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Abstract

Background: Heart rate variability (HRV) is an important indicator of autonomic modulation of cardiovascular 
function. Diabetes can alter cardiac autonomic modulation by damaging afferent inputs, thereby increasing the risk of 
cardiovascular disease. We applied nonlinear analytical methods to identify parameters associated with HRV that are 
indicative of changes in autonomic modulation of heart function in diabetic patients. 

Objective: We analyzed differences in HRV patterns between diabetic and age-matched healthy control subjects using 
nonlinear methods.

Methods: Lagged Poincaré plot, autocorrelation, and detrended fluctuation analysis were applied to analyze HRV in 
electrocardiography (ECG) recordings.

Results: Lagged Poincare plot analysis revealed significant changes in some parameters, suggestive of decreased 
parasympathetic modulation. The detrended fluctuation exponent derived from long-term fitting was higher than 
the short-term one in the diabetic population, which was also consistent with decreased parasympathetic input. The 
autocorrelation function of the deviation of inter-beat intervals exhibited a highly correlated pattern in the diabetic 
group compared with the control group.

Conclusion: The HRV pattern significantly differs between diabetic patients and healthy subjects. All three statistical 
methods employed in the study may prove useful to detect the onset and extent of autonomic neuropathy in diabetic 
patients.  (Arq Bras Cardiol. 2013;101(4):317-327)
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Introduction
Heart rate is dynamically regulated by intrinsic and extrinsic 

control systems, maintaining homeostasis. The major extrinsic 
control is provided by the autonomic nervous system. Heart 
rate variability (HRV) is a measure of the fluctuation in the 
interval between sequential sinus heartbeats, and reflects 
cardiac autonomic regulation 1-3. Diabetes leads to autonomic 
neuropathy4, thereby disrupting a major component of 
cardiovascular regulation and contributing to an increased 
incidence of cardiovascular diseases in diabetic patients, such 
as heart attack, sudden cardiac death, and silent ischemia 5-8. 
Early diagnosis of autonomic diabetic neuropathy is difficult 
and the detection methods available, e.g., the Ewing Test 
Battery, are cumbersome and have poor sensitivity and 
reproducibility. In contrast, HRV analysis is noninvasive 
and the input data are easily obtained by conventional 

electrocardiography (ECG)9-12. However, because of the 
nonlinear heart dynamics, conventional time and frequency 
domain parameters of HRV may not always represent the 
nonstationary characteristics of ECG. Nonlinear methods such 
as the Poincaré plot, detrended fluctuation analysis (DFA), 
tone/entropy analysis and HR complexity analysis are newly 
developed tools used for identifying nonlinear patterns within 
ECG data 13-18.

In this study, we used nonlinear analytical methods to 
study the differences in HRV patterns between diabetic and 
healthy individuals. The purpose of this study was to identify 
new parameters useful for detecting autonomic dysregulation 
in diabetes.

Methods
The patient group consisted of 23 type 2 diabetes mellitus 

patients with no history of cardiac, neurological, psychiatric, or 
sleep disorders. Patients on heart rate-altering medications were 
excluded from the study. The study was approved by the ethical 
committee of the Indian Institution of Technology, Kharagpur, 
India. A total of 23 healthy subjects were selected as a control 
group using the same exclusion criteria. All participants provided 
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written informed consent prior to inclusion in the study. Subjects 
were instructed to avoid caffeine, alcohol, and physical exertion 
the day before the study was performed. A 10-min ECG recording 
was acquired from the patients while on supine position following 
a 15-min relaxation period. All ECGs were recorded at a fixed time 
of day to avoid the effects of diurnal variations on HRV. 

Matlab and SPSS software packages were used for statistical 
analysis. For comparative analysis between the groups, unpaired 
t-tests were applied as appropriate. Other statistical methods are 
individually described in details. 

Poincaré Plot
The Poincaré plot is a scatter plot of RRn vs. RRn+1 where RRn 

is the time between two successive R peaks and RRn+1 is the time 
between the next two successive R peaks. When the plot is adjusted 
by the ellipse-fitting technique, the analysis provides three indices: 
the standard deviation of instantaneous beat-to-beat interval 
variability (SD1), the continuous long-term R/R interval variability 
(SD2), and the SD1/SD2 ratio (SD12)15. On the Poincaré plot, SD1 
it is the width and SD2 the length of the ellipse. In addition to this 
conventional plot (RRn+1 vs. RRn), we also used the generalized 
Poincaré plot with different intervals, including the m-lagged 
Poincaré plot (the plot of RRn+m versus RRn). The values of SD1 and 
SD2 were calculated for lag = m from the relations 

SD1 = (Φ(m) − Φ(0))1/2 and SD2 = (Φ(m) + Φ(0))1/2, where 
the autocovariance function Φ(m) is given by

Φ(m) = E[(RRn − RR)  (RRn+m − RR)]

and RR is the mean RRn
14. For the purpose of our study, we 

set m at 1, 5, and 9. We then extended our analysis to reveal the 
association between these standard deviation (SD) values and m 
by using the Padé approximation19. We assumed a simple form of 
the Padé approximation for SD values as the ratio of polynomial 
in M of degree one.

Y = a + bM
c + dM

=  χ 1 + βM
1 + γM (1)

Here Y = SD1, SD2, or SD12 and χ = a/c. The terms  
β = b/a and γ = d/c are the new unknown parameters.  
In order to determine if these parameters are of value for 
assessing cardiovascular health, we considered eq. (1) for the 
case of small m. In this limit, equation (1) can be approximated as  
Y = C + LM + QM2, where the slope is L = χ (β − γ) and the 
curvature is Q = γL. The slope and curvature of the plot of SD vs. 
m were determined by the fitted parameters χ, β, and γ.

Detrended Fluctuation Analysis
Another analytic method to assess long-term correlation 

in the R–R-time sequence is based on DFA 20. The measure 
of correlation was given by a scaling exponent (α) of the 
fluctuation function F(τ) ≈ τα. The fluctuation function F(τ) 
was computed as follows. For a given time sequence R(ti), 
ti = iδt, where δt is the characteristic time interval for the 
sequence and i = 1, N is an integrated time series, r(ti) was 

defined as r(ti) = ∑i
j [R(tj) – <R>], i = 1,N, where <R> is the 

mean of R(ti). The integrated series was divided into segments 
of equal duration, τ = n δt and a linear function used to fit 
the data within each segment. The fluctuation function F(τ) 
was calculated as the root mean square fluctuation relative 
to the linear trend and alpha was obtained by fitting the 
data to a power law function. It has been observed that an 
acceptable estimate of the scaling exponent alpha (from 
DFA) can be obtained from analysis of data sets with 256 
samples or longer (equivalent to approximately 3.5 min 
of RR data at a heart rate of 70 beats/min). The analysis 
of RR data from an ECG recording period of 10 min was 
therefore expected to provide an adequate measure of the 
scaling exponent 21. However, the alpha value obtained from 
this calculation may be under the mixed influence of both 
short-term scaling, reflecting parasympathetic control, and 
long-term scaling, reflecting sympathetic control, and thus 
may fail to fully distinguish parasympathetic and sympathetic 
influences. A separate analysis of both short- and long-term 
scaling is supposed to nullify the mutual effect and reveal the 
exact scaling variation 22. Thus, we analyzed separate alpha 
values, short-term αs and long-term αl. For αs, data from 25 
beats were included, whereas for αl, data from 30 to N/4 
beats were included.

Correlation between successive differences in RRn interval
The coherence of the RRn interval can be assessed from 

the map of interval variation: 

rrn+1 =
RRn+2 + RRn+1

(RRn) VS.
rrn =

RRn+1 – RRn

(RRn)

where <RRn> is the mean interval. This plot is expected 
to show the correlation between the variability of three 
consecutive R–R intervals.

Autocorrelation of fluctuation of RRn
	 We explored the autocorrelation of the deviation 

of RRn from the mean <RRn>. The autocorrelation function 
C(m) of a particular subject was calculated from

C(m) = ∑
n=1

N
∆RRn+m ∆RRn  ∕  ∑ ∆RR2

n

where the deviation is ∆RRn  = RRn – (RRn) and N is the 
total number of RRn intervals.

Results
The mean heart rate was 74.7 ± 6.1 beats/min in the 

diabetic group and 72.4 ± 6.7 beats/min in the healthy control 
group. Mean age in the diabetic group was 46.3 years (range, 
36−56 years) and 47.4 years (range, 39−57 years) in the 
control group. All study subjects were normotensive.

In the Poincaré plot analysis, plot scatter increased with 
lag number, yielding higher width (SD1) and length (SD2) 
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Figure 1 – Poincaré plot of RRn+m vs. RRn from HRV analyses of one diabetic (D, left panels) and one nondiabetic subject (ND, right panels). In the upper panel, 
the lag factor m = 1, in the middle panel, m = 5, and in the bottom panel, m = 9. Note the greater scatter in the ND subjects, particularly as the lag factor is increased.
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Figure 2 – Variation of mean SD1 (upper panel), mean SD2 (middle), and mean SD12 (lower) with lag number m for diabetic (D) and nondiabetic (ND) groups (n = 23 
subjects each).

values. The incremental increase in width of the plot RRn+m 
vs. RRn as m increased was smaller in the diabetes group (Figure 
1, D) than in the control group (Figure 1, ND). Differences 
in the values of SD1, SD2, and SD12 between the diabetes 
group and the control group were statistically significant  
(p < 0.001 for all). The values of SD1 and SD12 were higher in 
the control group, whereas SD2 was higher in the diabetic group. 
The difference in SD12 increased with lag number (Figure 2).

An excellent fit of the data with equation (1) (solid line on 
the curve, R2 = 0.999) was found with the χ, β, γ value sets 

listed in Table 1. The values for L and Q as obtained by fitting 
of the data to eq. (1) are also presented in Table 1. The general 
features were that the slope (L) was positive but curvature (Q) 
was negative for all parameters and curvature was nearly one 
order of magnitude smaller than the slope.

From DFA, the mean value of alpha in the control group 
was smaller than that in the diabetic group (0.88 ± 0.17 vs. 
1.02 ± 0.13; p < 0.001) (Figure 3). In control subjects, αs was 
slightly larger than αl (1.01 ± 0.14 vs. 0.80 ± 0.19), whereas 
αl was larger than αs for the diabetic group (αs = 1.09 ± 0.17; 
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Figure 3 - The DFA exponent α for healthy (nondiabetic) and diabetic subjects.

Table 1 - The values of parameters χ, β, γ obtained by fitting the data to eq. (1), as well as respective R2 values. The L and Q parameters are the 
coefficients of the linear and quadratic terms in expansion of Y in terms of m. Values of χ, L and Q for SD1 and SD2 are expressed in seconds

χ × 10−2 β × 10−2 γ × 10−2 R2 × 10−2 L × 10−3 −Q × 10−4

SD1 ND 1.3 ± 0.03 39.1 ± 2.0 3.2 ± 0.2 99.9 4.7 ± 0.4 1.5 ± 0.2

D 1.0 ± 0.02 38.2 ± 1.4 2.0 ± 0.1 99.9 3.6 ± 0.08 0.7 ± 0.02

SD2 ND 3.2 ± 0.06 20.3 ± 1.1 3.5 ± 0.2 99.9 5.4 ± 0.4 1.9 ± 0.2

D 3.1 ± 0.07 26.4 ± 1.6 4.4 ± 0.3 99.9 6.8 ± 0.6 3.0 ± 0.5

SD12 ND 40.2 ± 0.5 25.0 ± 1.8 12.2 ± 0.9 99.9 51.3 ± 6.4 62.7 ± 2.4

D 33.0 ± 0.3 15.3 ± 0.8 6.5 ± 0.4 99.9 29.0 ± 2.6 18.9 ± 2.8

αl = 1.18 ± 0.19). When αs was plotted against αl (Figure 4), 
the diabetic and nondiabetic populations tended to form two 
separate clusters.

In the correlation plot, points were crowded around the 
origin for diabetic patients. In contrast, there was greater 
scattering about the origin and more asymmetry in the plot 
of control subjects (Figure 5, ND1, ND2). The strength of 
heart rhythm correlation was estimated by considering the 
autocorrelation of fluctuation in RRn. Representative results 
from one control and one diabetic patient are plotted in Figure 
6. The autocorrelation functions for diabetic and control 
patients were distinct. For diabetic subjects, the correlation 
function C(m) decreased slowly (black and green curve in the 

upper figure) with lag time. The time dependence was close 
to the sum of the two exponentials with superimposed small 
amplitude oscillation of low frequency. On the other hand, 
C(m) from the healthy subjects demonstrated a more rapid 
(exponential) fall as correlation time decreased compared with 
the diabetic cases. To confirm this difference in correlation 
pattern between control and diabetic subjects, we shuffled 
the actual time series of R–R interval using Matlab software 
and the autocorrelation functions of the shuffled data (red 
and blue for subjects 1 and 2 respectively) were plotted in 
Figure 6. The autocorrelation functions of the shuffled data 
from all subjects (2 diabetics and 2 healthy controls) were 
nearly identical. 
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Figure 4 - Scatter plot of DFA exponent long-term alpha (AlphaL) vs. short-term alpha (AlphaS) for nondiabetic subjects (red circles) and diabetic subjects (black 
squares).

We also characterized properties of ∆RRn by the probability 
distribution function P(∆RRn) (Figure 7). For diabetic patients, 
the probability distribution was almost symmetrical and could 
be fit by a Gaussian function (R2 = 0.93) with width = 0.023. 
For healthy subjects, the probability distribution P was 
asymmetrical with positive mean and higher width = 0.036 
as obtained by the Gaussian fit (R2 = 0.93).

Discussion
We found marked differences in HRV pattern between 

diabetic and healthy control subjects using nonlinear 
analyses. Subjects were matched for both mean age and 
resting heart rate, the two major determinants of HRV 23, 
so that the difference in distribution would reflect changes 
in cardiovascular regulation resulting from the diabetic 
condition only.

Several modifications of the simple Poincaré plot have been 
proposed to more effectively reveal changes in HRV patterns, 
including the lagged plot. The concept of this m lagged plot 
emerged from the recognition that any given R–R interval 
can influence up to eight subsequent R–R intervals 24,25. It has 
been shown that SD1 correlates with the short-term variability 
of heart rate and is mainly influenced by parasympathetic 
modulation, whereas SD2 is a measure of long-term variability 
14,26 and reflects sympathetic activation. The lower SD1 in 
diabetic subjects indicates that parasympathetic regulation 
is weakened by the disease, presumably by peripheral 

neuropathy, whereas higher SD2 in diabetic patients indicates 
increased long-term variability because of compensatory 
sympathetic input. 

The results from Poincaré plot analysis are further revealed 
by the slope (L) and curvature (-Q) of the plot. In the diabetic 
group, L and -Q for SD1 and SD12 were smaller, whereas L 
and -Q values for SD2 were higher than in the control group. 
The difference in Q was larger than the difference in L. In 
particular, the Q value for SD12 in the control group was 
>3 times greater than that for diabetic group. Low values of 
curvature are found in patients with cardiovascular disease 24. 
These data strongly suggest decreased parasympathetic activity 
and excessive influence of sympathetic activity in the diabetic 
heart. In addition, this result provides indirect support for the 
notion that higher sympathetic influence over cardiovascular 
function is correlated with cardiac morbidity 27,28. An increased 
SD12 is considered a good indicator of healthy heart dynamics, 
and the lower value in diabetic patients again supports altered 
sympathovagal balance in diabetes.

Previous reports using DFA showed that αs > αl in healthy 
subjects, whereas the reverse was the case for subjects with 
cardiovascular disease 20. We found a similar trend in this study, 
again confirming the adverse effect of diabetes on the heart. 

In the absence of external modulation, the correlation plot 
is expected to scatter close to the point of origin, whereas 
random input will produce a uniform distribution. We observed 
a high density of points around the origin with greater symmetry 
in diabetic patients when compared with controls. Plots from 
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Figure 5 - Plot of rrn+1 and rrn for two subjects from each group. Subjects were age matched (1 from each group in their mid-fifties, one from each group in their late 
thirties). The quantity rrn is the relative difference between RRn+1 and RRn normalized to the mean RRn of all intervals.

healthy controls were generally asymmetrically scattered with 
large RRn values. These results suggest that mechanisms for 
decelerating and accelerating HR over different time frames are 
substantially impaired in diabetic patients.

Application of autocorrelation to HRV analysis is a recent idea 
that regards HRV as the outcome of the interaction between 
coupled oscillators of various frequencies 29. The degree of 
autocorrelation can also reflect on the embedded time scales 
within the HRV pattern. It is thought that each of these time 
scales in the coupled oscillator is represented by a separate 

self-oscillator, interacting with other oscillators with different 
physiological functions 18. The lack of exponential fall in C(m) 
indicates the presence of a long-term memory effect in the 
diabetic condition and strongly suggests that mechanisms for 
short-term variation in heart rate are weakened or lacking in 
diabetic patients.

Heart rate variability analysis based on nonlinear dynamics 
has been shown to be superior to conventional methods for 
identifying hidden changes in cardiac autonomic modulation in 
various disease conditions. Previous reports have demonstrated 
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Figure 6 - Plot of the correlation function C(m) with m for two diabetic (D) (left) and two control (ND) subjects. The lower curves were obtained from shuffled RRn intervals.

Figure 7 - The plot of probability distribution P as a function of rrn for the two groups (upper panel is the diabetic group and the lower is the nondiabetic healthy group). 
Continuous Guassian curves are fitted to the distributions.
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differences in Poincaré plots, DFA, and sample entropy analysis 
between the hearts of diabetic and nondiabetic patients 17,30, 
but these differences often did not reach statistical significance 
because of the small sample sizes 17. Our study not only enrolled 
larger numbers of patients and controls but also used multiple 
nonlinear analytic tools, including Poincaré plot analysis, DFA, 
and autocorrelation analysis to reveal changes in HRV due to 
diabetic neuropathy.

The major limitation of this study is the heterogeneous patient 
population. The duration of illness in the patient group was 
variable and many were on different antidiabetic medications. 
Moreover, a population of 23 patients may be sufficient to 
identify differences in HRV pattern between diabetic and healthy 
nondiabetic subjects, but a much larger group of patients is 
required to confirm the true diagnostic and prognostic values of 
the parameters derived from the analytic methods. Intra-group 
analysis in a larger group of diabetic patients of variable disease 
duration to assess progressive changes in HRV pattern is the next 
logical step. Our study establishes the potential of nonlinear 
methods of heart rate variability analysis to assess changes in 
HRV pattern indicative of cardiovascular disease, including effects 
associated with diabetes mellitus.

Conclusions
In summary, we have shown the effectiveness of nonlinear 

analytical methods to study differences in HRV patterns 
between diabetic patients and healthy-matched controls. 
We also emphasized the novelty of autocorrelation analysis 

to assess changes in the autonomic regulation of the diabetic 
heart. To our knowledge, this is the first attempt to distinguish 
normal from diabetic heart function using autocorrelation 
analysis. We believe these methods have the potential 
to identify diagnostic and prognostic markers for cardiac 
autonomic neuropathy in diabetes.
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