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ABSTRACT: Phosphorus (P) is one of the most difficult nutrients for plants to acquire 
because of its low content in the soil solution. Cassava (Manihot esculenta Crantz) has 
a thick and sparse absorbent root system; therefore, it is dependent on its association 
with arbuscular mycorrhizal fungi (AMF) for P acquisition from the soil. Thus, inoculation 
of cassava with AMF can improve the development of this root crop. This study evaluated 
the effects of soil disinfection (disinfected vs. natural) and the spore rates of Rhizophagus 
clarus inoculation (0, 50, 100 and 200 spores per plant) in greenhouse conditions on 
the initial growth, yield, P acquisition, and P use efficiency of cassava, as well as to 
evaluate the contribution of the native AMF to P acquisition from the soil. For cassava 
production in P-deficient soil, inoculation with Rhizophagus clarus significantly increased 
cassava growth, P uptake, and storage root yield only when the soil was disinfected. 
When the soil is not disinfected, native AMF contributes up to 86 % of the P taken up 
by cassava. However, high spore rates of Rhizophagus clarus in natural soil cause 
detrimental consequences for native AMF by reducing the colonization of the absorbent 
roots. Therefore, for cassava grown in natural soil under greenhouse conditions, a rate 
of 50 spores per plant of Rhizophagus clarus is sufficient to promote a 14.5 % increase 
in the yield of fresh storage roots. A management strategy that favors the native AMF 
multiplication in the soil is a potential strategy to improve P uptake and yield of cassava 
in P-deficient soils.

Keywords: Rhizophagus clarus, root colonization, native arbuscular mycorrhizal fungi, 
phosphorus nutrition.
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INTRODUCTION
Phosphorus (P) is necessary for plant growth, but it is one of the most difficult nutrients 
to acquire from the soil (Aliyu et al., 2019). Phosphate fertilizers are derived from 
non-renewable phosphate rock deposits that have become an increasingly limited 
resource; the increasing demand for phosphate rock and fertilizers has excessively 
increased prices in a short time, leading to shortages of phosphate fertilizers in some 
countries (Alewell et al., 2020). Furthermore, the high cost of conventional soluble 
sources of fertilizers ensures that many small farmers do not have access to these types 
of fertilizers and therefore, are unable to adequately manage soil fertility (Pádua, 2012). 
Therefore, it is necessary to adopt management techniques to support agricultural 
production using less mineral P. 

In the cassava crop (Manihot esculenta Crantz), P fertilization is considered essential for 
improving cassava storage root yield (Peña Venegas et al., 2021). However, as cassava 
has thick absorbent roots and few root hairs, it has a low root surface area for nutrient 
uptake (Silveira et al., 2015); therefore, it is one of the crops most dependent on the 
association with arbuscular mycorrhizal fungi (AMF) (Balota et al., 1999; Silveira et al., 
2015; De Bauw et al., 2021). Arbuscular mycorrhizal fungi occur naturally in soils, and 
mutualism between plants and AMF occurs in 72 % of terrestrial plant species (Brundrett 
and Tedersoo, 2018). These fungi form vesicles, arbuscles, and hyphae in the roots as well 
as spores and hyphae in the rhizosphere (Begum et al., 2019; Fossalunga and Novero, 
2019); in this symbiosis, AMFs are supplied with sugars and lipids by the plants (Peña 
Venegas et al., 2021). Hyphal network formation by AMF with plant roots significantly 
increases root access beyond the P depletion zone, exploiting a greater soil volume than 
is possible through the roots alone as well as improving P uptake (Begum et al., 2019; 
Fossalunga and Novero, 2019; Peña Venegas et al., 2021).

Studies on AMF in cassava crops, especially in African and South American countries 
(Fagbola et al., 1998; Balota et al., 1999; Okon et al., 2010; Straker et al., 2010; 
Ceballos et al., 2013; Heberle et al., 2015; Begoude et al., 2016; De Bauw et al., 2021; Peña 
Venegas et al., 2021) have shown that there is a diversity of AMF species associated with 
the root system of cassava, predominantly within the genera Acaulospora, Entrophospora, 
Rhizophagus, Glomus, Gigaspora and Scutellospora (Balota et al., 1999; Straker et al., 
2010; Begoude et al., 2016; Chukwuka et al., 2017). However, some studies indicated 
variability in the response of cassava to mycorrhizal inoculation depending on the cassava 
variety and the AMF strain in the inoculant (Aliyu et al., 2019; Peña Venegas et al., 2021). 

There is a need to better understand the benefits that AMF can provide for cassava crops. 
Although cassava benefited from the AMF inoculation in disinfected soils under controlled 
conditions (Howeler et al., 1982), inoculation of AMF does not always improve the P uptake 
or cassava performance in non-disinfected soils (Howeler et al., 1982; Ceballos et al., 
2013; Heberle et al., 2015). There are studies indicating that management practices 
that increase the abundance of native AMF in the soil may be more efficient than the 
inoculation of exotic AMF (Verbruggen et al., 2013). However, it is not in all situations that 
cassava growth or yield increase due to the previous adoption of management practices 
that favor the native AMF multiplication in the soil (Heberle et al., 2015; De Bauw et al., 
2021). For example, the practice of fallow can increase the native AMF population in 
terms of richness and diversity and not improve the cassava yield (De Bauw et al., 
2021). In contrast, field studies showed that cassava response to AMF inoculation is 
not necessarily restricted to conditions of low P availability (Peña Venegas et al., 2021); 
it is complex and depends on factors such as cassava variety, soil heterogeneity and 
the fungal strains of the inoculant (Aliyu et al., 2019; Peña Venegas et al., 2021). Thus, 
a better understanding of the influence of inoculation of exotic AMF on the P acquisition 
capacity of cassava and its effects on plant growth and storage root yield should assist 
in the future application of this management practice.
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This study aimed to evaluate the effect of Rhizophagus clarus (Syn. Glomus clarum) 
inoculation on the initial growth and storage root yield of cassava with the following 
specific objectives: i) to evaluate the effect of Rhizophagus clarus inoculation on the 
P acquisition capacity, P use efficiency, and cassava performance when the native 
AMF are, or are not eliminated; ii) to evaluate the contribution of native AMF to the 
cassava crop; and iii) to provide baseline data on the relationship between spore rates 
of Rhizophagus clarus inoculated per plant and the productive performance of cassava 
in greenhouse conditions.

MATERIALS AND METHODS

Site description, experimental design, and treatments

The experiment was carried out in 38 dm3 pots in a greenhouse at the Center for Tropical 
Roots and Starches (CERAT) of the São Paulo State University, Botucatu-SP, southeastern 
Brazil (22° 50’ 36” S; 48° 25’ 32” W and 740 m a.s.l.), between October 2018 and May 
2019. The greenhouse, covered with a clear 150 µm-thick plastic, was 4.8 m high, 7 m 
wide, 25 m long, and closed on the sides with a screen. Artificial light or shade nets were 
not used. During cassava growth, the air temperature inside the greenhouse varied as 
14.6–42.7 °C. The relative humidity inside the greenhouse was not monitored.

The experimental design used was randomized blocks in a 2 × 4 factorial scheme with 
four replications. The treatments were represented by two soil types (disinfected and 
natural) combined with four inoculation contents of Rhizophagus clarus (0, 50, 100 
and 200 spores per plant). Each plot contained one pot with one cassava plant. The 
Rhizophagus clarus inoculum was obtained from the Embrapa Agrobiologia collection 
and was previously multiplied in palisade grass. For inoculum multiplication, Urochloa 
brizantha (syn. Brachiaria brizantha) seeds were disinfected with sodium hypochlorite 
(10 %) and pre-germinated in a sterilized substrate. Five days after germination, five 
seedlings were transplanted to 4 kg plastic pots containing sterile soil, and 1 g of 
Rhizophagus clarus inoculum was deposited per pot below the roots of the seedlings. 
Host plants were grown in the greenhouse according to particular crop recommendations 
and were harvested after 100 days. The inoculum obtained and used in the present study 
contained 12 spores per gram and other propagules.

Soil preparation, cassava planting and management

The soil used was from the 0.00-0.20 m layer of a Latossolo Vermelho Distroférrico 
(Santos et al., 2018), which corresponding to a Hapludox (Soil Survey Staff, 2014) with 
low P availability. The soil was previously corrected with dolomitic limestone (241 mg dm-3) 
and fertilized with 30, 7.0, 92.5, 0.78, and 0.60 mg dm-3 of N, P, K, B and Zn, respectively. 
The fertilizer sources used were urea (45 % N), triple superphosphate (45 % P2O5), 
potassium chloride (60 % K2O), borax (11 % B) and zinc sulfate (20 % Zn). After correction 
and fertilization, the soil was divided into two parts, one of which was disinfected in an 
autoclave for 45 min at 1 atm. The two soils were then sampled and analyzed, since the 
initial P availability was considered low for cassava (Table 1; Lorenzi et al., 1997).

Five days after soil disinfection, 0.13-m-long stem cuttings of cassava cv. IAC 576-70 
harvested from the middle third of 12-month-old plants were planted in each pot. Initially, 
the stem cuttings were disinfected by immersion in a 70 % ethanol solution for 2 min, 
followed by immersion in a solution containing 20 % bleach (2.5 % sodium hypochlorite) 
for 10 min. After treatment, the stem cuttings were washed five times with deionized 
water, and each was placed in a hole of 0.10 m deep in the respective pot. Rhizophagus 
clarus inoculum was applied to the stem cuttings in the hole according to the treatments. 
Holes were then filled with soil. The planting occurred on October 8, 2018, and emergence 
began 22 days later (October 30, 2018).
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At 40 days after emergence (DAE) (December 09, 2018), 40 mg dm-3 N was applied to all 
pots, using urea as the source. All treatments received manual irrigation with deionized 
and sterile water as necessary to maintain the soil water content close to 80 % of the 
maximum water retention capacity. Water applied in the irrigation was treated using an 
ion exchange resin deionizer coupled to a 1,000 L water box equipped with a UV lamp 
system to eliminate microorganisms. Cassava was grown in pots for up to 7 months 
after planting (MP).

Plant sampling, measurements and analyses

At 4 MP (February 05, 2019), fully expanded leaf blades from the apex of the plants were 
sampled (Lorenzi et al., 1997). The samples were dried in a forced air circulation oven at 
65 °C for 72 h, ground to pass through a 40-mesh stainless steel screen, and analyzed 
for P and Mn contents (Malavolta et al., 1997).

Cassava plants were harvested at 7 MP (May 06, 2019) and divided into shoots, planted 
cuttings, absorbent roots, and storage roots. Absorbent roots were sampled and analyzed 
for length, surface area, and mean diameter using WinRhizo software, which uses 
the principle proposed by Tennant (1975). To evaluate mycorrhizal colonization of the 
absorbent roots, we initially clarified and colorized the roots using the technique of 
Phillips and Hayman (1970), with adaptations by Koske and Gemma (1989) and Grace and 
Stribley (1991). Mycorrhizae were quantified on microscope slides using the method of 
McGonigle et al. (1990). Fresh storage root yield per plant was obtained by counting and 
weighing the storage roots of each plant. The storage root mean weight was determined 
as the relation between the weight and number of storage roots per plant.

All plant parts (shoot, planted cutting, absorbent roots and storage roots) were dried in 
a forced-air circulation oven at 65 °C for 96 h, and weighed to determine the amount 
of dry matter (DM) accumulated. The samples were ground to pass through a 40-mesh 

Table 1. Soil chemical properties of natural and disinfected soils before cassava planting

Soil property(1) Soils
Natural Disinfected

pH(CaCl2) 5.3 5.3
Soil organic matter (g dm-3) 27 25
Presin-extractable (mg dm-3) 14 15
S-SO4

-2 (mg dm-3) 77 77
H+Al (mmolc dm-3) 31 29
K+ (mmolc dm-3) 2.5 2.8
Ca2+ (mmolc dm-3) 38 32
Mg2+ (mmolc dm-3) 17 15
Cation exchange capacity (mmolc dm-3) 89 79
Base saturation (%) 65 63
B (mg dm-3) 0.32 0.46
Cu (mg dm-3) 11.3 11.4
Fe (mg dm-3) 17 18
Mn (mg dm-3) 4.4 18.0
Zn (mg dm-3) 0.6 0.8

(1) pH(CaCl2) at a soil:solution ratio of 1:2.5. Soil organic matter was determined by a colorimetric method 
using sodium dichromate solution. S-SO4

-2 was determined by the turbidimetric method using BaSO4. Available 
P, Ca2+, Mg2+ and K+ were determined using an ion-exchange resin. H+Al extracted with calcium acetate at 
pH 7.0. CEC represents the sum of the H+Al, K+, Ca2+ and Mg2+ contents. Base saturation was calculated by 
dividing the sum of the bases (K+, Ca2+ and Mg2+) by the CEC and multiplying by 100 %. Cu, Fe, Mn and Zn 
were extracted using DTPA at pH 7.3. B was extracted with hot water.
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stainless steel screen and analyzed for P content (Malavolta et al., 1997). The amount of 
P accumulated in the different plant parts was obtained by multiplying the P content by 
the amount of DM accumulated in each plant part (Fernandes et al., 2020). The P uptake 
efficiency (PUpE) was calculated as proposed by Swiader et al. (1994) (Equation 1).

PUpE (mg cm-1) =
Total amount of P taken up by the plant (mg)

Total absorbent root length (cm)
      Eq. 1

Phosphorus use efficiency (PUE) was calculated according to Chowdhury and Zhang 
(2021) (Equation 2).

PUE (g mg-1) =
Total amount of plant biomass (g)

Total amount of P taken up by plant (mg)
       Eq. 2

Data analysis

SISVAR statistical software was used for data analyses (Ferreira, 2011); the LSD test 
(p≤0.05) was applied to separate the means related to the effects of soil type (ST), while 
regression analysis was used to evaluate the effects of AMF inoculation rates (AMF-R). 
To analyze the significant ST × AMF-R interaction, the ST means were separated using 
Fisher’s protected LSD test (p≤0.05), and the regression equations were separately 
adjusted to the values of the ST treatments.

RESULTS
The ST × AMF-R interaction affected the P leaf content of cassava (Figure 1a). There was 
no significant effect of AMF-R on the leaf P content in the natural soil, but in the disinfected 
soil, the leaf P content was increased by 102 % until a rate of 100 spores per plant AMF. 
Soil disinfection reduced P content in the cassava leaves by 52 % with no inoculation of 
AMF, and when AMF was inoculated, the leaf P content did not differ between soils. The 
leaf Mn content was only affected by ST and AMF-R (Figure 1b). In the disinfected soil, 
the Mn content in the cassava leaves was higher than that in the natural soil, and the 
leaf Mn content was increased by AMF inoculation up to 130 spores per plant.

The ST × AMF-R interaction affected the length and surface area of the absorbent roots 
(Figures 1c and 1d). In the disinfected soil, AMF linearly increased the length by 237 % 
and surface area by 176 %. In the natural soil, AMF inoculation caused a curvilinear to 
plateau increase of 31 % in root length up to the rate of 100 spores per plant, and a 
quadratic effect on the root surface, with a 33 % increase up to the rate of 159 spores 
per plant. Length and surface area of absorbent roots were reduced by disinfecting the 
soil when less than 200 spores per plant AMF were inoculated.

Only the ST factor affected the diameter of the absorbent roots, which was 5.3 % less 
in the disinfected soil than in the natural soil (Figure 1e). Mycorrhizal colonization was 
affected by ST × AMF-R interaction (Figure 1f). In natural soil, AMF inoculation linearly 
reduced mycorrhizal colonization by 47 %. In the disinfected soil, inoculation with AMF 
increased mycorrhizal colonization by 1786 % up to a rate of 122 spores per plant. In the 
natural soil, mycorrhizal colonization was 4900 % higher with no AMF, and 24 % higher 
with 50 spores per plant than the disinfected soil.

The number, mean weight, and storage root yield of cassava were affected by the 
ST × AMF-R interaction (Figure 2). In the natural soil, AMF inoculation did not affect 
the storage root mean weight; however, there was an increase of 15.0 and 14.5 % 
in the number and yield of storage roots up to the rate of 50 spores per plant. In the 
disinfected soil, mycorrhizal inoculation resulted in a 4076 % increase in the storage 
root number up to the rate of 161 spores per plant; a 3859 % increase in the storage 
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root mean weight up to the rate of 200 spores per plant; and a 24236% increase in 
the storage root yield up to a rate of 167 spores per plant. With no inoculation, soil 
disinfection reduced the number of storage roots per plant, and the mean weight 
and yield of storage roots were reduced by disinfecting soil at rates of less than 200 
spores per plant.

The amount of DM accumulated in the plant parts and whole plant, and the harvest 
index (HI) were affected by the ST × AMF-R interaction (Figure 3). In the natural soil, 
AMF inoculation did not affect the DM of shoots, storage roots, whole plants, and HI, 
but increased the DM of absorbent roots by 17 % up to the rate of 125 spores per plant, 
while reducing the planted cutting DM by 12 % up to the rate of 113 spores per plant. 
In the disinfected soil, AMF inoculation increased DM accumulation in all plant parts 
and increased HI. The DM of shoots, planted cutting, and absorbent roots increased 
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Figure 1. Contents of P (a) and Mn (b) in the leaves, root length (c), root surface (d), root mean 
diameter (e), and AMF colonization (f) of absorbent roots of the cassava in response to AMF 
inoculation rates in natural and disinfected soils. Within each AMF inoculation rate, different 
lowercase letters indicate a significant difference between soil types, whereas the absence of 
lowercase letters indicates a non-significant difference between soil types at p≤0.05. Different 
uppercase letters indicate a significant difference between soil types at p≤0.05 regardless of AMF 
inoculation rate. * p≤0.05; ** p≤0.01.
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to between 127 and 142 spores per plant, while the DM of storage roots, whole plant, 
and HI increased up to the highest rate of AMF inoculated. Soil disinfection decreased 
DM of shoots when no AMF was inoculated and decreased DM of absorbent roots at 
rates less than 100 spores per plant. However, the DM of the storage roots, whole 
plant, and HI decreased significantly by disinfection of the soil at rates of less than 
200 spores per plant.

Phosphorus content in the shoot and storage roots was affected by the ST × AMF-R 
interaction (Figures 4a and 4d). In the natural soil, AMF inoculation did not change the 
shoot P content, but in the storage roots, there was a 38 % increase up to 152 spores per 
plant. In the disinfected soil, shoot P content increased 41 % up to the rate of 132 spores 
per plant, and storage root P content increased 1810 % up to 135 spores per plant. Soil 
disinfection significantly reduced the P content in the shoots and storage roots only 
when no AMF was included. In the planted cuttings, P content was not affected by the 
treatments, but in the absorbent roots, P content was higher in the disinfected soil with 
no influence of AMF-R or ST × AMF-R interaction (Figures 4b and 4c).

The amount of P taken up and PUpE were affected by the ST × AMF-R interaction 
(Figures 5a and 5b). In the natural soil, the P uptake increased by 12.6 % up to the 
rate of 100 spores per plant, while the PUpE decreased by 18 % up to the rate of 132 
spores per plant. In the disinfected soil, the effect of AMF inoculation was a 583 % 
curvilinear to plateau increase in P uptake up to a rate of 100 spores per plant, and a 
204 % quadratic increase in the PUpE up to the rate of 113 spores per plant. Phosphorus 
uptake was reduced 86 and 32 % by soil disinfection when 50 spores per plant or less 
were inoculated. However, PUpE decreased with soil disinfection when no AMF was 

Figure 2. Number of storage roots per plant (a), storage root mean weight (b) and fresh storage 
root yield (c) of the cassava in response to AMF inoculation rates in natural and disinfected soils. 
Within each AMF inoculation rate, different lowercase letters indicate a significant difference 
between soil types, whereas the absence of lowercase letters indicates a non-significant difference 
between soil types at p≤0.05. * p≤0.05; ** p≤0.01.
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inoculated or inoculated at a rate of 200 spores per plant. The PUE was affected only 
by AMF-R, and there was an 18 % reduction in the PUE up to a rate of 132 spores per 
plant (Figure 5c).

DISCUSSION
Under natural soil conditions, AMF inoculation promoted a 17 % increase in the biomass 
of the absorbent roots, but did not alter the initial growth of the cassava plants. However, 
in the disinfected soil, inoculation with AMF significantly increased the growth of cassava 
plants, especially storage roots. Cassava presented a positive response to AMF inoculation 
in disinfected soil (Howeler et al., 1982), but the benefits of AMF inoculation have not 
been clarified in natural soil conditions (Ceballos et al., 2013; Heberle et al., 2015) 
as verified in the present study. In the disinfected soil, a rate of 200 spores per plant 
Rhizophagus clarus promoted cassava growth similar to that in natural soil conditions, 
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corroborating previous studies that cassava is naturally associated with AMF (Balota et al., 
1999; Straker et al., 2010; Aliyu et al., 2019) and is highly dependent on them for growth 
(Balota et al., 1999; De Bauw et al., 2021).

Maintenance of plant growth in the natural soil with low P availability (Table 1) even 
without AMF inoculation occurred because the leaf P content was sufficient (>2.0 g kg-1; 
Lorenzi et al., 1997), which differs from results with the disinfected soil, where the plants 
only showed sufficient leaf P content from the inoculation rate of 50 spores per plant. 
The capacity of cassava to associate with native AMF in the soil (Balota et al., 1999; 
Straker et al., 2010; Aliyu et al., 2019) allows for the maintenance of high leaf content in 
P-deficient soils because a considerable portion of the phosphate taken up by mycorrhizal 
plants can be acquired via the AMF pathway (Fossalunga and Novero, 2019).

However, under low fertility, cassava can reduce the size of the plants, maintain relatively 
high P contents in the leaves, and photosynthesize at a similar rate to that of plants grown 
in highly fertile soil (Cock and Connor, 2020). In this study, soil disinfection increased 
the leaf Mn content, which was above the range suggested as suitable for cassava 
(25–100 mg kg-1; Lorenzi et al., 1997), but leaf Mn contents remained below the content 
which is considered toxic to cassava (1,000 mg kg-1; Souza et al., 2009).

With no AMF inoculation, the mycorrhizal colonization of the roots in the natural soil was 
4900 % higher than in the disinfected soil, and Rhizophagus clarus inoculation decreased 
the colonization of absorbent roots, whereas the opposite occurred in the disinfected 
soil. This indicates a high rate of absorbent root colonization by native soil AMF and that 
Rhizophagus clarus inoculation inhibited the action of these native species. Some studies 
indicated that plant responses to inoculation might be influenced by increases in the 
abundance of soil AMF (due to the adoption of alternative management) as opposed to 
the introduction of new strains (Verbruggen et al., 2013) since native and exotic AMF 
can be equally effective in increasing plant growth (Pellegrino et al., 2011), as was 
verified in this study. Furthermore, management practices that increase the abundance 
of native AMF in the soil (such as fallow) do not always increase cassava root yield 
(De Bauw et al., 2021).

In natural soil, AMF inoculation increased the length and surface area of the absorbent 
roots by 31–33 %, but this did not significantly increase P uptake, which is consistent 
with previous findings indicating that cassava responsiveness to inoculation is dependent 
on fungal genotypes, cassava varieties and native AMF communities (Aliyu et al., 2019; 
Peña Venegas et al., 2021). In this study, native AMF from soil contributed 86 % of P 
taken up by cassava when no AMF was inoculated; however, when 50 spores per plant 
were added, this contribution decreased to 32 and 0 % when higher rates of AMF were 
included. This occurred because, in natural soil, AMF inoculation reduced root colonization 
and PUpE, and showed no benefits for plant growth. Therefore, inoculation of Rhizophagus 
clarus in natural soil is not an alternative to improving cassava plants’ P uptake and 
growth. Perhaps the adoption of management strategies that increase the abundance of 
native AMF can be more effective in increasing P uptake by cassava (Verbruggen et al., 
2013); however, this strategy does not always result in improved growth and yield of 
cassava (Heberle et al., 2015; De Bauw et al., 2021).

Interestingly, although inoculation with at least 50 spores per plant Rhizophagus clarus 
reduced root colonization, it increased the yield of storage roots by 14.5 %. However, future 
studies need to confirm whether this beneficial effect of Rhizophagus clarus inoculation 
on cassava yield is replicated for other cassava cultivars under field conditions because 
the inoculation response depends on the interaction between the AMF species and the 
host cassava variety (Peña Venegas et al., 2021). For example, in Nigeria and Colombia, 
inoculation with Rhizophagus manihotis increased cassava root yield only in later harvests 
(Fagbola et al., 1998), whereas inoculation with Glomus deserticola increased root 
colonization, P uptake, and root yield of cassava (Okon et al., 2010; Ceballos et al., 2013). 
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In contrast, inoculation with the same strain of Rhizophagus irregularis in two different 
cassava varieties (an improved variety and another landrace) caused a contrasting 
response to AMF inoculation (Peña Venegas et al., 2021). Different cassava responses 
to AMF inoculation also occurred when inoculants based on Rhizophagus irregularis 
were inoculated into the same cassava variety cultivated at different sites (Aliyu et al., 
2019). Thus, the low response of cassava to inoculation with Rhizophagus clarus in the 
natural soil in the present study may also be related to the competition between native 
and inoculated AMFs (Verbruggen et al., 2013), since mycorrhizal colonization was high 
in the uninoculated natural soil.

The inoculation of Rhizophagus clarus altered the PUpE differently in the two soils, 
but the fact that the soil was disinfected did not change the PUE, indicating that the 
benefits of AMF are limited to improvements in the P acquisition from the soil and 
not in its further use by the plants. Arbuscular mycorrhizal fungi are very effective in 
helping plants uptake nutrients from deficient soils by increasing the surface absorbing 
capacity of the host roots and providing nutritional support for the plants even under 
nutrient-deficient conditions within the root cells (Begum et al., 2019; Fossalunga and 
Novero, 2019). The reduction in PUE caused by inoculation with Rhizophagus clarus 
indicates that there was a greater increase in P uptake than in the production of biomass 
from plants, especially in disinfected soil conditions.

CONCLUSIONS
For cassava production in P-deficient soil, inoculation with Rhizophagus clarus significantly 
increased plant growth, P uptake and storage root yield only when the soil was disinfected. 
In natural and P-deficient soil, native arbuscular mycorrhizal fungi (AMF) from the soil 
contribute up to 86 % of the P taken up by cassava. However, inoculation with high 
spore rates of Rhizophagus clarus in natural soil causes detrimental consequences for 
native AMF present in the soil, affecting their capacity to colonize the absorbent roots 
and contribute to P acquisition. The results of this study demonstrate that for cassava 
grown in natural soil under greenhouse conditions, inoculation with 50 spores per plant 
of Rhizophagus clarus is sufficient to promote a 14.5 % increase in the yield of fresh 
storage roots. A management strategy that favors the native AMF multiplication in the soil 
can also has the potential to improve P uptake and yield of cassava in P-deficient soils.
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