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ABSTRACT
The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially 
in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending 
on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different 
geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 
1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted 
regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables 
derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the 
Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided 
statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we 
observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where 
the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution 
images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires 
high computational demand.
KEYWORDS: Geographically Weighted Regression, Geographically Weighted Regression-Kriging, RedEdge, Carbon emissions, 
Ecuadorian Amazon.

Avaliação de técnicas geoestatísticas na estimativa da distribuição 
espacial da biomassa acima do solo na Amazônia utilizando 
sensoriamento remoto de alta resolução espacial
RESUMO
A distribuição espacial da biomassa na Amazônia é heterogênea, variando temporalmente e espacialmente em relação aos 
diferentes tipos de formações vegetais abrangidas por este bioma.  Estimativas de biomassa nesta região variam significativamente 
dependendo da abordagem aplicada e do conjunto de dados utilizados para sua modelagem. Assim, este estudo teve como 
objetivo avaliar três diferentes técnicas geoestatísticas na estimativa da distribuição espacial da biomassa acima do solo (BAS). 
As técnicas escolhidas foram: 1) regressão por mínimos quadrados ordinários (OLS), 2) regressão geograficamente ponderada 
(RGP) e, 3) regressão geograficamente ponderada – krigagem (RGP-K). Estas técnicas foram aplicadas sobre um mesmo conjunto 
de dados de campo, utilizando as mesmas variáveis ambientais decorrentes de dados cartográficos e de sensoriamento remoto 
de alta resolução espacial (RapidEye). Este trabalho foi desenvolvido na floresta amazônica da província de Sucumbíos no 
Equador. Os resultados deste estudo mostraram que a RGP-K, sendo uma técnica híbrida, forneceu estimativas estatisticamente 
satisfatórias com menor erro de predição em comparação com as outras duas técnicas. Além disso, observou-se que 75% da 
BAS foi explicada pela combinação de dados de sensoriamento remoto e variáveis ambientais, sendo os tipos de formações 
vegetais a variável de maior importância para estimar BAS. Cabe ressaltar que, embora o uso de imagens de alta resolução 
espacial melhora significativamente a estimativa da distribuição espacial da BAS, o processamento desta informação requer 
alta demanda computacional.
PALAVRAS-CHAVE: Regressão Geograficamente Ponderada, Regressão Geograficamente Ponderada-Krigagem, RedEdge, emissões 
de carbono, Amazônia equatoriana.
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INTRODUCTION
The Amazon turns into annually greater amount of 

atmospheric carbon in vegetation biomass that any other 
terrestrial biome on the Planet, emphasizing its importance 
for the understanding and management of the global carbon 
cycle (Houghton et al. 2009; Marvin et al. 2014), despite 
having been detected a decrease in the carbon accumulation 
trend in the last few years (Brienen et al. 2015). 

The biomass varies temporally as a result of anthropogenic 
disturbance and secondary forest regeneration. In addition, 
its density varies spatially and considerably, in relation to the 
different types of vegetation (Houghton et al. 2009).

Modelling the spatial distribution of biomass with greater 
accuracy at local and regional scales is significant to reduce 
the uncertainties on carbon emissions and sequestration 
estimates, understanding their roles in influencing the 
atmospheric temperature and water composition, availability 
and seasonality, and understanding the carbon budget role 
in environmental process and sustainability of terrestrial 
ecosystems (Foody 2003).

It is estimated that about 120 ± 30 Pg C are stored in 
the Amazon rainforest biomass and that the aboveground 
biomass is the largest contributor of the net primary 
productivity (70%-89% of total) (Malhi et al. 2009) in this 
biome. The existing aboveground biomass (AGB) estimates 
are derived from national and regional forest inventories, 
which provide accurate information at a local level. However, 
this information will lose accuracy over broader spatial scales 
(Baccini et al. 2008).

The tools and models development based on remote 
sensing data has allowed “scale-up” or extrapolate the field 
data collected for larger scales (Saatchi et al. 2011; Baccini 
et al. 2012). However, the biomass mapping in the Amazon 
based on remote sensing present several challenges, mainly due 
to the spectral vegetation indices saturation in dense forests 
areas, and due to the high frequency of clouds that reduce 
significantly the availability of satellite images. In addition, 
when low spatial resolution satellite imagery with high 
temporal availability (most likely to have free-cloud images) 
is used to estimate biomass, there is a huge difference between 
the field-measurement data with the pixel size in the image 
(Lu 2006), resulting in mixed pixels difficult the integration 
of both information.

Faced with this reality, in recent years, the remote 
sensing data has frequently been used in combination with 
other additional information for quantifying and modelling 
aboveground biomass (Liang et al. 2012; French et al. 2013) 
through several geostatistical techniques.

Recently, the Geographically Weighted Regression 
(GWR) has been shown as a powerful tool in exploring spatial 

heterogeneity, which estimates parameters for each sample 
location of the dataset. This technique takes into account the 
spatial non-stationarity and provides a detailed understanding 
of spatial variation in the data (Fotheringham et al. 2002), 
becoming a very attractive technique for modelling biomass 
through remote sensing (Propastin 2012). However, several 
studies have indicated that geostatistical hybrid techniques can 
improve than any pure approach (Harris et al. 2010; Kumar et 
al. 2012; Liu et al. 2015); therefore, the GWR and Ordinary 
Kriging (OK) integration should makes possible to minimize 
the prediction error and thus improve de AGB estimates.

In this context, this study aimed to evaluate three different 
geostatistical techniques to estimate the spatial distribution of 
aboveground biomass (AGB). The selected techniques were: 
1) ordinary least-squares regression (OLS), 2) geographically 
weighted regression (GWR) and, 3) geographically weighted 
regression - kriging (GWR-K). These techniques were applied 
to the same field dataset, using the same environmental 
variables derived from cartographic information and high-
resolution remote sensing data (RapidEye, 5 m.).

Thus, this study becomes relevant for generating a 
methodological basis that makes possible to model the spatial 
distribution of aboveground biomass fitted to the Ecuadorian 
Amazon rainforest local conditions. This quantification is 
important for the implementation of mitigation policies 
related to the reducing emissions from deforestation and forest 
degradation (REDD). 

MATERIALS AND METHODS
Study Area

The analysis area included about 1.4 million ha of Amazon 
rainforest, located in the Sucumbíos province in northeast 
Ecuador with geographical coordinates 0°40’ S to 0°29’ N 
latitude and 77°20’ to 75°15’ W longitude as shown in Figure 1. 
The average annual precipitation varies from 3000 to 5000 mm, 
where April, May and June are the months with higher rainfall 
and, January, February and September are the months with the 
lowest precipitation. The temperature is relatively uniform with 
an annual mean of 25° C. This region is characterized by a no 
marked seasonality because even in the dry season the average 
monthly precipitation is greater than 200 mm.

Four major forest types are present in the study area: “Tierra 
Firme” forest, floodplain forest, flooded forest (known locally 
as “Moretales”), and black-water riparian and lacustrine forest. 
Areas with high anthropogenic disturbance, rivers, urban area 
and bare ground have been ignored in this study.

Field Data
In 2011, the Ministry of Environment of Ecuador (MAE) 

through the “Evaluación Nacional Forestal” project distributed 
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484 georeferenced plots over different forests strata in the 
Ecuadorian Amazon, where several forest structural parameters 
have been measurement in order to estimate biomass forest. 
The MAE provided aboveground biomass information already 
quantified for the development of this study.

In the study area are located 152 plots, each plot with an 
area of 0.36 ha (60m x 60m). Thus, in order to validate the 
performance of AGB distribution models were randomly 
selected 80% of the occurrence plots as a calibration dataset 
(n=122) and the remaining 20% as a validation dataset (n=30). 
The Figure 1 shows the geographical location of the calibration 
and validation datasets.

Cartographic Data
Environmental variables used in this study to estimate 

aboveground biomass were: vegetation and soil types. The 
Ministry of Environment (MAE) provided this cartographic 
information at scales 1:100000 and 1:200000, respectively 
(PRONAREG–ORSTOM 1982; MAE 2013).

Within the study area can be identified 8 vegetation types: 
Floodplain forest of the rivers of Amazonian origin, Floodplain 
forest of the rivers of Andean and Amazon mountain range, 
Amazon wetland forest and black-water riparian and lacustrine 
vegetation, Wetland forest of the Amazon floodplain, 
Flooded Palm forest of the Amazon floodplain, Aguarico-
Putumayo-Caquetá lowland evergreen forest, Napo-Curaray 
lowland evergreen forest and, Riparian and lacustrine flooded 
herbaceous plants of the Amazon floodplain. Beside natural 

vegetation, five soil types were identified, that correspond to 
the Tropept, Fluvent, Fibrist, Aquept and Andept suborders 
according with the soil taxonomy classification (USDA 1999).

Remote Sensing Data
RapidEye imagery was used for the development of this 

work, which were provided, in the same way, by the MAE. The 
RapidEye satellite sensor acquires image data in five different 
spectral band, each one with a pixel size (orthorectified) of 
5 m. The principal feature that distinguished RapidEye´s 
satellite from other multispectral satellites is the presence of 
the RedEdge band (690-730 nm), located between the Red 
and Infra-red bands. The RedEdge band is able to provide 
additional information about variation in the vegetation in 
order to identify and characterize species and monitoring the 
health status of the vegetation. 

We compiled a total of 45 images to cover the study 
area. The year 2011 was taking as a reference to estimate and 
modelling aboveground biomass, year in which the field data 
was collected in the Ecuadorian Amazon. However, due to 
the difficulty in acquiring all the images in the same reference 
date in this region because of its large area and frequent cloud 
cover, was established an acquisition interval time of ± 1 year. 
Hence, 13% of the images were acquired in 2010, 83% in 
2011, and only 4% in 2012. In relation to the months of 
acquisition, all the images were acquired in the less rainy 
season (January, August, September and October). The entire 

Figure 1. Geographic location of the study area and spatial distribution of calibration (n=122) and validation (n=30) sampling plots in the Amazon forest in 
Sucumbíos province, Ecuador.
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image set presents radiometric, sensor and geometrically 
correction (level 3A ortho standard products).

Cartographic Data Processing
The vegetation map was reclassified into nine categories 

(eight classes of natural vegetation and a class that includes 
both disturbed area and water bodies). The soil map was 
reclassified into six categories, one of them corresponding 
to water bodies and the other corresponding to soil classes. 
Finally, this thematic information were converted from vector 
to raster format with a spatial resolution of 5 meter (matching 
the RapidEye images).

Normalized Difference Vegetation Index modified 
(NDVI_r)

The spectral vegetation index NDVI_r was used in this 
study in order to better the spatial correlation between 
spectral data and AGB data. Several procedures were applied 
to RapidEye images prior to NDVI_r calculation. These 
procedures aim to convert the digital numbers (DNs) of each 
image to surface reflectance values. These procedures were: (i) 
the masking of artefacts (cloud and cloud shadow) that can 
introduce error in future procedures, (ii) the conversion of 
DN into values of top-of-atmosphere reflectance (TOA) and, 
(iii) the elimination of the atmospheric interference over the 
reflectance values. For this last process was used the Quick 
Atmospheric Correction (QUAC) algorithm, which is based 
on empirical models that use only the information contained 
within the scene, not requiring auxiliary information 
(e.g. metadata). In addition, this approach improves the 
atmospheric correction at approximately 15% compared with 
physics-based models (Bernstein et al. 2012).

The NDVI_r was calculated by replacing the near infrared 
band with the RedEdge band within the NDVI general equation 
proposed by Rouse et al. (1973). This modification used by Bindel 
et al. (2011) and Sousa et al. (2012) to validate the RedEdge band 
in the vegetation mapping, was adopted in this study for being 
the vegetation index that exhibited better spatial correlation with 
the AGB in Ramirez et al. (2014) research. The equation that 
describes that modified index is detailed below.

After calculating the NDVI_r index in each RapidEye 
image, all the scenes were mosaicked into a single composite 
image that cover the study area. Consecutive scenes acquired 
along the same orbital path were combined seamlessly 
because these were acquired as one observation by the 
sensor. However, caution was taken to combine imagery 
from different orbital path to ensure seamlessness in a final 
mosaic. Thus, a reference swath image was selected, and each 
orbital path image was added one by one to be adjusted with 
the reference. In addition, to blend the seams along the edges 

of the overlapping areas, a histogram matching and an edge 
feathering were applied in the mosaicked image aimed their 
homogeneity. After some tests, 20 pixels (100 meters) was the 
specified distance in the blending edge. The generated mosaic 
were re-projected to the zone 17 south, keeping your WGS 84 
UTM projection. To perform all these processes, the ENVI 
5.1 software was used (Exelisvis 2009).

Aboveground Biomass Spatial Distribution
Three independent or explanatory variables were selected 

for the AGB (dependent variable) spatial distribution 
modelling in the study area. These variables were: vegetation 
types (categorical variable), soil types (categorical variable), 
and NDVI_r vegetation index (continuous variable).

The NDVI_r for each sampling plot was extracted from 
the pre-processed satellite data before generating the mosaicked 
image. The mean NDVI_r derived from a 13 x 13 pixel window 
(65 m x 65 m) centred on the central position of each plot 
was extracted and used in the analysis. The window size is a 
compromise of the spatial resolution of the satellite data with 
the plot size, guaranteeing that the plot will be located within 
the selected window and the NDVI_r value represent the entire 
plot. In relation with the categorical variables (vegetation and 
soil types), the value assigned to each sampling plot was the one 
related with the class where the plot are located.

Then, three different geostatistical approaches were used to 
estimate and spatialize aboveground biomass in the study area. 
These approaches were the ordinary least-squares regression 
(OLS), the geographically weighted regression (GWR) and, 
the geographically weighted regression - kriging (GWR-K). 
For the performance and analysis of the three models was used 
the RStudio software. A brief description of each approach is 
detailed below.

Ordinary Least-Squares Regression (OLS)
The OLS regression is the most commonly statistical 

technique used for estimating forest structural parameters, 
where the depended variable is estimated by producing 
unbiased minimum sum of squared residuals in regards to the 
independent variables (Montgomery et al. 2001), in order to 
improve the model fit to all observed data. The equation used 
to perform OLS is given below:

where  is the dependent variable (in this case represents 

the AGB estimated),  to  to  are the independent 

or explanatory variables,  is the intercept parameter,  

to  to  are the regression coefficients, and  are the 
regression residuals.
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Geographically Weighted Regression (GWR)
The GWR is a recent and powerful approach for modeling 

spatially heterogeneous processes (Kumar et al. 2012), which 
estimates individual parameters for each estimation location, 
and thus, do not assume that a single regression model can be 
fitted to the whole study area. The GWR model is considered 
by the following equation (Fotheringham et al. 2002):    

where  is the dependent variable (in this case represents 

the AGB estimated), ),  to  to  are the independent 

or explanatory variables,  is the intercept parameter,  

to  to  are the regression coefficients,  are the 
regression residuals,  and  represent the coordinates of the 
plots in space.

The basic idea of this technique is to explore how the 
relationship between dependent and independent variables 
can vary across the geographic space. For this purpose, a search 
window is moving from one sampling plot in a data set to 
the next, working through them all in sequence. When the 
search window rests on a sampling plot, all other plots that are 
within and around the search window area identified. Thus, 
the regression model is fitted to that subset of sampling plots, 

giving most weight to the plots that are closest to the central 
plot (Kernel function).

The regression model calibration is based on the choice 
of a spatial kernel method, which depends on the spatial 
arrangement of data across the space to be analyzed: if the 
sampling plot configuration is regular, the kernel with a 
fixed distance (GWRF) is appropriate. If the sampling plot 
configuration is irregular, is better use the adaptive spatial kernel 
method (GWRA), where the bandwidth distance will change 
according to the spatial sample density, becoming a function of 
the number of nearest neighbors such that each local estimation 
is based on the same number of neighbors. In this study, both 
the fixed and adaptive spatial kernel methods were used.

The accuracy of the model prediction strongly depend on 
weighting function and bandwidth selected (Propastin 2012). 
This selection can be done by using the cross- validation or 
minimizing the Akaike Information Criterion (AIC). In this 
study, a Gaussian function Kernel (Propastin 2012) was used 
to fit the GWR model and the AIC to calibrate the model 
with respect to bandwidth.

Geographically Weighted Regression - Kriging (GWR-K)
The GWR-K is a hybrid prediction model where the residuals 

from the geographically weighted regression are interpolated with 
an Ordinary Kriging (OK). The Figure 2 show the flowchart 
of the GWR-K, where both approaches that composed this 
technique are modeled separately to finally carry out the spatial 

Figure 2. Flowchart of Geographically Weighted Regression Kriging (GWR-K) in this study. GWR=geographically weighted regression; OK=ordinary kriging.
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overlay between the trend item of regression prediction and the 
residual value of ordinary kriging to obtain the predicted value of 
the dependent variable. The equation used to perform GWR-K 
is given below:

where,  is the AGB estimated at location 

, is the drift fitted AGB using GWR at 

the same location, and  are the residual values 
interpolated with OK. 

Methods evaluation
A total of 30 sampling plots (validation dataset) were 

reserved for evaluating the performance of the different 
approaches used in the AGB estimates. The estimate AGB was 
compared with the observed AGB by the root mean squared 
error (RMSE) and mean absolute estimation error (MAEE) 
as described in the equations below:

where,  is the estimated AGB using GWR-K 

at location , ABG (xi) is the observed AGB at the same 
location, n is the total number of sample observations. 

Low MAEE values often indicates a model with few 
error, while low RMSE values indicates a good fit between 
the model developed and the sampling plot and hence more 
accurate prediction. Thus, the model with the lowest RMSE 
and MAEE values will be considered as the most appropriate 
approach to AGB spatial distribution modeling. 

RESULTS
Descriptive Statistics

The aboveground biomass in the study area ranged from 
17.48 Mg ha-1 e 464.90 Mg ha-1, with mean and standard 
deviation of 195.80 Mg ha-1 e 118.96 Mg ha-1, respectively. 
A moderate coefficient of variation (CV = %) of AGB reflects 
a significant spatial variability, showing the heterogeneity of 
AGB within the study area. A normality assumption on the 
distribution of the AGB dataset was evaluated by examining 
the histogram and the quantile-quantile (Q-Q) plot, where an 
approximately normal distribution was observed in the AGB 
dataset. It can be checked in Figure 3A, where the generate 
histogram show bell-shape curve (normal distribution pattern), 
and in Figure 3B, where the data, in general, are grouped around 
the 45-degree reference line generated in the Q-Q plot. The 
coefficient of kurtosis of AGB was 1.85 Mg ha-1, indicating that 
the distribution is less concentrated around the mean.

Spatial Structural of the GWR residuals
The geographically weighted regression residuals (GWR) 

area defined as the difference between the observed AGB 
values and these estimate by the GWR.

The experimental variogram of the GWR residuals is 
showed in Figure 4, also shows the quantitative description 
of its spatial variation. The best-fit variogram model used in 
this study is the spherical model and its associated parameters 
values are presented in Figure 4 along with the experimental 
variogram model. In addition, variogram model shows that 
the spatial correlation for the sampling plots is presents in an 
approximated distance of 49 kilometers. The model accuracy 
in the spatial distribution of the GWR residuals, interpolates 
with OK, was evaluated from root mean squared error 
(RMSE) and the mean error. The model produced RMSE 
value of 1.03 Mg ha-1, while the mean error was de -0.16 Mg 
ha-1. RMSE values close to 1 and mean error values close to 0 
indicate a model that provides accurate predictions.

The spatial distribution of the GWR residuals, interpolates 
with OK, is presented in Figure 5. A strong spatial 
heterogeneity in the data distribution can be observed. The 

Figure 3. Graphic analysis of the AGB field dataset: (A). Histogram; and (B). Normal Q-Q plot.
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negative values were distributed in the east and southwest 
regions of the study area, which indicated that the estimated 
values were higher than those observed. The positive values 
where primarily observed in the center region of the study area 
being distributed from north to south, this indicates that the 
AGB estimates are lower than those observed.

Aboveground Biomass Estimates 
The descriptive statistics of the ordinary least-squared 

regression (OLS) and geographically weighted regression 
(GWR) models are reported in Table 1, where can be observed 
that the GWR has the potential to improve the AGB estimates 
in comparison with the OLS model. Thus, although the result 
of OLS model is statistically significant (p-value<0.001), it can 
only explain 40% of the spatial variation of biomass, whereas 

the GWR can explain between 58% and 75% of the biomass 
local variation in the study area.

With respect to fixed and adaptive spatial kernel methods 
in the GWR approach, this study showed that the fixed method 
presents the lower MAEE, RMSE and Akaike Information 
Criterion (AIC) values, providing a better fit to the model. 
With these initial results, the GWR-K was developed using 
the fixed GWR results. In Table 2 are presented the maximum, 
minimum, median, mean, and standard deviation values 
of the parameters used in the GWRF model for predicting 
AGB. The variability in the model parameters suggests that 
the relationship between AGB and the explanatory variables 
is non-stationary in the study area.

The GWR-K was used with in order to improve the 
accuracy of the AGB estimates, minimizing the GWRF 
residuals, which in turn minimizes the OLS residuals, as 
shown in Figure 6.

Models validation
Validation results of the three regression models are showed 

in Table 3, where the GWR-K approach improve biomass 
estimates performance compared with the other two approaches 
considered in this study. The GWR-K estimates showed lower 
RMSE and MAEE values (80.27 Mg ha-1 e 64.63 Mg ha-1; 
respectively), and higher correlation coefficient (R2 = 0.43). The 
RMSE for the GWR-K ((80.27 Mg ha-1) was 23% lower when 
compared to the OLS results (104.61 Mg ha-1), and only 3% 
lower when compared to the GWR results (82.99 Mg ha-1).

Aboveground Biomass Spatial Distribution
The three models tested in this study, showed similar 

spatial distribution of AGB in terms of the spatial structure 
and variation trend in the study area, as showed in Figure 
7. However, the two models developed from geographically 
weighted regression had significant differences in local details 
when compared with the OLS model. This can be attributed 
to the fact that the GWR and GWR-K take into account the 
spatial heterogeneity of the explanatory variables.

Thus, in the northeast region of the study area is stored the 
higher AGB stocks (300 to 400 Mg ha-1), this area correspond 
to the “Tierra firme” forest. In contrast, the flooded forests in 
the study area stored lower biomass pool (75 to 150 Mg ha-1).

Table 1. Statistics indices for validation aboveground biomass using ordinary 
least-square regression (OLS), and geographically weighted regression (GWR) 
adaptive and fixed. MAEE: mean absolute estimation error, RMSE: root mean 
squared error, AIC: Akaike information criterion.

Method R2 MAEE RMSE AIC p-value

OLS 0,40 71,7 91,4 1458,5 <0,001

GWR adaptive 0,58 59,1 76,6 1437,3 <0,001

GWR fixed 0,75 45,2 58,8 1428,8 <0,001

Figure 4. Experimental variogram model for geographically weighted regression 
(GWR) residuals. Co=Nugget Effect, C=Partial Sill, Co+C=Sill.

Figure 5. Spatial distribution of geographically weighted regression (GWR) 
residuals interpolated by ordinary kriging (OK). This figure is in color in the 
electronic version.
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Figure 6. Residuals of three geostatistic approaches tested in this study: 
(A). Ordinary least-square regression (OLS); (B). Geographically weighted 
regression fixed (GWRF); and (C). Geographically weighted regression kriging 
(GWR-K). This figure is in color in the electronic version.

Table 3. Comparison of the three approaches performance by root mean 
squared error (RMSE), mean absolute estimation error (MAEE) and the 
correlation coefficient R2.

Approach R2 RMSE MAEE

OLS 0,05 104,61 86,45

GWR 0,39 82,99 65,31

GWR-K 0,44 80,27 64,63

Figure 7. Estimated spatial distribution of AGB in the study area by three 
geostatistic approaches tested: (A). Ordinary least-square regression 
(OLS); (B). Geographically weighted regression fixed (GWRF); and (C). 
Geographically weighted regression kriging (GWR-K). This figure is in color 
in the electronic version.

Table 2. Descriptive statistics of the coefficients used in the geographically 
weighted regression fixed (GWRF) model.

Variables Minimum Median Maximum Mean
Standard 
deviation

p-value

Intercept -1474,0 -156,6 974,2 -110,1 411,8 <0,05

Vegetation 
type

-103,4 -6,5 79,2 -9,1 26,4 <0,05

Soil -148,3 48,6 162,1 34,8 62,4 <0,01

NDVI_r -2121,0 407,5 3377,0 526,9 840,3 <0,001

R2 0,75
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Table 4. Total estimated aboveground biomass for the tropical Amazon in the 
study area. Units are in Pg of biomass (1 Pg = 1015 g).

Approach Total AGB (Pg)

OLS 0,31

GWR 0,23

GWR-K 0,24

In the study area the total aboveground biomass estimated, 
ranges from 0.24 Pg to 0.31 Pg, depending upon the approach 
adopted as showed in Table 4.

vegetation types in a specific area. This information 
becomes very important in the AGB estimates due to high 
statistic correlation that exists between these two variables. 
However, working with high spatial resolution images over 
large areas (e.g. the Amazon) require better computational 
resources that allow processing and storing large volumes 
of data with high-speed and greater performance. The 
memory capacity of the computer is the most important 
resource for the processing of these images as it substantially 
streamlines the processing.

CONCLUSIONS
The success of a methodology for estimating AGB with 

higher accuracy depends mainly on the correct selection of 
the explanatory variables that will be used in the model. 
The same number or set of variables is not always needed 
to estimate AGB, depending of the locality, landscape 
variability and scale study. The results of this study indicate 
that the geographically weighted regression kriging method 
was more accurate in representing the heterogeneity of 
AGB, providing a high R2 of 44%. However, the availability 
of a sufficiently robust field dataset with a representative 
sampling plot on each land use/cover type can greatly 
reduce the uncertainties and improve the AGB estimates. 
In addition, the integration of another variables that area 
correlated with biomass (e.g. leaf area index) and the use 
of remote sensing information capable of capturing the 
spatial variability in forest structure (e.g. RADAR, LiDAR) 
is recommended to reduce the uncertainties in the spatial 
distribution of the aboveground biomass.
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