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Abstract

Background: Mercury’s deleterious effects are associated with increased cardiovascular risk.

Objective: To determine whether chronic exposure to inorganic mercury increases the activity of angiotensin-converting 
enzyme and its relationship with oxidative stress in several organs and tissues.

Methods: We studied male Wistar and spontaneously hypertensive rats (SHR) (3-month-old) exposed or not to HgCl2 
for 30 days. At the end of treatment, we investigated the following: changes in body weight, hemodynamic parameters, 
angiotensin‑converting enzyme (ACE) activity and oxidative stress in the heart, aorta, lung, brain and kidney in hypertensive 
compared to normotensive animals. A value of p < 0.05 was considered significant.

Results: Chronic exposure to HgCl2 did not affect weight gain in either group. Systolic blood pressure, measured weekly, 
did not increase in Wistar rats but showed a small increase in SHR rats. We also observed increases in left ventricular 
end-diastolic pressure and ACE activity in the plasma and hearts of normotensive rats. In the SHR+Hg group, ACE activity 
increased in plasma but decreased in kidney, lung, heart, brain and aorta. Oxidative stress was assessed indirectly by 
malondialdehyde (MDA) production, which increased in Hg-treated rats in both plasma and heart. In the SHR+Hg group, 
MDA increased in heart and aorta and decreased in lungs and brain.

Conclusion: These results suggest that chronic exposure to inorganic mercury aggravates hypertension and produces more 
expressive changes in ACE activity and oxidative stress in SHRs. Such exposure affects the cardiovascular system, representing 
a risk factor for the development of cardiovascular disorders in normotensive rats and worsening of pre-existing risks for 
hypertension. (Arq Bras Cardiol. 2019; 112(4):374-380)
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Introduction
Mercury is a toxic metal that causes harmful effects on the 

cardiovascular system. Blood concentrations levels of 8 ng/
mL are found in exposed individuals,1,2 which might have a 
relationship with hypertension development.3

Several reports showed that mercury induces oxidative 
stress and might damage several organs and systems.4-9  
In addition, increased mercury exposure has been associated 
with cardiovascular diseases, such as hypertension, carotid 

atherosclerosis, myocardial infarction and coronary heart 
disease.10,11 Moreover, oxidative stress is reported to be an 
efficient mechanism for generation of oxidized low‑density 
lipoprotein and subsequently atherosclerosis;12,13 then, 
generation of advanced glycation end-products and 
participation of inflammatory cells take place, sustaining 
vascular injury.14

One of the main harmful actions of mercury is the 
generation of oxygen free radicals. NADPH oxidase activation 
and cyclooxygenase (COX) stimulation induced by mercury 
may trigger the production of reactive oxygen species 
(ROS).11,15,16 Moreover, in animal models chronic mercury 
exposure for 30 days promoted contractility dysfunction in 
isolated hearts as a result of decreased Na+-K+-ATPase (NKA) 
activity, reduction in sodium/calcium exchanger (NCX) and 
sarco/endoplasmic reticulum calcium ATPase (SERCA) activity 
and increased phospholamban (PLB) expression.17 Although no 
effects on blood pressure, heart rate or left ventricular systolic 
pressure have been reported, mercury causes a small increase 
in left ventricular end-diastolic pressure in rats.17
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Additionally, at the vascular level, the vasoconstrictor 
response to phenylephrine was increased in caudal, 
mesenteric, coronary arteries and in the rat aorta, effects 
commonly related to reduced bioavailability of nitric oxide 
(NO) and increased oxidative stress.4,18,19 Interacting with NO, 
superoxide anion (O2

.-) forms peroxynitrite, decreasing NO 
availability for smooth muscle relaxation.20-22

We reported that mercury administration increases local 
angiotensin converting enzyme (ACE) activity,18 releasing more 
angiotensin II that enhances the production of free radicals.23 
These results show that mercury pressor effects might depend 
on angiotensin II generation and are involved in oxidative 
stress generation. Previous studies showed that mercury could 
increase local ACE activity and oxidative stress with subsequent 
oxidative damage in several organs and systems,5,11,24-27 but the 
in vivo effects of mercury chronic exposure on cardiovascular 
activity are not yet completely understood.

Moreover, investigations on mercury effects have been 
mainly focused on the cardiovascular systems of normotensive 
animals. However, little information exists about the chronic 
effects of low doses of inorganic mercury regarding ACE 
activity in organs and tissues of normotensive and hypertensive 
animals. To investigate such effects, increased mercury levels 
were induced to produce blood level concentrations similar to 
those of exposed individuals. Therefore, we aimed to determine 
whether chronic exposure to inorganic mercury increases the 
activity of ACE and the relationship of such exposure with 
oxidative stress on heart, aorta, lung, brain and kidney in 
hypertensive compared to normotensive animals.

Methods

Animals
Three-month-old male normotensive Wistar rats and 

SHRs (spontaneously hypertensive rats) were obtained from 
the Federal University of Espirito Santo breeding laboratories. 
During  treatment, rats were housed at a constant room 
temperature, humidity, and 12:12-h light-dark cycle. Rats had 
free access to tap water and were fed with standard chow ad 
libitum. All experiments were conducted in compliance with 
the guidelines for biomedical research as stated by Conselho 
Nacional de Controle de Experimentação Animal-CONCEA, 
and in accordance with the Guide for the Care and Use 
of Laboratory Animals of the National Institute of Health. 
The protocols were approved by the Ethics Committee of Escola 
Superior de Ciências da Santa Casa de Misericórdia de Vitória, 
Brazil (CEUA‑EMESCAM 003/2007). Wistar rats and SHRs were 
divided into four groups: control Wistar rats (n = 6) and SHRs 
(n = 9) treated with vehicle (saline solution, im), and Wistar rats 
(n = 8) and SHRs (n = 9) treated with mercury chloride (HgCl2) 
for 30 days (1st dose 4.6 µg/kg, subsequent dose 0.07 µg/kg/day,  
im to cover daily loss). We used the model described by 
Wiggers et al.4 to reach blood level concentrations (7,97 ng/ml) 
similar to those of exposed individuals.

Blood pressure measurements
Indirect systolic blood pressure was measured at both 

the beginning and the end of the treatment using tail‑cuff 
plethysmography (IITC Life Science Inc.). For this measurement, 

conscious rats were restrained for 5–10 min in a warm 
and quiet room and were conditioned to numerous cuff 
inflation‑deflation cycles by a trained operator. Subsequently, 
systolic blood pressure was measured, and the mean of three 
measurements was recorded.

Hemodynamic parameter measurements
At the end of treatment, control and HgCl2-treated rats 

(n = 26) were anaesthetized with urethane (1.2 g/kg, Sigma, 
St Louis, MO, USA), and the carotid artery and jugular vein 
were cannulated. A polyethylene catheter (PE50/Clay-Adams) 
filled with heparinized saline (50 U/mL) was introduced into 
the carotid artery to measure systolic blood pressure (SBP) and 
diastolic blood pressure (DBP). The carotid artery catheter 
was introduced into the left ventricle, and the jugular vein 
cannula was advanced into the right ventricular chamber to 
measure the left and right ventricular systolic pressures (LVSP 
and RVSP) and their positive and negative time derivatives 
(+dP/dt and - dP/dt, respectively) along with the left and 
right ventricular end-diastolic pressures (LVEDP and RVEDP). 
Recordings were performed over 30 min with a pressure 
transducer (TSD 104A-Biopac) and with an interface and 
software for computer data collection (MP100A, Biopac 
System, Inc., Santa Barbara, CA, USA). Heart rate (HR) was 
determined in the interbeat intervals.

Measurement of malondialdehyde (MDA) production. 
Levels of MDA in plasma, heart, aorta, brain, kidney and lung 
were measured using a modified thiobarbituric acid (TBA) 
assay.28 Plasma and tissue samples were mixed with 20% 
trichloroacetic acid in 0.6 M HCl (1:1, v/v), and tubes were kept 
on ice for 20 min to precipitate plasma components to avoid 
possible interferences. Samples were centrifuged at 1500 x g 
for 15 minutes before adding TBA (120 mM in Tris 260 mM, 
pH 7) to the supernatant in a proportion of 1:5 (v/v); then, the 
mixture was boiled at 97°C for 30 min. Spectrophotometric 
measurements at 535 nm were taken at 20° C.

ACE activity assay
ACE activity was measured in plasma, heart, aorta, brain, 

kidney and lung using a fluorometric method adapted from 
Friedland and Silverstein.29 Briefly, triplicate tissue and 
plasma samples (3 μL) were incubated for 15-90 minutes at 
37°C with 40 μL of assay buffer containing the ACE substrate 
5 mM Hip‑His-Leu (Sigma). The reaction was stopped 
by the addition of 190 μL of 0.35 M HCl. The generated 
product, His-Leu, was measured fluorometrically following 
10 min of incubation with 100 μL of 2% o-Phthalaldehyde in 
methanol. Fluorescence measurements were taken at 37°C in 
a FLUOstar Optima plate reader (BMG Labtech, Offenburg, 
Germany) with 350 nm excitation and 520 nm emission 
filters. The fluorescence plate reader was controlled using 
the FLUOstar Optima Software. Black 96-Well polystyrene 
microplates (Biogen Cientifica, Madrid, Spain) were used. 
A calibration curve with ACE from the rabbit lung (Sigma) 
was included in each plate.

Data analysis and statistics
The results are expressed as the mean ± SD. All parameters 

were tested for normality using the one-sample Kolmogorov-
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Table 1 – Body Weight (BW), Brain/BW, Heart/BW, Kidney/BW, Lung/BW, Adrenals/BW, Spleen/PC and Liver/PC from HgCl2-treated and 
non‑treated Wistar rats and spontaneously hypertensive rats (SHRs)

Wistar Control
n = 6

Wistar HgCl2-treated
n = 8

SHR Control
n = 9

SHR HgCl2-treated
n = 9

Body weight (BW) (g) 399 ± 58.3 384 ± 18.1 216 ± 20.1*† 222 ± 14.4*†

Brain/BW (mg/g) 4.58 ± 0.7 4.69 ± 0.5 7.48 ± 0.7*† 7.41 ± 0.5*†

Heart/BW (mg/g) 3.06 ± 0.6 3.43 ± 0.2 3.77 ± 0.2 3.81± 0.2

Kidney/BW (mg/g) 6.44 ± 1.7 6.53 ± 0.5 6.78 ± 0.3 6.80 ± 0.6

Lung/BW (mg/g) 3.97 ± 1.5 4.53 ± 0.6 6.48 ± 1.2*† 7.91 ± 1.2*† 

Results represent mean ± SD; n: number of animals used. One-way ANOVA, post hoc Tukey’s. *p < 0.05 compared with the Wistar control and † p < 0.05 compared 
with HgCl2: treated Wistar rats.

Smirnov test. Differences were analysed using one-way ANOVA, 
followed by a post hoc Tukey test (GraphPad Prism Software, 
San Diego, CA). A p value < 0.05 was considered significant.

Results
At 30 days of mercury treatment, Wistar controls, Wistar 

treated rats, and treated and untreated SHRs had similar body 
weights, although the SHRs had lower body weights when 
compared with Wistar rats (Table 1).

Table 1 also shows that several organs, including the 
brain, heart, kidney and lungs, presented similar weights, 
normalized by body weight, which did not change after 
mercury treatment.

Indirect SBP measured at day zero in awake rats showed 
that SHRs had a higher mean arterial pressure compared with 
Wistar rats (Table 2). However, at the end of the treatment, 
mercury produced a significant increment of blood pressure 
only in HgCl2-treated SHR rats (Table 2).

Arterial blood pressures, ventricular pressures and their 
respective derivatives, and HR measurements in anaesthetized 
rats were not different between groups (Table 3), but the 
LVEDP increased after Hg treatment in the Wistar group, as 
previously reported.17

It has been reported in animal and human studies that 
mercury increases free radical production leading to an 
oxidative stress.4,24,30,31 We then evaluated the oxidant state in 
the blood and in several other tissues by measuring MDA levels 
(Table 4). MDA plasma levels were greater in mercury-treated 
than in untreated Wistar rats but did not change in SHRs. 
Mercury treatment increased MDA levels in the heart in both 
Wistar and SHRs. In the aorta, different from plasma, MDA 
levels were increased in mercury-treated SHRs but not in Wistar 
rats. For brain and lungs, no changes were observed for MDA 
levels in mercury-treated Wistar rats, but a reduction occurred 
in SHRs. For kidneys, mercury treatment reduced MDA levels 
in both Wistar and SHR mercury-treated groups.

Since angiotensin II is reported to increase ROS and 
mercury increases ACE,32,33 we investigated whether ACE 
activity was altered after 30 days of mercury treatment in 
Wistar and SHR groups. Table 5 shows that plasma ACE 
levels increased in both groups after mercury treatment. 
In the hearts of Wistar rats, mercury induced a slight ACE 
activity increment, but no changes were observed in the 

aorta, lungs, brain or kidneys. However, in mercury-treated 
SHRs, ACE activity was reduced in the heart, aorta, lungs, 
brain and kidneys. Interestingly, ACE activity was higher in 
the heart, aorta and kidneys and lower in plasma of SHR 
controls compared with Wistar controls.

Discussion
The results presented here suggest that Wistar rats and SHRs, 

submitted to chronic exposure to inorganic mercury for 30 days, 
have blood concentrations similar to exposed individuals.1,2  
In addition, HgCl2-treated SHR, but not Wistar rats have increased 
blood pressure at the end of treatment. The intervention also 
influenced ACE activity and oxidative stress, by increasing or 
decreasing them, mainly in SHRs.

Previous reports showed that changes resulting from 
chronic exposure to mercury have been focused on its toxic 
effects on the cardiovascular system and the associations with 
hypertension, carotid atherosclerosis, myocardial infarction 
and coronary heart disease.9,10,34 Mercury exposure, both 
acute and chronic, affects the heart and endothelial function, 
reducing NO bioavailability and increasing ACE and NADPH 
activities.15,18,19 Moreover, studies in rats showed that body 
weight gain and arterial pressure were not affected when 
chronic exposure was performed,4,17 suggesting that this 
treatment was not sufficient, in either amount or time, to 
produce changes. Our results reproduced those findings, 
showing no changes in body weight gain; additionally, similar 
behaviour was observed for the heart, brain, kidneys and 
lung, reinforcing the suggestion that this treatment is not 
sufficient to produce these changes, although cardiovascular 
function began to be affected.

Regarding the hemodynamic evaluation, no changes were 
observed in the left or right ventricle in Wistar rats or SHRs. 
Only an increment of LVEDP was observed in normotensive 
rats treated with mercury, indicating some deleterious effects of 
mercury on ventricular function.35 Right ventricular pressures 
were investigated because of our previous report showing 
that under acute mercury exposure (0.5 mg/kg), there was 
an increase in right ventricular systolic pressure because of 
pulmonary hypertension,3,36-39 which was not observed with 
chronic treatment in the present study. The fact that lung ACE 
activity was unaffected in both Wistar groups, although slightly 
reduced in HgCl2-treated SHRs might explain why the right 
ventricular pressures remained unchanged.
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Table 2 – Values of systolic blood pressure (SBP in mmHg) measured by tail plethysmography in Wistar rats and spontaneously hypertensive 
rats (SHRs) before and after treatment for 30 days with HgCl2.

Wistar CT
n = 5

Wistar Hg
n = 5

SHR CT
n = 5

SHR Hg
n = 5

SBP – Day 0 (mmHg) 123 ± 13 131 ± 15 205 ± 15 198 ± 22

SBP – Day 7 (mmHg) 119 ± 4 132 ± 9 221 ± 18 197 ± 18

SBP – Day 14 (mmHg) 115 ± 10 135 ± 9 219 ± 9 199 ± 29

SBP – Day 21 (mmHg) 132 ± 17 142 ± 14 200 ± 13 199 ± 9

SBP – Day 30 (mmHg) 117 ± 6 143 ± 11 220 ± 21 232 ± 19#

Results represent the mean ± SD; n: number of animals used. One-way ANOVA, post hoc Tukey’s for all groups. #p < 0.05 vs. SHR treated with mercury at day 0

Table 3 – Hemodynamic parameters from untreated and mercury (HgCl2)-treated Wistar rats and spontaneously hypertensive rats (SHRs)

Wistar Control
n = 6

Wistar HgCl2-treated
n = 7

SHR Control
n = 6

SHR HgCl2-treated
n = 7

SBP (mmHg) 105 ± 10 97 ± 11 105 ± 7 113 ± 8

DBP (mmHg) 71 ± 10 67 ± 11 58 ± 5 68 ± 11

HR (bpm) 324 ± 88 325 ± 58 343 ± 32 341 ± 34

LVSP (mmHg) 114 ± 20 107 ± 16 117 ± 22 112 ± 8

LVEDP (mmHg) 0.256 ± 1 3.31 ± 1* 1.11 ± 0.2 0.493 ± 0.5

+dP/dt LV (mmHg/s) 8627 ± 3378 8500 ± 2419 7360 ± 1854 7001 ± 1921

-dP/dt LV -6270 ± 1232 -6249 ± 1234 -7169 ± 1173 -6524 ± 1131

RVSP  (mmHg) 32 ± 10 29 ± 5 29 ± 5 33 ± 5

RVEDP (mmHg) -1.080 ± 1 1.10 ± 2 -0.472 ± 1 0.459 ± 0.3

+dP/dt  RV (mmHg/s) 3339 ± 2202 1758 ± 435 2776 ± 1056 2171 ± 405

– dP/dt RV (mmHg/s) -2560 ± 1553 -1387 ± 469 -1833 ± 478 -1695 ± 368

Changes in systolic (SBP) and diastolic (DBP) pressure, heart rate (HR), left and right ventricle systolic pressure (LVSP, RVSP), left and right ventricle end diastolic 
pressure (LVEDP, RVEDP) and positive (+dP/dt) and negative first-time derivatives (-dP/dt) from the left and right ventricles of Control and HgCl2-treated rats.  
The results represent the mean ± SD. n-Number of animals used. One-way ANOVA, post hoc Tukey’s. *p < 0.05 vs Wistar Control.

The reduction of NO bioavailability is a hallmark resulting 
from the increase in ROS generation contributing to the 
development of cardiovascular diseases such as atherosclerosis 
and hypertension.10,11,34 The interaction of superoxide anion with 
NO generates peroxynitrite that decreases NO bioavailability 
increasing vascular reactivity.20-22 In fact, our previous studies 
have associated mercury exposure with increased oxidative 
stress and the reduction of NO bioavailability.15,19 In addition, 
it has been shown that an increase of the local ACE activity 
could increase NADPH oxidase activity16 40 and ROS in the 
aortas of normotensive and SHRs. Therefore, we investigated 
whether mercury effects alter the renin-angiotensin system and 
oxidative stress in the organs and tissues of hypertensive and 
normotensive rats. The increase in ACE activity induced by 
mercury could lead to increased activity of NADPH oxidase, 
which could, in turn, increase the release of ROS, generating 
an oxidative stress, as observed in this study.

Considering that both Hg and increased ACE activity can 
induce oxidative stress, we should observe a correlation between 
the amount of oxidative stress and ACE activity measured by 
MDA. An interesting aspect is that ACE activity levels and MDA 
concentrations showed similar behavior in plasma and organs 
investigated. Also, it is of note that both ACE activity and MDA 
concentrations showed more expressive changes in HgCl2-

treated SHRs. Similarly, inorganic mercury treatment aggravated 
hypertension in SHRs, suggesting that a pre-existing hypertensive 
condition enhances inorganic mercury action.

ROS are damped in the plasma of all locations where they 
are produced, and consequently, it is expected an increase in 
MDA. We have shown that plasma ACE activity increases after 
acute exposure to low mercury concentrations and reduces 
after exposure to high concentrations.18,39 However, we might 
speculate that in the SHR group, when exposed to mercury, 
tissues that produce more ROS, such as the aorta, lung and 
kidney, ACE activity is reduced. Similarly, in the brain tissue, 
which concentrates mercury, ACE activity also decreased. 
LVEDP increments in Wistar rats could be explained by the 
local increase in ACE activity and oxidative stress in the heart. 
These two factors might explain the small, but significant 
increase in LVEDP, probably induced by a calcium overload.

Although we cannot give a proper explanation for all the events, 
it can be suggested that mercury, even at concentrations that do 
not affect arterial pressure and weight gain in normotensive rats, 
affects ACE activity and oxidative stress. However, in hypertensive 
animals, inorganic mercury actions were more expressive.  
These findings give rise to questions that are not addressed by our 
results: can exposure to mercury inhibit ACE activity in situations 
where it is already increased? Does ACE activity in different organs 
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Table 4 – Malondialdehyde (MDA) (mM/mg of protein) concentrations in plasma, heart, aorta, lung, brain and kidney of untreated and Mercury 
(HgCl2)-treated Wistar rats and spontaneously hypertensive rats (SHRs)

Wistar Control
n = 6

Wistar HgCl2-treated
n = 6

SHR Control
n = 6

SHR HgCl2-treated
n = 7

Plasma 0.93 ± 0.15 1.28 ± 0.44* 0.89 ± 0.22 0.92 ± 0.05

Heart 0.22 ± 0.03 0.28 ± 0.03* 0.45 ± 0.05 0.55 ± 0.05&

Aorta 0.13 ± 0.03 0.12 ± 0.05 0.96 ± 0.27 1.51 ± 0.37&

Lung 0.18 ± 0.05 0.14 ± 0.03 0.21 ± 0.03 0.12 ± 0.03&

Brain 0.13 ± 0.03 0.09 ± 0.03 0.54 ± 0.07 0.34 ± 0.03&

Kidney 0.38 ± 0.07 0.14 ± 0.03* 0.96 ± 0.07 0.51 ± 0.03&

Values are expressed in mM/mg of protein (MDA). The results represent the mean ± SD. N-Number of animals used. One-way ANOVA, post hoc Tukey’s. *p < 0.05 
vs Wistar Control and &p < 0.05 vs SHR Control. 

Table 5 – Angiotensin converting enzyme (ACE) activity levels in plasma, heart, aorta, lung, brain and kidney of untreated and Mercury 
(HgCl2)-treated Wistar rats and spontaneously hypertensive rats (SHRs)

Wistar Control
n = 6

Wistar HgCl2-treated
n = 6

SHR Control
n = 6

SHR HgCl2-treated
n = 6

Plasma 187 ± 39.2 235 ± 34.3* 114 ± 27.9* 163 ± 38.7&

Heart 3.4 ± 0.5 4.1 ± 0.3* 17.9 ± 2.7* 14.8 ± 1.4&

Aorta 213 ± 53.9 221 ± 61.3 670 ± 39.9* 535 ± 47.0&

Lung 95 ± 6.1 99.4 ± 11.3 87.6 ± 5.4 75.1 ± 9.8&

Brain 46.4 ± 7.9 42.6 ± 9.9 40.3 ± 5.6 27.8 ± 4.4&

Kidney 47.8 ± 16.2 45.4 ± 14.2 80.0 ± 15.4* 61.4 ± 6.9&

Values are expressed in nmol/mL/min/mg of protein in tissues and in nmol/mL of plasma/min in plasma (ACE). Results represent the mean ± SD. N-Number of 
animals used. One-way ANOVA, post hoc Tukey’s. *p < 0.05 vs Wistar Control and &p < 0.05 vs SHR Control.

depend on mercury concentration in each of them? Would a 
pre-existing cardiovascular disorder be aggravated by exposure to 
inorganic mercury? These questions can be considered limitations 
of our study, and issues for further studies.

Conclusions
Results described here allow us to affirm that chronic 

exposure to inorganic mercury, similarly to that we previously 
reported, produces blood concentrations compatible 
with those found in exposed humans, and do represent a 
cardiovascular risk factor. Such exposure influenced ACE 
activity, increased oxidative stress and promoted hypertension 
in SHRs (which had a higher blood pressure increment 
compared with untreated SHRs), as well as increased the 
LVEDP in Wistar rats. This controlled exposure affected the 
cardiovascular system, produced more expressive changes 
of ACE activity and oxidative stress in SHRs representing a 
risk factor for the development of cardiovascular disorders 
in normotensive rats and a contributing factor to pre-existing 
risks in high blood pressure condition.
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