TOXIDEZ DE ALUMÍNIO E MANGANES EM SORGO SACARINO (Sorghum bicolor L. Moench) IV. RELAÇÕES ENTRE P, K E Al*

Ana Cândida P. Aguirre Primavesi**
E. Malavolta***
Odo Primavesi****

RESUMO

Foi feito um experimento, em casa de ve getação com quatro cultivares de sorgo sacarino: CMS x S 603, Br 500, Sart e Br 602, usando-se solução nutritiva de Hoagland e Arnon nº 1 modificada para a solução padrão contendo os tratamentos (níveis de Al, P, K). Colhido o material e determinado os pesos da matéria seca da raiz e parte aérea e os teo res dos elementos P, K, Ca, Mg e Al, ve rificou-se que: a) ocorreu estímulo na produção de matéria seca de alguns cul

^{*} Parte da Tese apresentada pelo primeiro autor a ESALQ, USP, Piracicaba. Entregue para publicação em: 29/10/87.

^{**} EMBRAPA

^{***} CENA, USP

^{****} COPERSUCAR, CTC, Piracicaba

tivares por determinadas combinações de níveis de Al e nutrientes; b) o acrésci mo dos níveis de K no substrato promoveu um aumento na tolerancia ao Al desde que o P estivesse em alta concentração; c) o fornecimento de K em nível muito alto (solução de Hoagland e Arnon(, não permitiu diferenciar cultivares quanto ao grau de tolerância; d) os teores dos elementos Ca, Mg, K, P e Al na parte aérea dos cultivares foram diferentes para os mesmos, quando compara dos os tratamentos que acarretaram as maiores e menores produções de matéria seca.

INTRODUÇÃO

Diferenças na absorção e utilização de Ca, Mg, K e P tem sido associadas com sensibilidade ao Al para o trigo e o milho (CLARKSON, 1971).

Com o objetivo de verificar o efeito da combinação de níveis de P, K e Al no grau de tolerancia a este último elemento, foi efetuado o presente estudo, utilizando-se cultivares de sorgo sacarino.

MATERIAIS E METODOS

Foram colocadas para germinar no dia 03/04/81, se mentes dos seguintes cultivares de sorgo sacarino: CMS x S 603, Br 500, Sart e Br 602. Essas sementes foram revestidas com fungicida, e o substrato para a germinação foi vermiculita umedecida com solução de CaSO₄. 2H₂O 10 M (MALAVOLTA, 1975). As plantulas, com 14 dias, foram transferidas para solução nutritiva nº 1 de HOA-GLAND & ARNON (1950) contidas em bandejas de 40 l. Essa solução nutritiva foi modificada para a solução padrão contendo os tratamentos e os micro nutrientes fornecidos através da solução "a" e solução de Fe-EDTA (MALA-VOLTA, 1975). O balanço nutricional foi feito de acordo com SARRUGE (1975). A referida solução foi arejada continuamente com ajuda de compressor de ar e substitui da semanalmente, tendo o pH ajustado para 4,0 - 4,5 e o volume mantido com áqua destilada.

A composição da solução padrão foi: MgSO $_4$.7H $_2$ OM-2ml/l, Ca(NO $_3$) $_2$ M - 5 ml/l, Fe-EDTA - l ml/l e solução "a" (micronutrientes) - l ml/l. Os tratamentos usados foram: Al (ppm) - Al $_1$ = 0, Al $_2$ = 6, Al $_2$ = 12; P(mM)-P $_1$ = 0,0125, P $_2$ = 0,05, P $_3$ = 0,25; K(mM) - K $_1$ = 0,125, K $_2$ = 0,5, K $_3$ = 5,0. Os níveis 3 de K e P correspondem respectivamente a 5/6 e l/4 da concentração desses elementos na solução de Hoagland e Arnon. A concentração do P foi mudificada para evitar a precipitação de Al (NOGUEIRA, 1979).

O experimento foi feito segundo um delineamento com o esquema de parcelas subdivididas. Os tratamentos (27) do fatorial (3 x 3 x 3) representaram as parcelas e os quatro cultivares as sub parcelas, com quatro repetições inteiramente casualizadas.

O material colhido (16/05/81) foi lavado e seco em estufa com circulação forçada de ar com temperatura de 65 - 70°C. Após a obtenção do peso da matéria seca, foi moido em moinho tipo Wiley com peneira 20 (SARRUGE & HAAG, 1974). Através da digestão nitroperclórica obte ve-se o extrato onde determinou-se os elementos P, Ca, Mg e Al por espectrometria de emissão com plasma induzi do em argonio e o K por fotometria de chama.

RESULTADOS E DISCUSSÃO

Matéria Seca

Verificou-se a seguinte ordem decrescente para a exploração do potencial de produção de matéria seca da raiz e da parte aérea (Tabela 1): Br 602 ➤ Sart > CMS x S 603 > Br 500. No nível 12 ppm de Al o cultivar Br 500 apresentou maior produção que CMS x S 603.

A variação porcentual entre os níveis Al_2/Al_0 in dicou:

- a) os tratamentos que condicionaram as menores reduções na produção de matéria seca foram: na raiz P_2K_2 para o cultivar CMS x S 603 (redução para 36,2%), P_3K_2 para Br 500 (redução para 79,8%), Sart (aumento para 120,5%) e Br 602 (aumento para 101,6%). Na parte aérea; na parte aérea P_1K_2 para o cultivar CMS x S 603 (redução para 20,5%), P_3K_1 para Br 500 (44,3%) e P_3K_2 para Sart (60,2%) e Br 602 (88,1%). (Tabela 2)
- b) as maiores reduções foram devidas aos tratamentos: na raiz P_1K_3 para Br 500 (redução para 15,5%), Sart (21,2%) e Br 602 (19,7%) e P_2K_3 para $CMS \times S$ 603 (19,4%). Na parte aérea P_3K_4 para $CMS \times S$ 603 (11,5%), P_3K_4 para Sart (12,5%) e Br 602 (12,0%) e P_2K_3 para Br 500 (8,5%).

Portanto, quanto ao grau de tolerância ao Al apresentado pelos cultivares, considerando-se a melhor combinação P e K, específica para cada cultivar, verificouse a seguinte ordem decrescente: raiz - Sart > Br 602 Br 500 > CMS x S 603; parte aérea - Br 602 > Sart > Br 500 > CMS x S 603.

Os tratamentos que condicionaram o maior grau de tolerância ao Al apresentaram mais frequentemente os níveis 3 de P e 2 de K e os que acarretaram o menor grau

Tabele 1. Necérie seca (g) de reiz (R) e parte páres (PA) des cuitivares de serge secarino.

Celtimera	ð	CMS x S 643			Pr 500	1		ĭ			2	
inte Pate	•	¥	A/PA	ı	¥	R/PA	-	ž	24	-	2	\$
, P, E,	1,267	20.	1,32	1,205	6,63	6,33	0,328	1,19	0,28	6,330	17.1	*:
	0,270	9,78	1,35	1,225	6,55	- 4 .	4,265	1,65	4,25	8.433	ά.	77
٠.	0,350	<u>x</u>	0,39	0, 290	19.6	7	0,368	1,12	•.33	.	3.	7
`±	0,355	1,3	0,27	9,200	3.	97.	9,268	£,'	12.0	1.535	. 2,01	
	916,0	1,25	1,25	9,278	 	% .	6,287	₹.	97.7	1.49	7,07	*
ۍ. ۱	1,47	1,42	<u>بر</u>	9.310	1,17	9,26	6,550	7.24	9,25	£.	2,42	7.
`#	0,455	R	9,26	6,236	0.97	¥.,	0,512	2,69	•:3	9,7	1.67	s
	3.	1,65	6,27	F. 1.3	.67	6,27	6,278	۲.	. .	4,347	2,1	8.26
ۍ.	0.¥5	<u>.</u>	5.7	6,235	1,2	6.13	£,48)	1,57	9 .15	0.555	<u></u>	
`	6,235	4, %	9.65	1,135	آ .	3.	1,420	17.0	6,59	0.325	1.50	9.65
·	9,218	1,27	18,0	6.087	.	3.	. 73.	1,37	£,8	6,293	# #	6.73
س. ا	<u>.</u>	₹.	. .7	6,963	:	6,63	×	9 . '	1.73	6, 145	6,22	
, , , ,	1,465	z .	9,45	9,260	6,72	*.*	6,513	1,45	. ,3	4.617	α.	Ţ.
·	X (.)	8 .	.43 .43	9 ,445	*	9,45	97.	2,19	4.32	6,638	2.	•
س.	¥.15	1,27	3.	8 3	¥, X	6,62	6,273	6,55	3,	1,433	6,73	53.
`•[1.93	0.24	£ 29	3 .	6,23	1,370	2,18	6 .17	1.585	1.97	4.26
	0,315	¥.	6,25	1,263	£.	1.17	1,375	¥.	1,20	6,685	1,93	6.23
٠.,٠	X .	×.'	1,23	1,233	÷.	1 ,2	1,395	¥.	£,2	1,622	2,51	9.3
, v. v.	į	•, ï	15.1	1,057	=;	15.9	# ·	9 . 16	19.6	=:		•.62
	į	91.	ž.	Ĭ,	1.1	15.57	3	1.	3,	*	6.23	•.65
ی ا	ë.	9,15	3 <u>.</u>	€,0¥5,	.	7.	K.,	:	3 .	÷: ;	=,	3
` <u>*</u> [.18	6,23	7.	.93	7. .	E	6,239	3	3.	1,121	5.63	*
	6,135	17,1	3.	1,857	=	1,57	6 ,115	K.	37.0	1,224	0.42	3.
س ،		:.·	3.	1, 1955	:	1.55	4.175	£.3	3 .5	0,22T	6.52	•
, .v.	711,	Ĩ.	X .	.	÷.	6 .33	6,230	.	4.4	6,363	77.	6
, ₁ ,	ij.	6,13	÷.	. .	17.	£, 5	6,335	=	. .	1.393	ι,3	6,30
ر.	921	=	. 30	A 128	2	7	£ 14	1	7	175	1	*

Tabela 2. Tratamentos que permitiram a maior e menor exploração do potencial de produção de matéria seca e a tolerência ao Al; na raiz e parte aérea.

M etër 14	Matéria seca (g)	CMS x S 603	Br 500	Sart	Br 602
	> .exploração Al		P2K3= 0,316	P2K3= 0,550	P2K2= 0,705
Z Z	A1,	$P_{1}K_{2}=0,120$	P2K2= 0,142	$P_1K_2 = 0,335$	$P_{2}K_{2} = 0,393$
	< exploração Al	P, K, = 0, 267	P2K2 = 0,178	P, K,= 0,265	P,K,= 0,330
	Al 2 P	$P_1 K_3 = 0.075$	P1K2 = 0.040	PIK3 = 0,078	P1K1-3 0,118
	> exploração Al		P3K3= 1,21	P ₃ K ₁ = 2,69	P2K2= 2,81
Parte	Alz		$P_{3}K_{1}=0,43$	P, K,= 1,11	$P_2K_3 = 1,33$
	< exploração Al		P, K,= 0,55	P, K,= 1,05	P,K,= 1,28
	A12	P1K3= 0,15	$P_1K_2 = 0.07$	$P_1 K_3 = 0.14$	P1K3 = 0,18
Tolerên	Tolerância (%, redução para)	ra)			
Z i Z	> tolerância	P, K, = 36, 2	P2Ky= 79,8	P3Ky= 120,5	P3K3= 101,6
	< tolerância	$P_2K_3 = 19.5$	P1K3= 15,5	$P_1K_3 = 21,2$	P1K3= 19,7
Perte	> tolerância	P, K2= 20,5	P3K1= 44,3	P3K2= 62,0	P ₁ K ₂ = 88,1
Aire	< tolerância	P2K2= 11,5	P, K, = 8,5	P, K2= 12,5	P, K, = 12,0

os níveis 1 a 3 de P e 3 de K. Possivelmente para a melhor atuação do mecanismo de tolerância ao Al torna-se necessário uma combinação apropriada dos níveis de P e K.

Elementos minerais

Para cada cultivar, comparando-se os respectivos tratamentos que propiciaram as maiores e menores produções de matéria seca e grau de tolerância ao Al (Tabela 2), verificou-se o seguinte comportamento dos elementos minerais na parte aérea quanto ao teor e quantidade(Tabela 3):

- a) no tratamento que proporcionou a maior produção de matéria seca quando comparado ao que proporcionou a menor produção:
- o cultivar CMS \times S 603 apresentou teores maiores de Ca, Mg, P e menores de K e Al e quantidades maiores de todos os elementos.
- os cultivares Br 500, Sart e Br 602 apresentaram teores mais elevados de K e P e menores de Ca, Mg e Al. Apresentaram também quantidades maiores de Ca, Mg, K, P e Al.
- b) no tratamento que condicionou o maior grau de tolerância, quando comparado ao que acarretou o monor:
- o cultivar CMS \times S 603 apresentou teores mais elevados de Ca, Mg, Al e menores de K e P e quantidades menores de Ca, Mg, K, P e maiores de Al.
- o cultivar Br 500 mostrou teores maiores de Ca e P e menores de Mg, K, Al e quantidades maiores de Ca, Mg, K, P e Al.
 - os cultivares Sart e Br 602 apresentaram teores

Tabela 3. Teores e quantidades de mutrientes e Al ma parte adrea dos cultivares mas tratamentes que acertatarm es melores e memores produções de motéria seca (P) ma nivel 12 pas de Al e tolarância ao mesma (T)

			3		2		_				
	Tra tamento	-	mg/2 plan tas	-	mg/2plan tas		mg/2 plen tas	••	ma/2 plan tas	- 1	ng/2 plen 186
3 2 5	P.E.T.	<u> </u>	2,164	35.0	96,0	1,15	1,840	11.4	1,224	×	0.057
	-L'-	1,2	2.3%	9.50	1,950	<u>.</u>	. 2, 868		1.577	707	8.0.e
	, X,	7.	4,371	15.	1.767	1,23	3,782	¥.	3.063	š	153.0
	- <u>*</u> -	¥.	1,590	6,53	•.75	z.	2,385	7.7	3.	3 .2	9.035
3	P. K. 74	*	1,554	9,50	27.7	24,1	£. 194	*.	3,876	11)	. 95
ļ		1	1	3.	£.		1,930	6,13	36	50 2	1.62
		96.	4,558	3.	2,150	74.	6.196	¥.	3,878	= 1	9.0%
	<u></u>	5.	161'1	=,	0,567	¥.	6,672	. .	6.09	Ķ	970.0
5	, F.	3	3,76	×	. 38.	÷	31,746	2.	7,659	*	9.1.6
	7.7	.53	2,128	.	*	<u>-</u>	3.234		9,126	25	į
	2	3.	9,768	×		*	31,476	ż	7,659	Ā	. .
	, ţ.	1,52	2,128	.	¥	£,3	3,234		9. 126	£	÷
3	P.E.70	1.93	12,369	94.	5,329	#.	47,614	4	11,172	£	6.1 %
	, <u>.</u>	1.67	1,936	<u>ح</u>	6.972	28 , -	3,276	1.03	921.0	ž	30.
			12,369	3	5,320	3,8	47,614	1	11,172	2	6,132
	7 X 4	1.07	906,-	3.	16.972	2	3,276		6.126	Ž	ź.

maiores de K e P e menores de Ca, Mg, Al e quantidades maiores de Ca, Mg, K, P e Al.

Na Tabela 4, fixando o nível 3 de P, nota-se que apenas o cultivar CMS x S 603 apresentou maior grau de tolerância com as doses de K, tanto para a raiz como para a parte aerea. Os cultivares Br 500, Sart e Br 600 apresentaram um aumento no grau de tolerância tanto para a raiz como para a parte aerea, até o nível 2 de K, havendo um decrescimo com a dose 3 do mesmo. Alí, citado por FOY et alii (1978), encontrou que a toxidez de alumínio em trigo pode ser completamente modificada pelo aumento da concentração de K na solução. Verificouse que o nível 3 de K mostrou-se bastante prejudicial ao mecanismo de tolerância ao Al. Deve ser lembrado que o nível 3 de P usado foi 1/4 do nível normalmente usado na solução de Hoagland e Arnon e o nível 3 de K foi um pouco menor (1 mM a menos).

CONCLUSÕES

- O fornecimento de K em nivel muito alto (solução de Hoagland e Arnon) não permitiu diferenciar cultivares quanto ao grau de tolerância.
- A elevação dos níveis de K no substrato promoveu um aumento na tolerância ao Al desde que o P estivesse em alta concentração.
- Os teores dos elementos Ca, Mg, K, P e Al na parte aérea dos cultivares, nos tratamentos que acarretaram as maiores produções de matéria seca na presença de Al e maior grau de tolerância ao mesmo, foram diferentes para os cultivares.
- Quanto ao grau de tolerância Al apresentado pelos cultivares, considerando-se a melhor combinação P e

nível de Al de O para 12 ppm, na solução nutritiva matéria seca no experimento de K, com o aumento do Tabela 4. Variação porcentual (redução para) da produção de (grau de tolerância)

Kive.	ļ	Parte aerea				Raiz	iz	
Cation	CMS × S 603	Br 500	Sart	Br 602	CMS × S 603	Br 500	Sart	Br 602
_ا	19,0	15,9	13,4	14,8	30,7	27,8	30,5	35,8
~	17,6	20,2	35.7	34,3	29,6	45,7	85,8	59,8
۱ _۳ ۳	17,4	44,3	35,3	67.4	25,7	6,09	6.44	6,87
κ ₂ Ρ ₁	20,5	12,7	21,0	15,1	33,3	17,8	52,8	34,6
- 6 2	17,6	9,7	16,8	20,8	36,2	1,12	40,1	46,5
<u>_</u> ~	11,5	8,14	62,0	1,88	21,0	8,67	120,5	9,101
س م	16,7	13,1	12,5	12,0	21,4	15,5	21,2	19,7
ے م	12,7	8,5	13,8	21,5	19,5	17,7	31,8	31,5
່ຼ	18,3	24,0	21,0	37,0	34,8	54,5	40,4	66,7

K, especifica para cada cultivar, verificou-se a seguin te ordem decrescente para a raiz: Sart > Br 602 > Br $5\overline{00}$ > CMS x S 603 e para a parte aérea: Br 602 > Sart > Br 500 > CMS x S 603.

- Uma dada combinação de níveis de Al e nutrientes no substrato (tratamento) não afetou igualmente a parte aérea e o sistema radicular dos cultivares.
- Determinadas combinações de níveis de Al e nutrientes estimularam a produção de matéria seca de alguns cultivares.

SUMMARY

INDUCED TOXICITIES OF ALUMINUM AND MANGANESE IN SWEET SORGHUM. IV. RELATIONS BETWEEN P, K AND A).

Four sweet sorghum varieties (CMS x S 603, Br 500, Sart and Br 602) were grown in a modified Hoagland's solution in order to supply varying levels of Al, P and K. Dry matter production was measured. The material was analysed for P, K, Ca, Mg and Al. The following conclusions could be drawn: a) a stimulation on growth of some varieties was observed when a given combination among Al and other nutrient levels was provided; b) by increasing K level in the nutrient solution more tolerance to Al toxicity was observed, as long as P was present in high concentration in the substrate; c) a high level of K in the nutrient solution, such as thal given in Hoagland's solution, does not allow to differentiate cultivars with respect to tolerance to Al toxicity; d) there were differences among varieties with respect to tissue P,K, Ca, Mg and Al concentrations wich were associated with maximum and minimum growth.

LITERATURA CITADA

- FOY, C.D., 1974. Effects of aluminum on plant growth.

 In: Plant Root and Its Environment, Charlottsville;

 Virginia, U.S.A. Ed. by E. W. CARSON, Virginia Polytechnic Institute and State University. 691 p.
- FOY, C.D.; R.L. CHANEY e M.C. WHITE, 1978. The physiology of metal toxicity in plants. Ann. Rev. Plant Physiol. 29: 511-566.
- HOAGLAND, D.R. e D.I. ARNON, 1950. The water culture method for growing plants without soil. Calif. Agr. Expt. Sta. Circ. 34 p.
- MALAVOLTA, E., 1975. Práticas de nutrição mineral de plantas. Curso de Pos-Graduação em Solos e Nutrição de Plantas. Postila mimeografada, 65 p.
- MALAVOLTA, E.; J.R. SARRUGE e V.C. BITTENCOURT, 1977. Toxidez de alumínio e de manganês. In: FERRI, M.G., coord. IV. Simpósio sobre o Cerrado; Bases para a Utilização Agropecuaria. p. 275-301.
- NOGUEIRA, F.D., 1979. Efeitos do alumínio no sorgo granifero (Sorghum bicolor L. Moench). Piracicaba, ESALQ/USP, 120 p. (Tese de Doutoramento).
- OLMOS, J.I.L. e M.C. CAMARGO, 1976. Ocorrência de aluminio tóxico nos solos do Brasil, sua caracterização e distribuição. Ciência e Cultura, 28:171-180.
- SARRUGE, J.R. & H.P. HAAG, 1974. <u>Análises químicas em plantas</u>. Piracicaba, ESALQ/USP. 56 p.
- SARRUGE, J.R., 1975. Soluções nutritivas. Nota técnica. Summa Phytopathologica, 1: 231-233.