entomologia, 53(4):570-592.
  • COELHO, M.S.; ALMADA, E.D.; FERNANDES, G.W.; CARNEIRO, M.A.A.; SANTOS, R.M. DOS; QUINTINO, A.V. & SANCHEZ-AZOFEIFA, A. 2009. Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil. Revista Brasileira de Entomologia, 53(3):404-441.
  • COSTA-LIMA, A. 1956. Insetos do Brasil. Coleópteros, 4Ş parte. Escola Nacional de Agronomia: Rio de Janeiro. v. 10, 373 p. (Série Didática nş 12).
  • FAGUNDES, M. & FERNANDES, G.W. 2011. Insect herbivores associated with Baccharis dracunculifolia (Asteraceae): responses of gall-forming and free-feeding insects to latitudinal variation. Revista de Biologia Tropical, 59(3):1419-32.
  • FELT, E.P. 1940. Plant Galls and Gall Makers. Comstock Publishing Co., Ithaca, N.Y. viii + 364p.
  • FERNANDES, G.W. & PRICE, P.W. 1988. Biogeographical gradients in galling species richness: tests of hypotheses. Oecologia, 76:161-167.
  • FERNANDES, G.W. & PRICE, P.W. 1991. Comparisons of tropical and temperate galling species richness: the roles of environmental harshness and plant nutrient status. In: Price, P.W.; Lewinsohn, T.M.; Fernandes, G.W. & Benson, W.W. (Eds.). Plant-animal interactions: evolutionary ecology in tropical and temperate regions. Wiley, New York. p. 91-115.
  • FERNANDES, G.W.; ARAÚJO, R.C.; ARAÚJO, S.C.; LOMBARDI, J.A.; PAULA, A.S. DE; LOYOLA-JÚNIOR, R. & CORNELISSEN, T.G. 1997. Insect galls from savanna and rocky fields of the Jequitinhonha Valley, Minas Gerais, Brazil. Naturalia, 22:221-244.
  • FERNANDES, G.W.; BOECKLEN, W.J.; MARTINS, R.P. & CASTRO, A.G. 1989. Ants associated with a coleopterous leaf-bud gall on Xylopia aromatica (Annonaceae). Proceedings of the Entomological Society of Washington, 91(1):81-87.
  • FERNANDES, G.W.; CARNEIRO, M.A.A.; LARA, A.C.F.; ALAIN, L.R.; ANDRADE, G.I.; JULIÃO, G.R.; REIS, T.R. & SILVA, I.M. 1996. Galling insects on neotropical species of Baccharis (Asteraceae). Tropical Zoology, 9:315-332.
  • FERNANDES, G.W.; LARA, C.F.L. & PRICE, P.W. 1994. The geography of galling insects and the mechanisms that result in patterns. In: Price, P.W.; Mattson, W. J & Baranchikov, Y. (Eds.).The ecology and evolution of gall-forming insects. Forest Service U.S. Department of Agriculture, St. Paul. p. 42-48.
  • FERNANDES, G.W.; TAMEIRÃO NETO, E. & MARTINS, R.P. 1988. Ocorrência e Caracterização de galhas entomógenas na vegetação do campus Pampulha da Universidade Federal de Minas Gerais. Revista Brasileira de Zoologia, 5(1):11-29.
  • FERNANDES, G.W.; VARELA, O.; BUCHER, E.H.; CHAN, J.M.; ECHEVARRIA, P.A.L.; ESPÍRITO SANTO, M.M.; LIRNA, J.; NEGREIROS, D. & TOLEDO, C.S. 2002. Gall-forming insects on woody and herbaceous plant species of the semi-arid chaco Forest, Argentina. Lundiana, 3(1):61-66.
  • FERNANDES, S.P.C.; CASTELO-BRANCO, B.P.; ALBUQUERQUE, F.A. DE; FERREIRA, A.L.N.; BRITO-RAMOS, A.B.; BRAGA, D.V.V. & ALMEIDA-CORTEZ, J. 2009. Galhas entomógenas em um fragmento urbano de Mata Atlântica no centro de endemismo de Pernambuco. Revista Brasileira de Biociências, 7(3):240-244.
  • FIEDLER, C. 1940. Monograph of the South American weevils of the genus Conotrachelus. British Museum (Natural History), London. 365p.
  • FLECK, T. & FONSECA, C.R. 2007. Hipóteses sobre a riqueza de insetos galhadores: uma revisão considerando os níveis intra-específico, interespecífico e de comunidade. Neotropical Biology and Conservation, 2(1):36-45.
  • GAGNÉ, R.J. 1994. The gall midges of the Neotropical Region. Cornell University Press, Ithaca. 352p.
  • GONÇALVES-ALVIM, S.J. & FERNANDES, G.W. 2001. Comunidades de insetos galhadores (Insecta) em diferentes fisionomias do cerrado em Minas Gerais, Brasil. Revista Brasileira de Zoologia, 18(Supl. 1):289-305.
  • HANSON, P.E. & GÓMEZ-LAURITO, J. 2005. Diversity of gall-inducing Arthropods of Costa Rica. In: Raman, A.; Schaefer, C.W. & Withers, T.M., (Eds). Biology, ecology, and evolution of gall-inducing arthropods. Science Publishers Inc., New Hampshire. v.2, p. 673-692.
  • HOUARD, C. 1933. Les Zoocécidies des Plantes de L'Amérique du Sud et de L'Amérique Centrale. Hermann et Cie, Paris. 549 p.
  • JÖRGENSEN, P. 1916. Zoocecidios argentinos. Physis, 2:349-365.
  • JULIÃO, G.R.; AMARAL, M.E.C. DO & FERNANDES, G.W. 2002. Galhas de insetos e suas plantas hospedeiras no pantanal sul matogrossense. Naturalia, 27:47-74.
  • KIEFFER, J.J. & HERBST, P. 1905. Ueber Gallen und Gallenerzeuger aus Chile. Zeitschrift für wissenschaftliche Insekten-Biologie, 10:63-66.
  • KIEFFER, J.J. & JÖRGENSEN, P. 1910. Gallen und Gallentiere aus Argentinien. Centralblatt für Bakteriologie und Parasitenkunde, 2(27):362-444.
  • KISSINGER, D.G. & LINDA, L. 2002. Review of Noterapion kissinger from Chile and Argentina (Coleoptera: Apionidae). Insecta Mundi, 16(4):221-246.
  • LAWTON, J.H. 1983. Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology, 28:23-29.
  • MAIA, V.C. 2006. Galls of hemiptera, lepidoptera and thysanoptera from Central and South America. Publicações Avulsas do Museu Nacional, 110:3-22.
  • MAIA, V.C. & FERNANDES, G.W. 2004. Insect galls from Serra de São José (Tiradentes, MG, Brazil). Brazilian Journal of Biology, 64(3A):423-445.
  • MAIA, V.C. & OLIVEIRA, J.C. de 2004. Coleoptera associated with galls from South America with new records. Arquivos do Museu Nacional, 62(2):179-184.
  • MAIA, V.C.; MAGENTA, M.A.G. & MARTINS, S.E. 2008. Ocorrência e caracterização de galhas de insetos em áreas de restinga de Bertioga (São Paulo, Brasil). Biota Neotropica, 8(1):167-197.
  • MEDIANERO, E.; PANIAGUA, M.C. & BARRIOS, H. 2007. Galls Produced by Hylaeogena thoracica (Coleoptera: Buprestidae) and the Effect of the Inquiline Philides anthonomoides (Coleoptera: Curculionidae). The Coleopterists Bulletin, 61(4):568-572.
  • MONTEIRO, R.F.; FERRAZ, F.F.; MAIA, V.C. & AZEVEDO, M.A.P. 1993. Galhas entomógenas em restinga: uma abordagem preliminar. In: Simpósio de Ecossistemas da Costa Brasileira,3ş, São Paulo. Anais. ACIESP, São Paulo. p. 210-220.
  • MOREIRA, R.G.; FERNANDES, G.W.; ALMADA, E.D. & SANTOS, J.C. 2007. Galling insects as bioindicators of land restoration in an area of Brazilian Atlantic Forest. Lundiana, 8(2):107-112.
  • PRICE, P.W.; WARING, G.L. & FERNANDES, G.W. 1986. Hypotheses on the adaptive nature of galls. Proceedings of the Entomological Society of Washington, 88:361-363.
  • RAMAN, A. 1996. Nutritional diversity in gall-inducing insects and their evolutionary relationships with flowering plants. International Journal of Ecology & Environmental Sciences, 22:133-143.
  • SANTOS, J.C.; ALMEIDA-CORTEZ, J.S. DE & FERNANDES, G.W. 2001. Richness of gall-inducing insects in the tropical dry Forest (caatinga) of Pernambuco. Revista Brasileira de Entomologia, 55(1):45-54.
  • SHORTHOUSE, J.D. & ROHFRITSCH, O. 1992. Biology of insect-induced galls. Oxford University Press, New York.
  • SOUTHWOOD, T.R.E. 1960. The abundance of the Hawaiian trees and the number of their associated insect species. Proceedings of Hawaiian Entomology Society, 17:299-303.
  • SOUTHWOOD, T.R.E. 1961.The number of insect associated with various trees. Journal of Animal Ecology, 30:1-8.
  • SOUZA, R.A.; NESSIM R.; SANTOS, J.C. & FERNANDES, G.W. 2006. Influence of Apion sp. (Brentidae, Apioninae) stem-galls on induced resistance and leaf area of Diospyros hispida (Ebenaceae). Revista Brasileira de Entomologia, 50(3):433-435.
  • TAVARES, J.S. 1917. Cecídias brasileiras que se criam em plantas das famílias das Compositae, Rubiaceae, Tiliaceae, Lythraceae e Artocarpaceae. Brotéria (Série Zoológica), 15:113-181.
  • ULMER, B.J.; DUNCAN, R.E.; PENA, J.E. 2010. A Weevil, Eurhinus magnificus Gyllenhal (Insecta: Coleoptera: Curculionidae). Disponível em: www.edis.ifas.ufl.edu/pdffiles/IN/IN75100.pdf, 2010.
  • VANIN, S.A. 2008. A new species of Pacholenus Schoenherr from southeastern Brazil (Coleoptera, Curculionidae, Molytinae), and new occurrences of species of the genus. Papéis avulsos de Zoologia, 48(30):345-351.
  • VANIN, S.A.; MONTEIRO, R.F. & F.F. FERRAZ, 2000. Ecological notes of Pacholenus pelliceus Boheman, 1836, a stem gall-former, with description of full grown larva (Curculionidae, Molytinae). Papéis Avulsos de Zoologia, 41(17):247-257.
  • WHITEHEAD, D.R. 1978. Apion (Trichapion) candyae, New Species (Coleoptera: Curculionidae), a Gall-Maker on Leaf Petioles of Erythrina berteroana Urban (Fabaceae) in El Salvador. The Coleopterists Bulletin, 32(3):193-201.
  • ZACHARIADES, C.; STRATHIE, L.; DELGADO, O. & RETIEF, E. 2007. Pre-release research on biocontrol agents for Chromolaena in South Africa. In: Lai, P.-Y.; Reddy, G.V.P. & Muniappan R. (Eds). International Workshop on Biological Control and Management of Chromolaena and Mikania, 7ş. Proceedings. National Pingtung University, Taiwan. p. 68-80.

Publication Dates

  • Publication in this collection
    25 June 2012
  • Date of issue
    2012

History

  • Received
    01 Mar 2012
  • Accepted
    29 June 2012
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br