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ABSTRACT

Dengue fever is re-emerging worldwide, however the reasons of this new emergence 

are not fully understood. Our goal was to report the incidence of dengue in one of the most 

populous States of Brazil, and to assess the high-risk areas using a spatial and spatio-temporal 

annual models including geoclimatic, demographic and socioeconomic characteristics. An 

ecological study with both, a spatial and a temporal component was carried out in Sao Paulo 

State, Southeastern Brazil, between January 1st, 2007 and December 31st, 2019. Crude and 

Bayesian empirical rates of dengue cases following by Standardized Incidence Ratios (SIR) 

were calculated considering the municipalities as the analytical units and using the Integrated 

Nested Laplace Approximation in a Bayesian context. A total of 2,027,142 cases of dengue 

were reported during the studied period. The spatial model allocated the municipalities in 

four groups according to the SIR values: (I) SIR<0.8; (II) SIR 0.8<1.2; (III) SIR 1.2<2.0 

and SIR>2.0 identified the municipalities with higher risk for dengue outbreaks. “Hot spots” 

are shown in the thematic maps. Significant correlations between SIR and two climate 

variables, two demographic variables and one socioeconomical variable were found. No 

significant correlations were found in the spatio-temporal model. The incidence of dengue 

exhibited an inconstant and unpredictable variation every year. The highest rates of dengue 

are concentrated in geographical clusters with lower surface pressure, rainfall and altitude, 

but also in municipalities with higher degree of urbanization and better socioeconomic 

conditions. Nevertheless, annual consolidated variations in climatic features do not influence 

in the epidemic yearly pattern of dengue in southeastern Brazil.

KEYWORDS: Dengue. Arbovirus. Infectious diseases outbreak. Epidemiologic study. 

Spatiotemporal analysis.

INTRODUCTION 

Dengue fever is an acute infection caused by any of the four Dengue Virus 
(DENV) serotypes (DENV1-4). DENV belongs to the family Flaviviridae, genus 
Flavivirus, and is transmitted by female mosquitoes of the genus Aedes1,2. Despite 
the growing economical investment in the prevention of dengue, it is still considered 
a neglected tropical disease and the most frequent vector-borne disease globally1.

The annual incidence of dengue infections was estimated at around 400 million 
per year (284 to 528 million)3,4. The study on the Global Burden of Disease included 
1,636 country-years of case reports of dengue from 76 countries. This study reported 
that dengue was increasing at a higher rate than any other communicable disease 
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until 2013, with a 400% increase over a period of just 13 
years (2000 to 2013). The number of apparent cases more 
than doubled every decade, from 8.3 million in 1990 to 
58.4 million in 20135. Asia accounts for 75% of the dengue 
disease burden, followed by Latin America and Africa3,5. 
According to the Pan American Health Organization, Brazil 
and Colombia contributed with most of the cases in South 
America6. Brazil experienced a major outbreak in 2019, 
with over 2 million reported cases nationwide, including 
over 1,400 cases of severe dengue6.

The reasons for the global re-emergence of dengue 
are not fully understood, and several studies have been 
conducted to determine the factors associated with its 
increasing incidence2. Despite most cases following an 
epidemic pattern related to seasonal periods during a 
12-month period, a widespread yearly occurrence of dengue 
has also been observed6.

Taking advantage of the mandatory notification of dengue 
in Brazil, we have explored the inconstant epidemiological 
pattern of dengue outbreaks in the last 12-year period in the 
most populous State of Brazil, using annual consolidated 
geoclimatic data in a spatiotemporal risk model analysis 
including demographic and socioeconomic factors.

MATERIALS AND METHODS

Design and location of study

This is an ecological study that was carried out in Sao 
Paulo State (SP). Each one of its 645 municipalities was 
used as the analytical units. SP is located in Southeastern 
Brazil (23o32’S 46o38’W) covering a total area of 
248,219  km2. The State had an estimated population of 
44,919,049 people in 2019, being one of the most populous 
areas in the Americas7. The State territory covers seven 
distinct climate types, taking into account the temperature 
and rainfall, varying from a subtropical climate in the 
mountainous area to a super-humid tropical type on the 
coast. SP is the richest Brazilian state with the second-
highest Human Development Index (HDI 0,783) and gross 
domestic product per capita (GDP US$ 16,535) amongst 
the Brazilian States7.

Dengue fever cases and sources of information

Confirmed autochthonous dengue fever cases registered 
by the Sistema de Informacao de Agravos de Notificacao 
(SINAN – Information System on Notifiable Diseases) 
were used, in the period between January 2007 and 
December 2019, according to the date of onset of symptoms. 
Geoclimatogical, demographic and socioeconomic 

characteristics of each city in SP were collected from the 
national and State database, including the Instituto Brasileiro 
de Geografia e Estatistica (IBGE – Brazilian Institute of 
Geography and Statistics), Fundacao Sistema Estadual de 
Analise de Dados (SEADE Research Foundation), and the 
global land-surface dataset ERA-5. All sources are available 
for public access. 

Study variables

Dengue cases were extracted per epidemiological week, 
followed by the annual total for each municipality. The 
incidence was calculated annually according to the estimate 
population of each municipality every year7. Climatological 
data, including minimum, mean and maximum daily 
values for rainfall (millimeters), temperature (oC), dew 
point (oC), and surface pressure (Pa) were extracted daily, 
followed by the annual (mean) consolidation for the 
modeling, yearly. Further covariates were also included, as 
follow: geographical characteristics, including latitude (o), 
longitude (o) and altitude (meters). Biome data were 
available by cities as Atlantic forest, savanna or both (as 
available in databases). Demographic characteristics were 
also included by municipality, as follow: demographic 
density (inhabitants per km2) based on the area of territorial 
unit each year, degree of urbanization (%), population 
living in urban and rural settings (%), and the annual 
geometric rate of growth (%). Finally, socioeconomic 
characteristics of each city were also tested and included 
in the model: average monthly wage of formal workers 
(number of minimum wage = US$211,11 in 2019 reais), 
GDP per capita, population in rural activities (%), HDI, 
infant mortality (deaths per 1,000 live births), number of 
public health-care units, number of public hospital beds 
(coefficient per 1,000 inhabitants), number of registered 
nurses and physicians (rate per 1,000 inhabitants), and the 
proportion of the population with access to potable water, 
garbage colletion and sewer.

Exploratory spatial analysis

Contiguity matrix
Each municipality of SP was considered a federative 

entity of a lower hierarchical level created within the 
federative unit; however, the municipalities are grouped 
in 11 intermediate geographical regions due to local 
common characteristics (Supplementary Figure S1A)8. 
These intermediate regions suggest a close relationship 
and a spatial dependence between them, and between the 
municipalities included in each of the groups. Thus, the 
Queen-type contiguity matrix was used, which considers 
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the neighboring municipalities with at least one common 
border point, regardless of the direction of the points9. 
The Supplementary Figure S1B represents the Queen-
type contiguity matrix of SP, evidencing an average of 
5.68 connections per municipality. The municipality of 
Ilhabela was excluded from the spatial analysis because 
it is an island. 

Calculation of crude and empirical Bayesian rates of the 
incidence of dengue

The crude and empirical Bayesian rates of the incidence 
of dengue for each city were calculated and thematic maps 
of the respective rates were then created. The empirical 
Bayesian local estimator considers the adjustment of the 
rate of each city by the rates of its neighbors through 
the contiguity matrix. In order to assess the spatial 
autocorrelation, Moran’s Global Index and Geary’s Global 
Statistics were also calculated10.

Data analysis

This ecological study presents both, a spatial and a 
temporal component.

Spatial model
The total number of cases of dengue y

i
 observed for 

each municipality i (1 ≤ i ≤ 644) between 2007 and 2019 
was modelled by a Poisson distribution. The expected 
number of events is calculated under the assumption that 
the dengue incidence rate is constant in all municipalities. 
Considering N

i
 as the yearly population in each municipality, 

the expected number of events E
i
 is calculated as 

. Thus, the number of dengue cases in each 

municipality to be estimated by the model, defined as η
i
, is 

determined by a linear predictor on the logarithmic scale 
η

i
 = b

0
 + u

i
 + v

i
, where b

0
 represents the intercept or the 

overall general rate; u
i
 and v

i
 are two area specific effects, 

assuming Besag-York-Mollie (BYM) specification11. The 
effect u

i
 is the spatially structured residual, modelled 

by an Intrinsic Conditional Autoregressive Structure 
(iCAR) denoted by: u

i
  |  u

j≠i
 ∼  Normal  (m

i
,  s

i
2), where 

, and . #V(i) represents  

the neighboring municipalities with at least one common 
border point (contiguity matrix)12. The effect v

i
 is the 

unstructured residual, modelled by an exchangeable 
prior11,12. An Integrated Nested Laplace Approximation 
(INLA) was used for estimating the parameters of the 
model13. The selection of the statistical model was carried 

out using the Deviance Information Criterion, using the 
smallest value as the best-adjusted model14, comparing 
the models without covariates, with climate variables only, 
and with all the covariates included. For each covariate, the 
estimate of the parameters and their respective credibility 
intervals were calculated as appropriated. Exponential 
values >1 were considered as positive correlations, and 
exponential values <1 as negative correlations. Standardized 
incidence ratios (SIR) were calculated and municipalities 
were grouped by risk.

Spatio-temporal model
Complementary to the spatial model described 

above, a spatio-temporal risk model was also created 
including variables with annual variations: climate 
characteristics. For this purpose, the time was defined as 
a structured (fixed) effect, known as a parametric spatio-
temporal model13, denoted by: y

it
 ∼ Poisson (λ

it
), where  

η
it
 = E

it
⋅λ

it
, t = 1, 2, …, 13 (2007 to 2019).

Statistics
The statistical analysis, spatial and spatio-temporal 

models were performed using the R Statistic 4.0 (Windows, 
USA). The packages were used as follows: Rgdal to import 
digital maps15, ClassInt to define the numerical ranges 
of variables in the thematic maps16, Spdep to build the 
contiguity matrix, to obtain global and local empirical 
Bayesian rates, and to calculate the Global Moran Index 
and Global Geary Statistics17, and R-INLA for the Bayesian 
modeling18,19.

RESULTS

Dengue fever incidence in Sao Paulo State, from 
January 2007 to December 2019

A total of 2,027,142 cases of dengue were reported 
in SP during the studied period, revealing a gross 
incidence fluctuation with a peak of 1,481.88 cases per 
100,000 inhabitants in 2015 (Figure 1A). Figure 1B exhibits 
the particular epidemic pattern yearly per municipality, 
evidencing a remarkable peak of 32,183  cases per 
100,000 inhabitants in the municipality of Bom Sucesso 
de Itarare, in 2012. Supplementary Tables S1 and S2 
summarize the top 10 municipalities with the highest 
gross incidence and the highest absolute number of cases 
of dengue, respectively, during the studied period (2007 to 
2019). Interestingly, nine out of 10 of the municipalities 
with the highest gross incidence were from intermediate 
regions located in the Northwest of SP. The municipality 
of Sao Jose do Rio Preto was present in both tables, with a 
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gross incidence of 27.8% (5th place), and an absolute number 
of cases of dengue of 128,118 (2nd place). 

Exploratory spatial analysis

Thematic maps of gross incidences per municipality 
per year identified how the epidemic of dengue in 2015 
involved almost the whole State, in contrast with the second 
highest peak of 838.79 cases per 100,000 inhabitants in 
2019, which mainly involved the Northwestern region 
(Figure 1C). Exploratory maps of climate factors were also 
created (Supplementary Figure S2). 

Bayesian rates and risk areas of dengue outbreaks

Figure 2 shows the maps created from the calculation 
of crude and empirical Bayesian local rates of dengue 
incidence for each municipality. Moran’s Global Index and 
Geary’s Global were 0.348 and 0.700, respectively. The 
municipalities with the highest incidence of dengue were 

located in the Northern region and on the coast, with lower 
incidence in the intermediate region of Sorocaba.

Spatial risk model

Consolidated spatial models from 2007 to 2019 are 
presented in Figure 3. Model 1 represents the SIR without 
covariates (Figure 3A) [DIC value = 6464.63], and Model 2 
includes the SIR with climate variables only (Figure 3B) 
[DIC value = 6464.43]. Finally, the Model 3 includes all 
the studied variables [DIC value = 6464.69], allocating the 
municipalities in four risk groups according to their SIR 
values: (I) SIR<0.8; (II) SIR 0.8<1.2; (III) SIR 1.2<2.0; and 
SIR>2.0 that identified the municipalities with higher risk 
for dengue outbreaks. Description of data by grouped risk 
is presented in the Supplementary Table S3. “Hot spots” of 
dengue outbreak are mainly located in the Northern of SP 
(Figure 4). The Model 3 evidenced a significant correlation 
between SIR and two climate variables (surface pressure 
and rainfall), two demographic variables (altitude and 

Figure 1 - A) Gross incidence of dengue fever cases per 100,000 inhabitants in a twelve-years period (2007 to 2019); B) Gross 
incidence of dengue fever cases per 100,000 inhabitants per municipality in a twelve-years period (2007 to 2019); C) Thematic 
maps from the gross incidences per municipality per year (2007 to 2019).
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degree of urbanization), and one socioeconomic variable 
(number of public hospital beds). The estimate of these 
significant covariates are shown in Table 1. 

Spatio-temporal risk model

No significant correlations were found in the 
spatio-temporal model (Supplementary Table S4 and 
Supplementary Figure S3).

DISCUSSION

In recent years, at least five human epidemic arboviruses 
have emerged or re-emerged mainly in tropical and 
subtropical settings: DENV, Zika virus, West Nile virus, 
Yellow Fever virus and Chikungunya virus. The expansion 
of mosquito-borne viral infections has been related to a 
combination of urbanization, globalization and weather 
changes, causing a significant and growing burden 
worldwide20,21. Brazil is not an exception, showing an 
increase of cases of dengue mainly in the Atlantic Coast 
and in the interior region of SP22.

Here, we revealed an irregular epidemiological behavior 
of dengue in one of the most affected Brazilian States22. 

As presented (Figure 1A), the graphical annual incidence 
in SP does not show any clear pattern in the last 12-year 
period, exhibiting a disorganized “up and down” curve 
through the years. In the same way, Rodrigues et al.22 also 
revealed a disorganized cyclic curve in Brazil, where the 
incidence of dengue (per 100,000 inhabitants) oscillated 
from 212 (2001-2002 period), to 74 (2003-2004 period), 
206 (2005-2006 period), 224 (2007-2008 period), 354 
(2009-2010 period), and finally to 211 (2011-2012 period). 
Immunological issues may explain these annual variations 
regarding the predominance of different DENV serotypes, 
leading to a greater exposure to reinfection and/or immune 
amplification. In fact, the replacement of serotype clades has 
been associated with new outbreaks and disease severity23. 
Thus, the predominance of DENV-1 and DENV-2 in 2000 
followed by the introduction of DENV-3 in 2003, may 
explain the outbreaks at the begging of the century24,25, 
and the re-emergence of DENV-1, associated with the 
importation of DENV-4 in 2010, justifying the peaks of 
dengue in the last decade26. Moreover, the expansion of 
DENV-4 can also be accounted for the peaks observed in 
SP during 2013 to 2015, as well as for the source for further 
expansion of dengue across other Brazilian States27.

Dengue has been largely related to demographic and 
climate changes; indeed, the behavior of the incidence of 
dengue is commonly correlated to weather variables as 
temperature, rainfall, surface pressure and/or dew point28-31. 
However, the nature of climate and its relationship with 
dengue is not that simple and does not always follow a 
logical correlation30,32,33. Firstly, our spatial risk model 
evidenced a preferential location of the cases of dengue 
across the studied area with well-defined clusters mainly 
distributed in Northern SP. Additionally, some climate 
variables were significantly correlated with its incidence: 
a positive correlation with surface pressure, and a negative 
correlation with altitude and rainfall. Nevertheless, the 
spatio-temporal model used in this study was not able 
to reveal any significant correlation with any of the 
geoclimatic, demographic and socioeconomic variables 
analyzed, probably due to a loss of sensitivity to detect 
fluctuations of these variables by the use of consolidated 
annual data. 

The rainfall is usually positively correlated with 
the incidence of dengue31. Actually, it seems logical 
to hypothesize that more rain would favor the grow of 
vectors29. Interestingly, we found a negative correlation with 
the annual rainfall, leading to a greater risk of outbreaks 
of dengue in municipalities with dryer conditions. Our 
results corroborated previous data on cases of dengue in the 
Brazilian territory, where most of the cases of dengue were 
significantly accumulated in areas with semi-arid climate 

Figure 2 - A) Thematic map of crude of dengue incidence per 
municipality; B) Thematic map of Bayesian empirical rates (local) 
of dengue incidence per municipality
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conditions, being 1.2 to 11 times higher than in tropical 
and subtropical settings22. These contradictory findings 
could be explained by weekly and monthly variations in 
rainfall, especially in the first four months of the year when 
precipitations reach their highest levels in Brazil, leading 
to an increment of the larvae density34,35. Additionally, the 
proliferation of the vector may not be caused directly by 

climate change as well, but rather, by the human response to 
changes in the patterns of rainfalls by increased or decreased 
use of water storage containers36.

The interaction between surface pressure and dengue 
seems to be dynamic, involving weekly variations and a 
complex interaction with other climate characteristics37. 
In the same way, the negative correlation with the altitude 
may also be explained by more favorable conditions to 
the development of larvae in lower altitudes. In any case, 
high altitudes (over 2,000 meters) do not seem to be an 
impediment to the growth of the vector38.

SP covers an extensive territory with a diversity of 
geoclimatic conditions, but also a variety of demographic 
and socioeconomic settings among their municipalities; 
the neighboring between them disclose a nested 
relationship. Interestingly, demographic and socioeconomic 
characteristics were positively and significantly correlated 
with the incidence of dengue. A greater number of 
cases was observed in municipalities with higher 
degree of urbanization and in those with more a higher 
availability of public hospital beds, given by the index per 
1,000 inhabitants. These two variables tend to be side by 

Figure 3 - A) Thematic map of spatial model (Model 01) without covariates; B) Thematic map of spatial model (Model 02) with 
climatic covariates; C) Thematic map of spatial model (Model 03) with all the studied covariates.

Figure 4 - Thematic map showing the cities with a standardized 
incidence ratios >2, reveling the “hot spots” of dengue cases 
in Sao Paulo State.
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side with the local demographic growing of each city. 
The adaptation of A. aegypti to urban context is well 

known39. It is expected that, in rural conditions, the 
inhabitants are more exposed to local fauna, including a 
higher exposure to insect bites; however, the urbanization 
of the cities contributes to create an ideal scenario for the 
growing of larvae across multiple focuses of standing water 
(old tires, tanks, flower pots, inadequate garbage collection 
etc.)39, boosting vector infestation and making human 
beings the preferred target for the hematophagous needs 
of female mosquitoes. Our results reinforced that dengue 
is in fact an “urban disease”22.

On the other hand, the positive correlation with the index 
of available public hospital beds may be interpreted in two 
different ways: (I) a greater urbanization translates into a 
greater need for health facilities, and consequently for the 
construction and availability of more health facilities for 
the general population; and (II) the health-care network, 
especially due to the neighboring of the municipalities, may 
lead to human displacements, translocating the cases of 
dengue from smaller municipalities with lower urbanization 
degree and less health-care facilities, to bigger metropolis 
in which referral hospitals are usually located. Here we did 
not find any significant correlation with GDP per capita or 
HDI; however, an inverse association between the incidence 
of dengue and GDP per capita (RR=0.98) and a direct 
association with HDI (RR=3.64) have been described in 
Brazil22. Despite the SINAN records, the probable site of 
infection, including the travel records of the patients and 
their date of the onset of symptoms, it is not possible to 
assure the exact location of the transmission of dengue, 
especially due to the disease incubation period, and the 
frequent human displacements across the State40.

Limitations of the study

Despite the novel insights into the epidemiology of 
dengue, our study has some limitations. The aggregating 
data on the cases of dengue and climate characteristics 

by year led to a loss of sensitivity in critical disparities 
in the number of new cases and climate changes. Thus, a 
spatio-temporal model using consolidated annual data as 
we assessed here, appears to be unsatisfactory to predict 
risk factors related to the climate. Interactive effects of 
different meteorological factors, fluctuations in regional 
weather conditions, seasonality and daily variations can 
provide more information to the prediction models of 
outbreaks of dengue. 

Although biome is treated as a categorical variable, 
two details should be carefully analyzed: the extension 
across to the territory of each municipality, and the constant 
deforestation due to the expansion of urban areas and to 
agricultural activities (mainly sugar cane cultivation in 
Western SP). Strict monitoring and mapping of constant 
changes in the local biomass could provide better information 
on the influence of this factor in the incidence of dengue. 

The infestation rates of the vector were not included due 
to the potential data bias considering the non-systematic 
data collection (no-randomly selected point of collections), 
low coverage throughout the territory of each municipality 
and incomplete data for each unit in the surveillance system. 

Demographic and socioeconomic characteristics may 
also vary over time, but no dramatic changes have been 
observed in the last decade according to the IBGE and 
SEADE Research Foundation databases7. In this study, we 
used annual estimate values for the demographic variables 
(incidence calculation per year), and the recently updated 
SEADE database (2019).

Perspectives

Our findings led to a better understanding of the 
epidemiological behavior of dengue to improve the public 
health strategies, facilitating the identification of the 
target and focusing the governmental interventions for the 
control of the disease in “hot” areas as the proper target 
of economic resources, inhabitants education (regional 
social media, local institutions etc.), the vector control and 

Table 1 - Parameters estimation (exponential) a posteriori of the variables with significant correlation in the fixed spatial model, in 
Sao Paulo State, between January 1st, 2007 and December 31st, 2019.

Parameter Mean Credibility interval

Intercept 3.212 -1.36E+21 -2.29E+16

Surface pressure (Pascal)* 1.000 1.000 1.000

Rainfall (millimeters)* 0.999 0.998 1.000

Altitude (meters) 0.997 0.996 0.998

Degree of urbanization (%)† 1.020 1.014 1.026

Public hospital beds (rate per 1,000 inhabitants)† 1.105 1.061 1.149

*Annual mean; †SEAD Research foundation, 2019.
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the surveillance of the cases of dengue. These results may 
serve as a base for further studies to analyze local data (by 
municipality or intermediate regions) in order to assess 
possible predictive regional variables. We have ruled out that 
annual climate variations may be involved in variations of 
dengue, so that further studies should focus in daily, weekly, 
monthly or sessional data to better explain the observed 
inconsistent fluctuations. 

CONCLUSION

The incidence of dengue exhibited inconstant and 
unpredictable variations every year in Southeastern Brazil. 
The higher rates of dengue are concentrated in geographic 
clusters with lower surface pressure, rainfall and altitude, 
but also in municipalities with higher degree of urbanization 
and better socioeconomic conditions. Annual variations in 
climate characteristics seem not to influence the epidemic 
yearly pattern of dengue in Southeastern Brazil.
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