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ABSTRACT: Soil water retention and availability are important properties for agricultural 
production, which can be measured directly or estimated by pedotransfer functions. Some 
studies on this topic were carried out in Santa Catarina, Brazil. To improve the estimates, 
it is necessary to evaluate other properties, to analyze more soil types, as well as to use 
other analysis techniques such as artificial neural networks and regression trees. Thus, the 
objective of the study was to estimate the field capacity (FC), permanent wilting point (PWP), 
and available water (AW) in soils of Santa Catarina (SC), through multiple linear regressions 
(MLR), artificial neural networks (ANN), and regression trees (RT), more efficiently than 
the current pedotransfer functions. For this, samples of the horizons A and B of 70 profiles 
were collected to determine the texture, plasticity limit, FC, PWP, AW, specific surface (SS), 
organic carbon (OC) content, and microporosity. Pedotransfer functions were generated 
through MRL, ANN, and RT, considering as dependent variables the FC, PWP, and AW, and 
as independent variables the content of clay, silt, OC, plasticity limit, SS, and microporosity, 
through the test of four models, for surface and subsurface horizons. The RT estimated FC, 
PWP, and AW better than ANN and MRL. The best models to estimate water retention were 
those that used microporosity. When the database has few input variables, the model with 
clay, silt, and OC content is an alternative to estimate FC, PWP, and AW.

Keywords: pedotransfer functions, water retention curve, artificial neural networks, 
regression trees, multiple linear regressions.
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INTRODUCTION
Data related to hydraulic properties are important and have been used in mathematical 
models, as in the case of the Brazilian agroclimatic risk zoning. The measurement of 
these hydraulic properties is costly, which makes it difficult to use them under high 
demand. To overcome this difficulty, some researchers generated mathematical models 
to indirectly estimate soil water retention (Arruda et al., 1987; Meng et al., 1987; Bell 
and van Keulen, 1995; van den Berg et al., 1997; Pachepsky and Rawls, 1999). The 
terminology “pedotransfer functions or pedofunctions” was introduced by Bouma (1989), 
describing them as “translating data we have into data we need”. In applied form, it can 
be understood as the use of easily obtainable properties of low cost within a function, 
to accurately estimate other soil properties.

Since then, researchers have been generating pedotransfer functions, mainly focusing 
on soil physical and chemical properties (Almeida et al., 2008a; Baker and Ellison, 2008; 
Álvarez et al., 2010; Dashtaki et al., 2010; Cagliari et al., 2011; Glendining et al., 2011; 
Costa et al., 2013). Measured water retention data and the available pedofunctions are 
still scarce in Brazil (Arruda et al., 1987; Silva et al., 1990; Masutti, 1997; Tomasella and 
Hodnett, 1998; Tomasella et al., 2000; Giarola et al., 2002; Oliveira et al., 2002; Silva et al., 
2008; Reichert et al., 2009; Costa et al., 2013; Barros et al., 2013).

The first researchers to generate pedotransfer functions with soils of Santa Catarina and Rio 
Grande do Sul, Brazil, were Giarola et al. (2002). Later, Costa et al. (2013) developed a broader 
study involving 44 soils from several mapping units of Santa Catarina, aiming to generate, test, 
and validate pedotransfer functions to estimate water retention, and emphasized the effect 
of the finer texture and the organic matter (OM) on the retention and availability of water, 
and of the OM on the availability of water. They recommended that the study should include 
more mapping units in Santa Catarina, as well as the evaluation of other soil properties related 
to the retention and availability of water in the soil. They used multiple linear regressions 
(MLR), a widely used method to generate pedotransfer functions. The technique of artificial 
neural networks (ANN) to generate pedotransfer functions was tested by Mendes (2014), 
and this author reported that ANN was more efficiency than the use of MLR.

Another method that can be used is regression trees (RT), as used in mining and in data 
prediction. The use of RT is simple since each node has a property and each branch 
has a weight. Therefore, at each node, a decision is made as to which branches are to 
be followed through the information that the predictor variables (independent) have, 
and at the end, we will arrive at a certain result, called the class (Vasques et al., 2008).

Besides the choice of the technique used to build models for estimation, it is important to 
choose the predictor variables. Usually, to estimate soil water retention and availability, 
soil granulometry has been used for reasons of practicality, low cost, rapidity, and the 
high correlation it has with the field capacity (FC), permanent wilting point (PWP), and 
available water (AW), plus other properties, such as OM content and bulk density, making 
their use more complex and costly (Costa et al., 2013). Soil consistency limits are a fast 
and inexpensive alternative, with direct relation to soil water dynamics (Peraza, 2003).

This study aimed to estimate the field capacity, permanent wilting point, and available 
water through multiple linear regressions, artificial neural networks, and regression trees, in 
soils of Santa Catarina, in a more efficient manner than the current pedotransfer functions.

MATERIALS AND METHODS
Seventy soil profiles were sampled in the state of Santa Catarina, Brazil, which were the 
object of research in the studies carried out by: Almeida et al. (1997, 2000, 2003), Corrêa 
(2003), Embrapa (2004), Paes Sobrinho (2005), Almeida et al. (2008b), Bringhenti (2010), and 
Ferreira (2013). In each soil the horizons A, E, AB, BA, and B and their subdivisions, when they 
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existed, were sampled, resulting in 296 pedogenic horizons. For each horizon, samples with 
altered structure (296 samples) and with preserved structure (four field replicates, totaling 
1,184 samples) were collected with a volumetric ring (diameter 6 cm and height 2.5 cm). 
The characteristics and properties of the horizons sampled are described in Bortolini (2016).

The samples with altered structure were air-dried, manually crushed, and sieved with a 
2 mm sieve for the chemical and physical determinations. The samples with preserved 
structure were saturated and subjected to tensions of 6 and 10 kPa on a sand suction 
column (Reinert and Reichert, 2006), and tension of 1,500 kPa in Richards chambers 
(Richards, 1949). Microporosity was considered as the volumetric moisture retained at 
a tension of 6 kPa, FC at 10 kPa, PWP at 1,500 kPa, and AW the volumetric moisture 
retained between the tensions of 10 and 1,500 kPa.

For the determination of the particle size distribution, the contents of total clay (0-0.002 mm), 
silt (0.002-0.053 mm), and sand (0.053-2.0 mm) were determined according to the 
methodology described by Day (1965). The plasticity limit (PL) was determined by the 
Casagrande method and the specific surface (SS) was determined by the monoethyl 
ethylene glycol ether (MEGE) method in 25 % of the samples, both described in Donagema 
et al. (2011). In the air-dried fine earth (ADFE), the OC content was determined by the 
Walkley and Black method, modified by Tedesco et al. (1995).

Generation of the point continuous pedotransfer functions

The dependent variables FC, PWP, and AW were estimated using three statistical 
techniques: MLR, ANN, and RT. The clay, silt, OC, SS, PL, and microporosity contents were 
used as independent variables in four statistical models for the surface and subsurface 
horizons. The independent variables, clay, silt, and OC were maintained because they 
are less expensive to obtain in the laboratory and more available in the literature, and 
the variables PL, SS, and microporosity were added in each model: Model 1 = clay, silt, 
and OC of soil; Model 2 = clay, silt, OC, and PL of soil; Model 3 = clay, silt, OC, and SS 
of soil; and Model 4 = clay, silt, OC, and soil microporosity.

Multiple linear regression

In the generation of pedotransfer functions by MLR, the stepwise option available in the 
PROC REG procedure of the program SAS 9.2 was used (Statistical Analysis Systems - 
SAS, 2010). This option selects the main variables from a set of independent variables at 
a predetermined significance level (p≤0.05), generating a regression coefficient for each 
of the selected variables. For the model generation, 410 samples of surface horizons and 
474 of subsurface horizons were used from the 70 profiles sampled, in a total of 75 % of 
this database. For the validation, 638 samples of surface horizons and 240 of subsurface 
horizons were used, making up 25 % of what remained in that database, plus 501 samples 
from an additional database of superficial horizons and 82 of subsurface horizons that 
were obtained from the studies of Bognola (1995), Mertz et al. (2004), Espanhol (2005), 
Lunardi Neto et al. (2008), Costa et al. (2009), Morales et al. (2010), and Silva et al. (2017). 

Artificial neural networks

The ANN were developed using the free software WEKA (Waikato Environment for 
Knowledge Analysis), version 3.8 of the University of Waikato, Hamilton, New Zealand.

The Multiple Layer Perceptron (MultiLayerPerceptron - MLP) function was used, as well 
as the backpropagation algorithm for ANN training, with a hidden layer. First, we tested 
variations in the structure and in the network parameters (the number of neurons in 
the hidden layer, learning rate, moment, and training time), to better fit the ANN, since 
each estimate will have its best structure and parameters. After these tests, we opted 
for the use of six neurons in the hidden layer, with a learning rate of 0.05, a moment of 
0.2, and training time of 2000.
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In conjunction with this, the criterion of cross-validation in ten subsets (cross-validation) 
was adopted to estimate the accuracy of the method. The data set is randomly divided 
into ten groups (subsets) of similar size and distribution. A subset is separated as a test 
and the remaining nine subsets are considered for network training. Each pair (test 
subset, training subset) is an iteration for the validation of the algorithm, totaling ten 
iterations. After the training, using the training subset, the test subset is presented to the 
network in question and the error is computed. Finally, the average of the ten subsets 
provides an estimate of the performance of the algorithm (Ferreira, 2005). In the program 
the data are normalized automatically, through the option normalizeNumericClass and 
normalizeAttributes, so the data are transformed to have values between -1 and 1. 
For cross-validation, the auxiliary database used in the MLR was not used, since cross-
validation already uses a greater number of samples. For this procedure the one used 
by Mendes (2014) was followed.

Regression trees

The RT were also obtained with the free software WEKA, quoted above. The data were 
normalized by the WEKA software by selecting the option normalizeAttributes. The 
REPTree was used as the classifier algorithm. This is a fast classifier that constructs RT 
using gain/variance information to reduce the errors (WEKA, 2017). It was defined, after 
previous tests, that the maximum pruning depth of the tree should be ten, which is an 
alterable parameter in the software that serves to reduce the size of the tree and to 
simplify it, through tests with a variation of this parameter. As in the ANNs, the cross-
validation criterion was used for the validation of the RT in 10 subsets. The REPtree 
classifier is based on the algorithm C4.5 and it classifies each numerical attribute only 
once to each node and produces classification trees which result in an absolute value 
(Giasson et al., 2011).

Statistical indicators to evaluate the pedotransfer functions

Linear regression analysis

The data between the estimated moisture versus the measured moisture were plotted and 
adjusted through linear regression. The slope and the intercept of the adjusted regression 
equation were calculated. These indicators analyze how similar the estimated data are 
in relation to those observed. The slope indicates the relative relationship between the 
estimated and measured contents. The intercept on the Y-axis indicates the presence 
of discrepancy or advancement between the estimates of the model and the measured 
moisture. A slope equal to 1 and intercept on the Y-axis equal to zero indicate that the 
model perfectly reproduces the magnitude of the measured moisture (Willmott, 1981). 
Also obtained were the correlation coefficients (r), Pearson determination coefficients 
(R2), and the root of the mean square error (RMSE) (Schultz and Schultz, 1992).

RESULTS

Multiple linear regressions: generation and validation

For the MLR, the four models were generated from generation data with samples of 
the surface and subsurface horizons (Table 1), and these models were validated in 
the databases of the surface and subsurface horizons (Table 2). Therefore, statistical 
indicators were obtained for each pedotransfer function proposed in the generation and 
validation databases.

In the MLR, the silt content, PL, SS, and microporosity were directly related to retention 
and AW. The clay content, however, reduced the AW, a fact also observed by Costa et 
al. (2013), while the OC content, for some models, reduced the water retention in the 
PWP. The statistical indicators obtained in the generation database of the pedotransfer 
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functions indicate that the estimates for the FC and PWP were better than the estimate 
for the AW in the four models generated. The estimates for the surface horizons were 
better than those of the subsurface horizons.

The addition of the PL (model 2), SS (Model 3) and microporosity (model 4) as predictor 
variables was tested separately on model 1. It was observed that the use of the PL 
worsened the estimation of water retention and availability compared to model 1. It was 
expected that the inclusion of PL would improve the estimation of FC and PWP, mainly 
because of their significant relation with water retention (Peraza, 2003) and because it 
is directly related to soil–water adhesion forces.

For model 3, with the inclusion of the SS, there was an improvement in the retention 
estimate and, mainly, in the AW. The SS represents the surface of the particles (external 
and internal) and with its increase, the retention of water at the soil surface by adsorption 
must increase and be an important predictor variable to estimate water retention, mainly 
at a more negative matric potential (ψm), that is, closer to the PWP (Grohmann, 1977). 

The best estimates of the FC and PWP were obtained when microporosity was inserted 
(model 4) as a predictor variable. The R2 for the FC was 0.99 and for PWP was 0.67. This 
ability to estimate is due to the closeness to ψm to determine microporosity (-6 kPa) and 
FC (-10 kPa), which provides a high correlation between these variables. The stepwise 
function has the ability to select from among a set of variables those that result in the 
best estimate, and eliminate, if necessary, other variables from the model. Thus, for model 
4, only the microporosity variable was selected as a predictor variable, indicating that it 

Table 1. Descriptive statistics of soil properties in surface and subsurface horizons of some soil profiles of the state of Santa Catarina, Brazil

Properties Unit Shapiro-Wilk Normality test(1) Mean Minimum Maximum Standard 
deviation

Surface horizons
Microporosity m3 m-3 0.92** 0.46 0.14 0.79 0.10
FC(2) m3 m-3 0.92** 0.44 0.12 0.78 0.10
PWP m3 m-3 0.95** 0.32 0.04 0.59 0.09
AW m3 m-3 0.94** 0.13 0.04 0.26 0.04
Sand g kg-1 0.80** 241 17 973 233
Silt g kg-1 0.98** 289 12 581 115
Clay g kg-1 0.95** 468 14 789 201
PL g g-1 0.97* 0.36 0.16 0.57 0.08
SS m2 g-1 0.98 119 33 198 39
OC g kg-1 0.70** 26 4 140 18

Subsurface horizons
Microporosity m3 m-3 0.87** 0.49 0.14 0.77 0.09
FC m3 m-3 0.86** 0.48 0.11 0.77 0.09
PWP m3 m-3 0.88** 0.38 0.05 0.66 0.09
AW m3 m-3 0.98** 0.10 0.04 0.22 0.02
Sand g kg-1 0.73** 196 10 950 215
Silt g kg-1 0.97** 220 19 515 83
Clay g kg-1 0.88** 582 22 840 193
PL g g-1 0.99 0.38 0.11 0.60 0.09
SS m2 g-1 0.96 141 60 239 35
OC g kg-1 0.96** 10 1 24 4.9

(1) Ho hypothesis: the samples come from a normal population. Ho is rejected when: * = significant (0.01<p<0.05) and ** = significant (p<0.01). 
(2) FC = field capacity; PWP = permanent wilting point; AW = available water; PL = plasticity limit; SS = specific surface; OC = organic carbon. 
Microporosity, FC, PWP, AW, PL, and SS measured as described in Donagema et al. (2011). Sand, silt, and clay fractions determined by the pipette 
method, described in Day (1965). OC determined by Walkley and Black method, modified by Tedesco et al. (1995).
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alone can estimate with great efficiency the FC in the soils of Santa Catarina. As for the 
PWP estimation, the stepwise procedure selected, in addition to microporosity, the OC 
content as a predictor variable. However, the model containing only the microporosity 
was not adequate to estimate the AW and presented an inferior performance to the one 
that contained the SS (model 2).

The models generated when tested with the validation database (Table 3) showed a 
worsening of the estimates, except for model 4 to estimate the FC, in superficial horizons. 
In general, the best model to use for the estimation of water retention in FC and PWP 
was model 4, indicating that the linear relationship between microporosity and FC and 
PWP was high and sufficient to estimate water retention in the soils of Santa Catarina. 
The use of microporosity was better adjusted when samples from surface horizons were 
used to generate and validate. In the absence of microporosity data, model 1 is an 
alternative, since in this one the best results in models that do not have microporosity 
as a predictor variable were observed.

Table 2. Root mean square error (RMSE), correlation coefficient (r), intercept (a), angular coefficient (b), and determination coefficient 
(R²) between the measured and estimated moisture by multiple linear regressions (MLR) in four models generated with the surface 
and subsurface horizons database

Model Predictor variable RMSE r a b R² RMSE r a b R²
Surface Subsurface

1(1)
FC(2) 0.06 0.84 0.13 0.71 0.70 0.06 0.78 0.19 0.61 0.61
PWP 0.05 0.81 0.11 0.66 0.66 0.06 0.80 0.14 0.65 0.64
AW 0.03 0.61 0.08 0.38 0.37 0.02 0.32 0.09 0.10 0.10

2
FC 0.05 0.66 0.26 0.44 0.44 0.08 0.62 0.32 0.48 0.38

PWP 0.05 0.63 0.20 0.40 0.40 0.06 0.77 0.21 0.47 0.60
AW 0.07 0.49 0.04 0.22 0.24 0.02 0.38 0.08 0.14 0.15

3
FC 0.06 0.81 0.14 0.70 0.66 0.03 0.76 0.20 0.58 0.59

PWP 0.06 0.80 0.11 0.67 0.64 0.03 0.81 0.14 0.65 0.65
AW 0.03 0.59 0.08 0.41 0.35 0.03 0.32 0.08 0.19 0.10

4
FC 0.01 1.00 0.00 0.99 0.99 0.01 1.00 0.01 0.99 0.99

PWP 0.06 0.80 0.11 0.67 0.64 0.03 0.96 0.03 0.92 0.92
AW 0.03 0.68 0.07 0.45 0.46 0.02 0.40 0.09 0.16 0.16

(1) Model 1 = clay, silt, and organic carbon; Model 2 = clay, silt, organic carbon, and plasticity limit; Model 3 = clay, silt, organic carbon, and specific 
surface; Model 4 = clay, silt, organic carbon, and microporosity. (2) FC = field capacity; PWP = permanent wilting point; AW = available water.

Table 3. Root mean square error (RMSE), correlation coefficient (r), intercept (a), angular coefficient (b), and coefficient of determination 
(R²) between measured and estimated moisture by multiple linear regressions (MLR) in four models validated with the surface and 
subsurface horizons database

Model Predictor variable RMSE r a b R² RMSE r a b R²
Surface Subsurface

1(1)
FC(2) 0.09 0.38 0.35 0.23 0.15 0.14 0.28 0.41 0.15 0.08
PWP 0.07 0.59 0.22 0.31 0.35 0.09 0.54 0.23 0.42 0.30
AW 0.04 0.24 0.13 0.09 0.06 0.03 0.03 0.10 0.01 0.00

2
FC 0.07 0.00 0.46 0.00 0.00 0.18 0.18 0.49 0.10 0.03

PWP 0.03 0.60 0.21 0.36 0.37 0.09 0.44 0.29 0.27 0.19
AW 0.06 0.32 0.06 0.10 0.11 0.03 0.11 0.09 0.05 0.01

3
FC 0.09 0.42 0.36 0.24 0.18 0.17 -0.04 0.43 -0.03 0.00

PWP 0.06 0.56 0.24 0.29 0.31 0.12 0.31 0.22 0.29 0.10
AW 0.04 0.29 0.12 0.14 0.08 0.03 0.03 0.10 0.02 0.00

4
FC 0.01 0.99 -0.03 1.06 0.99 0.03 0.98 -0.04 1.07 0.97

PWP 0.06 0.56 0.24 0.29 0.31 0.10 0.81 -0.12 1.21 0.66
AW 0.04 0.21 0.12 0.14 0.05 0.03 -0.03 0.10 -0.03 0.00

(1) Model 1 = clay, silt, and organic carbon; Model 2 = clay, silt, organic carbon, and plasticity limit; Model 3 = clay, silt, organic carbon, and specific 
surface; Model 4 = clay, silt, organic carbon, and microporosity. (2) FC = field capacity; PWP = permanent wilting point; AW = available water
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With the use of MLR, low performances were observed to estimate the AW of the soils 
of Santa Catarina, regardless of the variables that make up each model tested. Thus, 
it is necessary to use other statistical techniques to generate more efficient models to 
estimate, mainly, AW.

Artificial neural networks: generation and validation

The results obtained by cross-validation of ANN are presented in table 4. It is observed 
that the estimates in the subsurface horizons presented results (a, b, r, R2, and RMSE) 
equal to or better than those in the superficial horizons.

The best result for the FC was observed in model 4, which has microporosity as a predictor 
variable, which was not included in the other models, for the surface and subsurface 
horizons. For these models, the R2 was 0.99 and the RMSE was 0.01 m3 m-3. For FC, there 
was an improvement in estimation with more predictor variables (models 2, 3, and 4), 
compared to the simpler model (1). For the PWP, the best estimate was also with model 
4. In model 4, R2 was 0.90 and 0.93, respectively, when the database was used with the 
surface and subsurface horizons.

The estimate of AW improved in models 2, 3, and 4 compared to model 1 and was similar 
in the comparison between these models. It can also be observed that in some models, 
the estimate of AW was better than the estimate of retention (FC and PWP). Model 3, 
in which PL was included as a predictor variable, only slightly improved the estimate of 
retention and AW in the soil using ANN.

It was observed that the increase in the number of input variables improves the estimates, 
corroborating the results of Soares et al. (2014) for soils of Rio Grande do Sul. However, 
it is necessary to consider this increase of input variables, since it generates a higher 
acquisition cost and longer time to feed the model, due to the need for more analysis.

Regression trees

The results of the RT are presented in table 5. With the separation of horizons for estimation, 
it is noticed that for water retention the results were better for the subsurface horizons 
and for AW they were better for the surface horizons in most models. The best estimate 
of water retention in FC and PWP was through model 4, which has microporosity as a 
predictor variable. 

Table 4. Root mean square error (RMSE), correlation coefficient (r), intercept (a), angular coefficient (b), and coefficient of determination 
(R²) for relationship between measured moisture and estimated moisture by artificial neural networks (ANN) with the surface and 
subsurface horizons database

Model Predictor variable RMSE r a b R² RMSE r a b R²
Surface Subsurface

1(1)
FC(2) 0.05 0.86 0.00 0.99 0.73 0.05 0.84 0.03 0.95 0.70
PWP 0.05 0.83 0.01 0.97 0.69 0.05 0.83 0.01 0.97 0.70
AW 0.03 0.85 0.00 0.97 0.72 0.03 0.88 0.00 0.98 0.77

2
FC 0.05 0.87 0.01 0.98 0.76 0.05 0.85 0.02 0.96 0.72

PWP 0.05 0.85 0.01 0.95 0.73 0.05 0.86 0.01 0.97 0.75
AW 0.03 0.90 0.00 0.99 0.80 0.03 0.89 0.00 0.98 0.79

3
FC 0.05 0.87 0.01 0.98 0.75 0.05 0.85 0.02 0.95 0.72

PWP 0.05 0.84 0.01 0.96 0.70 0.05 0.86 0.01 0.97 0.74
AW 0.03 0.89 0.00 0.99 0.79 0.03 0.89 0.00 0.98 0.79

4
FC 0.01 0.99 0.00 0.99 0.99 0.01 0.99 0.00 0.99 0.99

PWP 0.03 0.95 0.00 0.99 0.90 0.03 0.96 0.00 1.00 0.93
AW 0.03 0.90 0.00 0.99 0.82 0.03 0.89 0.00 0.98 0.79

(1) Model 1 = clay, silt, and organic carbon; Model 2 = clay, silt, organic carbon, and plasticity limit; Model 3 = clay, silt, organic carbon, and specific 
surface; Model 4 = clay, silt, organic carbon, and microporosity. (2) FC = field capacity; PWP = permanent wilting point; AW = available water.
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The estimate of AW by RT resulted in R2 of 0.83 to 0.86 and RMSE of 0.02 and 0.03 m3 m-3 

in the surface horizons. In the subsurface horizons, R2 varied from 0.81 to 0.83, with 
RMSE of 0.02 m3 m-3. It is observed that the inclusion of predictor variables in addition 
to those of model 1 did not improve soil AW estimates.

For the estimation of water retention in FC and PWP, the best models were those with 
soil microporosity as a predictor variable, together with silt, clay, and OC contents, and 
in cases where microporosity data are not available, the use of the simplest model with 
silt, clay, and OC is indicated. On the other hand, the AW is estimated in a similar way in 
all the models, and thus the use of models with a smaller number of predictor variables 
is indicated, due to the greater availability and practicality of obtaining data. 

DISCUSSION
When analyzing the three statistical techniques and the models used, the different 
performances in the estimates of FC, PWP, and AW depending on the model and its 
predictor variables, horizon (surface or subsurface), and method (MLR, ANN and RT) 
were evident. 

Model 1 (clay, silt, and OC content) is the simplest, that is, with a lower number of 
predictor variables. This makes it faster and cheaper to obtain results as it uses properties 
routinely obtained in soil analysis laboratories. In this model, the MLR performance was 
similar to ANN in estimating soil water retention. However, when the MLR were validated 
with samples different from those of the generation database, their performance was 
reduced. For the state of Santa Catarina, Costa et al. (2013) also reported a reduction in 
the predictive capacity when the models were tested with different samples from those 
of the database that generated the pedotransfer functions. These results show that, 
although there is a high variability (amplitude) in the soil properties that integrate the 
database, the linear models are not the most suitable for the estimation of retention 
and, especially, for soil AW. This can be explained by the non-linear relationship between 
clay and water retention, for example. The direct effect of clay on SS and water retention 
is well known. However, more clayey soils also have modifications in their structure 
and this alters the distribution of pore size and water retention. On the other hand, in 
estimating AW, the MLR had low performance, even in the model generation database, 
a fact commonly observed in studies of the estimation of soil water properties, which, 

Table 5. Root mean square error (RMSE), correlation coefficient (r), intercept (a), angular coefficient (b), and coefficient of determination 
(R²) for relationship between measured moisture and estimated moisture by regression trees (RT) with the surface and subsurface 
horizons database

Model Predictor variable RMSE r a b R² RMSE r a B R²
Surface Subsurface

1(1)
FC(2) 0.05 0.90 0.01 0.98 0.80 0.04 0.91 0.00 0.99 0.83
PWP 0.04 0.88 0.01 0.98 0.78 0.04 0.90 0.01 0.98 0.81
AW 0.02 0.93 0.00 0.99 0.86 0.02 0.91 0.00 0.98 0.83

2
FC 0.05 0.90 0.00 0.99 0.80 0.04 0.91 0.00 0.99 0.83

PWP 0.04 0.90 0.00 1.00 0.81 0.04 0.90 0.01 0.98 0.81
AW 0.03 0.92 -0.01 1.06 0.85 0.02 0.90 -0.01 1.11 0.81

3
FC 0.05 0.90 0.01 0.98 0.80 0.04 0.91 0.00 0.99 0.83

PWP 0.04 0.88 0.01 0.98 0.78 0.04 0.90 0.01 0.98 0.81
AW 0.03 0.91 -0.01 1.06 0.83 0.02 0.91 0.01 1.11 0.83

4
FC 0.01 0.99 0.00 0.99 0.98 0.02 0.99 0.01 0.99 0.97

PWP 0.03 0.95 0.01 0.97 0.89 0.03 0.95 0.01 0.99 0.91
AW 0.03 0.91 0.01 0.94 0.84 0.02 0.90 0.00 0.97 0.81

(1) Model 1 = clay, silt, and organic carbon; Model 2 = clay, silt, organic carbon, and plasticity limit; Model 3 = clay, silt, organic carbon, and specific 
surface; Model 4 = clay, silt, organic carbon, and microporosity. (2) FC = field capacity; PWP = permanent wilting point; AW = available water.
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as commented previously, is due to the low linear dependence of other soil properties, 
mainly because AW represents a range of the soil water retention curve. In addition, the 
AW is a variable that depends on both FC and PWP, that is, it can accumulate the errors 
of the estimation of these two variables.

For this reason, ANN and RT are more suitable for estimating retention and, mainly, for 
estimating AW, in the surface and subsurface horizons, because in both techniques the 
algorithms work to find nonlinear solutions to improve the estimates. Therefore, RT was 
the technique with better results to estimate FC, PWP, and AW in both horizons studied. In 
the development of pedotransfer functions to estimate bulk density in Rwanda, Ghehi et 
al. (2012) obtained better results using RT compared to other non-parametric techniques.

In the RT, a figure is generated in the format of branches and leaves, which is easy to 
use; to reach the estimated result (leaves, which are the water contents retained in 
FC, PWP, and AW), the user must run across the branches of the tree through the soil 
properties, taking care to follow through the branches that represent the properties of 
the evaluated soil. According to Staver and Hansen (2015), a limitation of RT is that it 
produces only an estimate in the “leaf”, with the consequence that, for a certain class 
of soil properties, the result of the estimation is the same, unlike the MLR and ANN 
that result in different estimates, as they vary the values of the input variables of the 
model (independent variables). The MLR is also easy to use, but the predictive capacity 
is inferior to other techniques. For ANN, although giving the best estimates, Looy et al. 
(2017) warn that a disadvantage is that they have many coefficients that make them 
difficult to publish in the form of an equation.

In addition to the variables used in model 1 (clay, silt, and OC content), PL, SS, and soil 
microporosity were added, each of these variables being tested in a different model. 
These variables had not been tested as predictor variables of retention and AW in the 
soils of Santa Catarina in the studies of Costa et al. (2013) and Mendes (2014), carried 
out prior to the present study. Among these, microporosity was the variable that best 
improved the estimate of water retention in the soil, mainly for FC, where R2 was higher 
than 0.97 and the RMSE less than 0.03 m3 m‑3. It was expected that the incorporation of 
the SS into the model would improve the estimates, mainly of the PWP, which represents 
the capacity of water adsorption at more negative matric potentials, as is the case of 
PWP, but that was not observed, since the water retained in the PWP is also affected 
by capillarity in addition to adsorption. It was also expected that the PL would improve 
estimates of soil water retention because it is a function of the balance between cohesion 
and adhesion forces. However, because it is expressed gravimetrically and has little 
dependence on the bulk density, the capacity of this variable to estimate the volumetric 
water content was not confirmed.

In general, for the soils of Santa Catarina, the RT was better than the ANN and MLR for 
water retention estimation and, especially for estimating AW. The ANN, although inferior 
in performance to the RT, presented better results than the use of MLR, confirming the 
conclusions of Mendes (2014) for soils of Santa Catarina, Soares et al. (2014) for soils 
of Rio Grande do Sul, and Koekkoek and Booltink (1999) for soils of the Netherlands and 
Scotland. However, Merdun et al. (2006) found similar results between the two methods, 
but they recommended the use of ANN because it allows more input and output variables 
to be used and time and labor to be saved. 

Specifically, for Santa Catarina, better results were obtained in the present study compared 
to the pedotransfer functions obtained through MLR by Costa et al. (2013). The models 
that include microporosity were more efficient in estimating soil water retention. This 
is because the microporosity itself represents a point in the soil water retention curve 
(tension of 6 kPa). The performance of the models to estimate FC did not vary between 
MLR, ANN, and RT, but the complexity of the equation and the way of estimating (equation 
or chart of branches and leaves) were different. When microporosity was included, the 
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MLR was simpler to use, since the stepwise procedure only selected microporosity as a 
predictor variable among those available in model 4. 

In a study with soils of Rio Grande do Sul, Michelon et al. (2010) used the contents of 
sand, silt, and clay, bulk density, particle density, macroporosity, microporosity, and 
total porosity to generate pedotransfer functions through MLR, which estimate the 
water retention. They found a high correlation of microporosity with water retention, 
and the stepwise procedure selected microporosity as a predictor variable to estimate 
the retention up to 500 kPa, but not as a single predictor variable. In soils managed in 
conventional and no-tillage systems, Auler et al. (2017) also found microporosity as a 
predictor variable for FC and PWP, but with a lower correlation than bulk density. These 
findings indicate the importance of the selection of input variables in the models, as well 
as that of the statistical technique used to estimate soil water retention.

CONCLUSIONS
Artificial neural networks and regression trees were better at estimating the field capacity, 
permanent wilting point, and water availability than multiple linear regression. The best 
models to estimate water retention were those that included soil microporosity as an 
input variable. For soils or regions where the availability of input variables is restricted, 
the simplest model (clay, silt, and OC content) may be an alternative to estimate the 
field capacity, permanent wilting point, and water availability in the soil.
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