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Arylfurans as potential Trypanosoma cruzi trypanothione
reductase inhibitors
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The natural lignans veraguensin and grandisin have been reported to be active against Trypanosoma cruzi
bloodstream forms. Aiming at the total synthesis of these and related compounds, we prepared three 2-arylfurans
and eight 2,5-diarylfurans. They were evaluated for their potential as T. cruzi trypanothione reductase (TR) inhibi-
tors as well against the parasite’s intracellular (amastigote) and bloodstream (trypomastigote) forms. Compound
12 was the most effective against TR with an IC50 of 48.5 µM while 7 and 14 were active against amastigotes,
inhibiting the parasite development by 60% at 20 µg/ml (59 and 90 µM, respectively). On the other hand, none of the
compounds was significantly active against the parasite bloodstream forms even at 250 µg/ml (0.6-1.5 mM).
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Chagas disease, caused by the flagellate protozoan
Trypanosoma cruzi, affects 18 million people in Latin
America and is responsible for 13,000 deaths every year
(WHO 2002). The treatment relies on only two available
drugs, nifurtimox and benznidazole, which are relatively
efficient in the acute phase of the disease, but almost
ineffective in the chronic phase. Nowadays, one of the
most important mechanisms of Chagas disease transmis-
sion in many countries is by blood transfusion (Schmuñis
1991). In highly endemic areas it is strongly recommended
the use of chemoprophylatic measures such as the addi-
tion of gentian violet to clear trypomastigotes from blood
banked for transfusion (Moraes-Souza et al. 1995). Al-
though effective, this triphenylmethane dye is not well
accepted because of undesirable effects such as coloring
the skin and possible mutagenicity (Wendel 1993). Thus,
new drugs to treat or prevent Chagas disease are still
needed.

Trypanosoma cruzi enzymes such as the trypa-
nothione reductase (TR) represent a potential drug tar-
gets because they play an essential role in the life of this
parasite. TR and its substrate trypanothione, the disul-
fide of a glutathione-spermidine conjugate [N1, N8-
bis(glutathionyl)spermidine, T(SH)2] 1, help to protect the
parasite from oxidative stress by maintaining an intracel-
lular reducing environment in a manner analogous to glu-
tathione reductase (GR) and glutathione [L-γ-glutamyl-L-
cysteiylglycine, GSH] 2 (Fig. 1a) in mammalian cells
(Schmidt & Krauth-Siegel 2002). TR catalyses the NADPH-
dependent reduction of trypanothione disulfide TS2 to its

dithiol form, T(SH)2. Trypanothione may be oxidized back
to TS2 (Fig. 1b) following reaction with potentially dam-
aging radicals and oxidants generated by aerobic metabo-
lism. Another aspect that makes TR an even more attrac-
tive target is its structural differences from the human
counterpart GR. GR has a narrow positively charged ac-
tive site, to accommodate the glycine carboxylates of its
substrate glutathione, whereas TR has a wider, non-
charged, and more hydrophobic active site (Bond et al.
1999). These differences allowed the discovery of several
promising selective inhibitors of TR (Schmidt & Krauth-
Siegel 2002).

Lignans is a class of natural products that possess
important biological properties (Jensen et al. 1993). Lopes
et al. (1998) showed that the tetrahydrofuran lignans
veraguensin 3 and grandisin 4 (Fig. 2) were active in vitro
at 5 µg/ml against the trypomastigote of T. cruzi present
in murine blood, causing 100% of parasite lysis without
damaging erythrocytes. The activity of these lignans was
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Fig.1: (a) chemical structure for trypanosomal trypanothione 1
and human glutathione 2; (b) trypanothione reductase (TR)-
catalysed reduction of TS2.
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fifty times higher than that of the reference drug gentian
violet.

Based on these promising results, we decided to syn-
thesize these natural products and some analogues to
evaluate their activity against T. cruzi. Our synthetic route
to 3 and 4 (Fig. 3) involved arylfurans as intermediates.

Arylfurans present a broad-spectrum of biological
activities [for example, antimicrobial activity (Stephens et
al. 2001, Lanteri et al. 2004), effects against neurodegen-
erative, cardiovascular, and proliferative diseases
(Lockhart et al. 2004), inhibitory activity against the en-
zymes farnesyltransferase (Mitsch et al. 2004) and PDE4
(Perrier et al. 1999), vascularization inhibitor effect
(Kuwano et al. 1994)] and previous works (Jockers-
Scherübl et al. 1989, Paulino et al. 2002, Aguirre et al. 2004)
have shown that furan derivatives could be potential
ligands for TR. In view of these results, and aiming at the
discovery of new trypanocidal compounds we evaluated
the effect of the synthetic compounds 5-15 (Fig. 4) on TR
and the whole trypomastigote and amastigote forms of
the parasite.

(trimethylstannyl)furan 16 by reaction of furan with
TMEDA and n-butyllithium and subsequent addition of
trimethyltin chloride (Seitz et al. 1983), and (2) palladium
catalyzed coupling reaction between the distannane 16
and various arylhalides (Stille coupling) (Stephens et al.
2001).

In vitro assay with T. cruzi TR - Recombinant T. cruzi
TR was obtained as described by Borges et al. (1995). The
colorimetric microtitre plate assay was adapted from that
described by Hamilton et al. (2003). It was run in 40 mM
HEPES (pH 7.5), 1 mM EDTA, 0.12 mM NADPH and 0.8
µM trypanothione TS2 in a total assay volume of 250 µl.
The test compounds were dissolved in DMSO and di-
luted with water to a final concentration of 0.1% (v/v)
DMSO. After addition of the enzyme (5.12 mU/well) to the
compound solution (20 µg/ml, 50-120 µM) the mixture was
incubated for 30 min at 30ºC, after which 25 µM of 5,5’-
dithiobis-(2-nitrobenzoic acid) (DTNB) was added and the
absorbance at 410 nm measured in a kinetic mode for 5
min. Clomipramine at its IC50 (6.5 µM) was used as posi-
tive and 0.1% (v/v) DMSO as negative controls. Each
compound was tested in triplicate. The results are ex-
pressed as percentage reduction of the TR activity. For
IC50 determinations, inhibition assays were carried out at
ten different concentrations and repeated four times.

In vitro assay with T. cruzi blood stream forms - The
assays with T. cruzi were carried out using blood from
Swiss albino mice collected in the parasitaemia peak (7th
day) after infection with the Y strain of T. cruzi. The in-
fected blood was diluted with normal murine blood and
RPMI 1640 medium 1:2 (pH 7.2-7.4) to the concentration
of 2 × 106 trypomastigotes/ml. Stock solutions at 10 mg/ml
(25-59 mM) of the compounds were prepared in dimethyl-
sulfoxide (DMSO). A sample (5.0  µl) of each solution was
added to 195 µl of infected blood providing a final con-
centration of 250 µg/ml (0.6-1.5 mM). Samples of 100 µl
were transferred in duplicate to the wells of a microtitre
plate (96 wells). To reproduce the blood bank conditions,
plates were incubated at 4ºC for 24 h. The experiments
were repeated two times. Afterwards, the parasite con-
centration was evaluated using an optical microscope with
a 400 X magnification. DMSO at 2.5% v/v and gentian
violet at its IC50 concentration (7.5 µg/ml) were used as
negative and positive controls, respectively. DMSO was
not added in the positive control. The parasite concentra-
tion reduction (parasite lysis) was determined in compari-
son with negative control containing only 2.5% DMSO.
At 2.5% concentration DMSO in blood was found to cause
no morphological alterations or lysis either in the para-
sites, erythrocytes or leukocytes.

Fig. 2: lignans with trypanocydal activity isolated from Virola surinamensis (Lopes et al. 1998).

Fig. 3: arylfuran analogues of lignans 3 and 4.

Fig. 4: chemical structures of 2-arylfurans (5-7) and 2,5-diarylfurans
(8-15)

MATERIALS  AND  METHODS

Chemistry - The 2-arylfurans 5-7 and the 2,5-Bis(p-
cyanophenyl)furan 9 were synthesized in one step using
the classical Meerwein arylation (treatment of furan with
diazonium salts in the presence of cupric salts)
(Rondestvedt 1976). The 2,5-diarylfurans 8, 10-15 were
prepared in two steps: (1) preparation of 2,5-bis
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In vitro assay with T. cruzi amastigote forms (Buckner
et al. 1996 modified) - Parasites and culture procedures: T.
cruzi (Tulahuen strain) expressing the Escherichia coli
beta-galactosidase gene were grown on monolayer of
mouse L929 fibroblasts. Cultures to be assayed for beta-
galactosidase activity were grown in RPMI 1640 medium
(pH 7.2-7.4 ) without phenol red (Gibco BRL) plus 10%
fetal bovine serum, glutamine and gentamicin.

T. cruzi growth inhibition assay - Ninety-six-well tis-
sue culture plates were seeded with L929 fibroblasts at
4.0 × 103 per well in 80 µl and incubated overnight. Beta-
galactosidase-expressing trypomastigotes were then
added at 4.0 × 104 per well in 20 µl. After 2 h, the medium
with trypomastigotes that not penetrated in cells was dis-
carded and replaced by 200 µl of fresh medium. After 48 h,
the medium was discarded again and replaced by 180 µl of
fresh medium and test compounds in 20 µl. Each com-
pound was tested in triplicate. After 7 days of incubation,
chlorophenol red beta-D-galactopyranoside (CPRG) (100
mM final concentration) and Nonidet P-40 (0.1% final con-
centration) were added to the plates and incubated over-
night at 37°C and the absorbance measured at 570 nm in
an automated micro plate reader. Benznidazole at its IC50
(4.0 µM) was used as positive control. The results are
expressed as percentage growth inhibition.

RESULTS AND DISCUSSION

The monoarylfurans 5-7, and the diarylfurans 9 were
synthesized in a single step via the Meerwein arylation in
moderate yields. Initial attempts to prepare 2,5-diarylfurans
by this method were unsuccessful and only mono-
arylfurans were formed, except for compound 9, obtained
with 12% yield. Under this reaction condition anilines
containing electron donor substituents attached to the
phenyl ring furnished only tarry material from which nei-

ther mono nor diarylfurans could be isolated. Therefore,
the 2,5-diarylfurans 8, 10-15 were prepared in two steps
using the Stille coupling. The structures of all compounds
were confirmed by spectroscopy and physicochemical data
(Table I).

Table II shows the results of the bioassays using the
pure compounds 5-15 against TR and T. cruzi
trypomastigote and amastigote forms. For the compari-
son of the activities standard control drugs were included
in the assays.

The compounds were tested for inhibition of TR at 20
µg/ml and the IC50 values were determined for the most
active compounds. Thus, the nitro derivative 6 and the
diacetamide 12 presented IC50 values of 155 µM and 48.5
µM, respectively. Many nitrofuran derivatives have been
reported to act as subversive substrate for TR, a class of
inhibitors that produce free radicals once reduced by the
enzyme, thereby subverting its physiological role (Jockers-
Scherübl et al. 1989, Paulino et al. 2002, Maya et al. 2003,
Chibale & Musonda 2003, Aguirre el al. 2004). In the pres-
ence of oxygen, these inhibitors are cyclically reduced and
reoxidized generating deleterious oxygen radicals while si-
multaneously inhibiting TR’s ability to reduce its physi-
ological substrate (Chibale & Musonda 2003). Thus, the
inhibitory activity presented by the nitro derivative 6 could
be associated to its ability to act as subversive substrates.
On the other hand the related diarylfuran 10, despite con-
taining two NO2 groups, was less active than 6, probably
due to its poor solubility in the assay medium. The
diacetamide 12 was the best inhibitor and its activity may
come from to the combination of the hydrophobic moiety
with the amide groups. The amide groups may be important
for the interaction between compound 12 and the enzyme
via hydrogen bonds. However, further experimental evi-
dences are needed to confirm such possibility.

TABLE I

Spectroscopic and physicochemical data for arylfurans

Compd Yield(%) mp (obs.) (ºC) mp (lit.)(ºC) MS(m/z) 1H NMR 200 MHz δ (ppm)

5 24 64.3-65.8 61-63 a 169, 88, 70, 61 6.52 (dd, 1H); 7.81 (dd, 1H); 7.53
(dd, 1H); 7.63 (d, 2H); 7.73 (d, 2H)

6 48 133.9-134.4 134-135 b 189, 159, 115, 63 6.55 (dd,1H); 6.87 (d,1H); 7.57 (d,1H)
7.78 (d, 2H); 8.24 (d, 2H)

7 30 243.4-244.2 - 223,03130 c 6.65 (dd, 1H); 7.13 (d,1H); 7.39 (sl, 2H);
7.82 (d, 1H); 7.87 (m, 4H)

8 40 86.1-87.3 87 d 220, 105, 77, 61 6.74 (s, 2H); 7.23-7.78 (m, 10H)
9 12 291.4-293.1 294-295 e 270, 69, 55, 41 6.96 (s, 2H); 7.71 (d, 4H); 7.83 (d, 4H)
10 72 269.8-271.2 269-270 f 310, 280, 234, 189 7.54 (s, 2H); 8.13 (d, 4H); 8.32 (d, 4H)
11 34 143.9-145.7 - 356, 337, 183, 145 6.88 (s, 2H); 7.67 (d, 4H); 7.84 (d, 4H)
12 21 307-309 307-308 g 334, 292, 250, 207 2.06 (s, 6H); 6.92 (s, 2H); 7.65 (d, 4H);

7.72 (d, 4H); 10.05 (s, 2H)
13 35 189-190 195-196 h 280, 265, 135 3.86 (s, 6H); 6.59 (s, 2H); 6.95 (d, 4H);

6.67 (d, 4H)
14 26 158.6-158.9 154-155 i 340, 325, 170, 44 3.94 (s, 6H); 4.00 (s, 6H); 6.63 (s, 2H);

6.93 (d, 2H); 7.26 (sl, 2H); 7.33 (d, 2H)
15 j 40 140-140.9 - 400, 385, 60 3.89 (s, 6H); 3.95 (s,12H); 6.67 (s, 2H);

6.95 (s, 4H)

a: Ohta et al. 1990; b: Fisera et al 1974; c: Calcd. for C10H9NO3S (223,03031); d: Koga et al 1998; e: Das & Boykin 1977; f: Stephens
et al 2001; g: Jonh & Robert 1958, h: Bailey et al 1965; i: Haworth & Kelly 1937; j: Anal. Calcd. for C22H24O7: C 65.99, H 6.04.
Found: C 65.64, H 5.57.



172172172172172 Arylfurans as potential T. cruzi TR inhibitors • Renata B de Oliveira et al.

The results in Table II show no correlation between
enzyme inhibition and trypanocidal activity as the two
major TR inhibitors, compounds 6 and 12, showed no
effect against intact bloodstream or amastigote forms of
the parasite. On the other hand, compound 15, inactive
against TR, reduced by 41% the number of trypo-
mastigotes in the blood while compounds 7 and 14 were
able to inhibit by more than 60% the growth of intracellu-
lar amastigotes. Interestingly compound 14 is structur-
ally related with the lignan veraguensin 3. Table II shows
the calculated partition coefficients for the arylfurans 5-
15. Partition coefficient between water and octanol (log
P) is regarded as a measure of lipophilicity of a drug and is
related to its ability to cross biological membranes. Sub-
stances with high log P values dissolve better in fats and
oils than in water. This enhances their ability to enter lipid
membranes by passive diffusion, thereby enhancing their
potential for absorption. Generally, for a good activity the
relationship appears to be parabolic with an optimum Log
P value of around 2 ± 1. It is well known that compounds
with negative log P values cross cell membranes very
poorly (Lipinski et al. 1997). The log P values for com-
pounds 11 and 15 are outside the optimum limits. Com-
pound 6 has a reasonable log P value but its IC50 is so
high that an effective concentration inside the parasite
would be difficult to reach. The low trypanocidal activity
of the diamide 12 may be due to factors such as a) poor
membrane permeability as indicated by its low log P value
(log P = 0.39); b) the in vitro assay with T. cruzi blood-
stream forms mimics blood bank conditions and is carried
in a short assay time (24 h) and low temperature (4ºC),
making it difficult to detect the interference of the com-
pound on the TR activity; c) In the intracellular assay
with amastigotes the compound 12 could not be able to
cross the fibroblast and parasite’s cell membranes to reach

parasite’s cytoplasm in sufficient quantity to significantly
inhibit TR. Therefore, a direct correlation between the try-
panocidal activity and inhibition of TR by the compounds
was not observed. Indeed, even clomipramine, one of the
most potent inhibitor of TR presented only moderate ac-
tivity (72% inhibition) against intracellular amastigote
forms at 57 µM (20 µg/ml).

Despite its failure to reduce parasites under the con-
ditions used in the present work, compound 12 deserves
further investigation to determine its TR inhibition mecha-
nism and to develop related compounds with improved
potency.
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