Acessibilidade / Reportar erro

Nitrogen symbiotically fixed by cowpea and gliricidia in traditional and agroforestry systems under semiarid conditions

Nitrogênio fixado simbioticamente por feijão-caupi e gliricídia em sistemas tradicional e agroflorestal sob condições semiáridas

Abstracts

The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees), and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50%) and contribute with higher N amounts (40 kg ha-1 in leaves) than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw). In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1), which is lower than in the traditional system due to its lower biomass production.

Gliricidia sepium; Vigna unguiculata; biological nitrogen fixation; natural abundance; 15N.


O objetivo deste trabalho foi estimar as quantidades de N fixadas em feijão-caupi em sistema tradicional e em feijão-caupi e gliricídia em sistema agroflorestal, sob condições semiáridas do Nordeste brasileiro. O experimento foi conduzido em blocos ao acaso, em arranjo em parcelas subdivididas, com quatro repetições, no semiárido da Paraíba. As parcelas consistiram dos sistemas agroflorestal e tradicional (sem árvores), e as subparcelas, dos três cultivos entre as linhas das árvores, no sistema agroflorestal. Para estimar a fixação de N, amostras das plantas foram coletadas no quarto ciclo de crescimento das espécies perenes e no quarto ciclo de cultivo das espécies anuais. No sistema agroflorestal com capim-buffel e palma forrageira, a gliricídia fixa simbioticamente altas proporções de N (>50%) e adiciona quantidades maiores de N (40 kg ha-1 nas folhas) que no sistema tradicional (11 kg ha-1 nos grãos e 18 kg ha-1 na palhada). No sistema agroflorestal com milho e feijão-caupi, a gliricídia não fixa N e a adição de N é limitada à fixação no feijão-caupi (2,7 kg ha-1), que é menor que no sistema tradicional em razão da sua baixa produção de biomassa.

Gliricidia sepium; Vigna unguiculata; fixação biológica do nitrogênio; abundância natural; 15N


Introduction

Agroforestry systems with trees or shrub alleys within annual crop fields can be an option to reduce the fragility of certain agricultural production systems (Wick & Tiessen, 2008WICK, B.; TIESSEN, H.Organic matter turnover in light fraction and whole soil under silvopastoral land use in semiarid Northeast Brazil. Rangeland Ecology and Management, v.61, p.275-283, 2008. DOI: 10.2111/07-038.1.
https://doi.org/10.2111/07-038.1...
; Foroughbakhch et al., 2009FOROUGHBAKHCH, R.; HERNÁNDEZ-PIÑERO, J.L.; ALVARADO-VÁZQUEZ, M.A.; CÉSPEDES-CABRIALES, E.; ROCHA-ESTRADA, A.; CÁRDENAS-AVILA, M.L. Leaf biomass determination on woody shrub species in semiarid zones. Agroforestry Systems, v.77, p.181-192, 2009. DOI: 10.1007/s10457-008-9194-6.
https://doi.org/10.1007/s10457-008-9194-...
; Li et al., 2009 LI, F.L.; BAO, W.K.; WU, N. Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii. Agroforestry Systems, v.77, p.193-201, 2009. DOI: 10.1007/s10457-008-9199-1.
https://doi.org/10.1007/s10457-008-9199-...
; Kurppa et al., 2010KURPPA, M.; LEBLANC, H.A.; NYGREN, P. Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15N labelled soil: ecological and experimental considerations., Agroforestry Systems v.80, p.223-239, 2010. DOI: 10.1007/s10457-010-9327-6.
https://doi.org/10.1007/s10457-010-9327-...
; Sousa et al., 2010SOUSA, L.F.; MAURÍCIO, R.M.; MOREIRA, G.R.; GONÇALVES, L.C.; BORGES, I.; PEREIRA, L.G.R. Nutritional evaluation of ''Braquiarão'' grass in association with ''Aroeira'' trees in a silvopastoral system. Agroforestry Systems, v.79, p.189-199, 2010. DOI: 10.1007/s10457-010-9297-8.
https://doi.org/10.1007/s10457-010-9297-...
; Lima et al., 2011LIMA, S.S. de; LEITE, L.F.C.; OLIVEIRA, F. da C.; COSTA, D.B. da. Atributos químicos e estoques de carbono e nitrogênio em Argissolo Vermelho-Amarelo sob sistemas agroflorestais e agricultura de corte e queima no Norte do Piauí. Revista Árvore, v.35, p.51-60, 2011. DOI: 10.1590/S0100-67622011000100006.
https://doi.org/10.1590/S0100-6762201100...
). Those systems produce a considerable amount of biomass that can be incorporated into the soil, transferring nutrients from the trees to the crops (Bertalot et al., 2010BERTALOT, M.J.A.; GUERRINI, I.A.; MENDOZA, E.; PINTO, M.S.V. Desempenho da cultura do milho (Zea mays L.) em sucessão com aveia-preta (Avena strigosa Schreb.) sob manejos agroflorestal e tradicional. Revista Árvore, v.34, p.597-608, 2010. DOI: 10.1590/S0100-67622010000400004.
https://doi.org/10.1590/S0100-6762201000...
; Munroe & Isaac, 2014MUNROE, J.W.; ISAAC, M.E. N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agronomy for Sustainable Development, v.34, p.417-427, 2014. DOI: 10.1007/s13593-013-0190-5.
https://doi.org/10.1007/s13593-013-0190-...
). When N2-fixing legume trees are included in the system, symbiotically fixed N (SFN) can be an additional source of N to the associated crop (Paulino et al., 2009 PAULINO, G.M.; ALVES, B.J.R.; BARROSO, D.G.; URQUIAGA, S.; ESPINDOLA, J.A.A. Fixação biológica e transferência de nitrogênio por leguminosas em pomar orgânico de mangueira e gravioleira. Pesquisa Agropecuária Brasileira, v.44, p.1598-1607, 2009. DOI: 10.1590/S0100-204X2009001200006.
https://doi.org/10.1590/S0100-204X200900...
; Munroe & Isaac, 2014MUNROE, J.W.; ISAAC, M.E. N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agronomy for Sustainable Development, v.34, p.417-427, 2014. DOI: 10.1007/s13593-013-0190-5.
https://doi.org/10.1007/s13593-013-0190-...
).

In arid and semiarid regions, N2-fixing legume trees frequently obtain more than half of their N from symbiotic fixation (Freitas et al., 2010FREITAS, A.D.S.; SAMPAIO, E.V.S.B.; SANTOS, C.E.R.S.; FERNANDES, A.R. Biological nitrogen fixation in legume trees of the Brazilian caatinga. Journal of Arid Environments, v.74, p.344-349, 2010. DOI: 10.1016/j.jaridenv.2009.09.018.
https://doi.org/10.1016/j.jaridenv.2009....
; Andrews et al., 2011ANDREWS, M.; JAMES, E.K.; SPRENT, J.I.; BODDEY, R.M.; GROSS, E.; REIS JUNIOR, F.B. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecology and Diversity, v.4, p.131-140, 2011. DOI: 10.1080/17550874.2011.644343.
https://doi.org/10.1080/17550874.2011.64...
; Souza et al., 2012SOUZA, L.Q. de; FREITAS, A.D.S. de; SAMPAIO, E.V. de S.B.; MOURA, P.M.; MENEZES, R.S.C.How much nitrogen is fixed by biological symbiosis in tropical dry forest? 1. Trees and shrubs. Nutrient Cycling in Agroecosystems, v.94, p.171-179, 2012. DOI: 10.1007/s10705-012-9531-z.
https://doi.org/10.1007/s10705-012-9531-...
). However, the amounts of fixed N vary much, depending on the specificities of the symbiosis and on the environmental characteristics that affect biomass production and SFN. In Kenya, for instance, from 70 to 90% of the N in the biomass of Sesbania sesban and Calliandra calothyrsus was derived from SFN, amounting to 120 to 360 kg ha-1 N (Stahl et al., 2002STAHL, L.; NYBERG, G.; HÖGBERG, P.; BURESH, R.J. Effects of planted tree fallows on soil nitrogen dynamics, above-ground and root biomass, N2-fixation and subsequent maize crop productivity in Kenya. Plant and Soil, v.243, p.103-117, 2002. DOI: 10.1023/A:1019937408919.
https://doi.org/10.1023/A:1019937408919...
), whereas in Sudan, 48% of the N in pure stands of Acacia senegal were fixed from the atmosphere (%Ndfa), introducing 36 kg ha-1 N per year to the agrosystem (Raddad et al., 2005RADDAD, El A.Y.; SALIH, A.A.; EL FADL, M.A.; KAARAKKA, V.; LUUKKANEN, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant and Soil, v.275, p.261-269, 2005. DOI: 10.1007/s11104-005-2152-4.
https://doi.org/10.1007/s11104-005-2152-...
). Therefore, SFN may represent relevant N inputs to soil-plant systems, decreasing the need of N fertilizer application, which is frequently the most expensive among commercial fertilizers.

In the semiarid region of Northeast Brazil, sole or intercropped maize and cowpea are the main cultures in an itinerant slash-and-burn system of a few years of cultivation followed by 10 to 15 years of fallow (Maia et al., 2007MAIA, S.M.F.; XAVIER, F.A.S.; OLIVEIRA, T.S.; MENDONÇA, E.S.; ARAÚJO FILHO, J.A. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agroforestry Systems, v.71, p.127-138, 2007. DOI: 10.1007/s10457-007-9063-8.
https://doi.org/10.1007/s10457-007-9063-...
). Livestock is the most important activity, and the cattle feed on crop residues; on native vegetation growing in the fallow areas; on prickly-pear cactus plants, cultivated specifically as a fodder crop; and on pasture planted with introduced African grasses, such as buffel grass (Wick & Tiessen, 2008WICK, B.; TIESSEN, H.Organic matter turnover in light fraction and whole soil under silvopastoral land use in semiarid Northeast Brazil. Rangeland Ecology and Management, v.61, p.275-283, 2008. DOI: 10.2111/07-038.1.
https://doi.org/10.2111/07-038.1...
). Rows of maize and cowpea are sometimes interplanted within the rows of prickly-pear cactus. In recent years, agroforestry systems that combine rows of trees and maize and cowpea have been introduced, in which tree pruning is done shortly after sowing of the annual crops to increase fodder production, while maintaining some grain production (Pérez Marin et al., 2006PÉREZ MARIN, A.M.; MENEZES, R.S.C.; SILVA, E.D.; SAMAPIO, E.V. de S.B. Efeito da Gliricidia sepium sobre nutrientes do solo, microclima e produtividade do milho em sistema agroflorestal no Agreste Paraibano. Revista Brasileira de Ciência do Solo, v.30, p.555-564, 2006. DOI: 10.1590/S0100-06832006000300015.
https://doi.org/10.1590/S0100-0683200600...
, 2007PÉREZ MARIN, A.M.;; MENEZES, R.S.C. SALCEDO, I.H.Produtividade de milho solteiro ou em aléias de gliricídia adubado com duas fontes orgânicas. Pesquisa Agropecuária Brasileira, v.42, p.669-677, 2007. DOI: 10.1590/S0100-204X2007000500009.
https://doi.org/10.1590/S0100-204X200700...
). In the long run, this system could be more stable than the itinerant system, considering frequent crop failure due to low and erratic rainfall and the pressure to reduce fallow periods (Martins et al., 2013MARTINS, J.C.R.; MENEZES, R.S.C.; SAMPAIO, E.V.S.B.; SANTOS, A.F. dos; NAGAI, M.A. Produtividade de biomassa em sistemas agroflorestais e tradicionais no Cariri Paraibano. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.581-587, 2013. DOI: 10.1590/S1415-43662013000600002.
https://doi.org/10.1590/S1415-4366201300...
).

Few studies have been conducted in the Brazilian semiarid area to measure crop and tree productivities under agroforestry systems (Pérez Marin et al., 2006PÉREZ MARIN, A.M.; MENEZES, R.S.C.; SILVA, E.D.; SAMAPIO, E.V. de S.B. Efeito da Gliricidia sepium sobre nutrientes do solo, microclima e produtividade do milho em sistema agroflorestal no Agreste Paraibano. Revista Brasileira de Ciência do Solo, v.30, p.555-564, 2006. DOI: 10.1590/S0100-06832006000300015.
https://doi.org/10.1590/S0100-0683200600...
, 2007PÉREZ MARIN, A.M.;; MENEZES, R.S.C. SALCEDO, I.H.Produtividade de milho solteiro ou em aléias de gliricídia adubado com duas fontes orgânicas. Pesquisa Agropecuária Brasileira, v.42, p.669-677, 2007. DOI: 10.1590/S0100-204X2007000500009.
https://doi.org/10.1590/S0100-204X200700...
; Santos et al., 2010SANTOS, A.F.; MENEZES, R.S.C.; FRAGA, V.S.; PÉREZ-MARIN, A.M. Efeito residual da adubação orgânica sobre a produtividade de milho em sistema agroflorestal. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.1267-1272, 2010. DOI: 10.1590/S1415-43662010001200003.
https://doi.org/10.1590/S1415-4366201000...
). Martins et al. (2013)MARTINS, J.C.R.; MENEZES, R.S.C.; SAMPAIO, E.V.S.B.; SANTOS, A.F. dos; NAGAI, M.A. Produtividade de biomassa em sistemas agroflorestais e tradicionais no Cariri Paraibano. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.581-587, 2013. DOI: 10.1590/S1415-43662013000600002.
https://doi.org/10.1590/S1415-4366201300...
evaluated the productivities of maize, cowpea, and gliricidia trees and found that the agroforestry system produced the largest amounts of biomass, indicating that it can be a viable system in the region. However, a proper management of the system requires the knowledge of the amounts of N introduced by symbiotic fixation of trees and cowpea, and this information is not available for agroforestry systems tested in the semiarid area of Northeast Brazil.

The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system with planting of maize and cowpea, prickly-pear cactus, or buffel grass.

Materials and Methods

The study was conducted in the municipality of Taperoá, in the state of Paraíba, Brazil (7º12'23"S, 36º49'25"W, at 532 m of altitude). The annual average temperature is 28oC, with little daily and monthly variations, and the annual average rainfall is 600 mm, with large interannual variations. According to Köppen's classification, the climate is Bsh, semiarid and hot. The soil is a Neossolo Flúvico (Entisol) (Santos et al., 2006SANTOS, H.G. dos; JACOMINE, P.K.T.; ANJOS, L.H.C. dos; OLIVEIRA, V.A. de; OLIVEIRA, J.B. de; COELHO, M.R.; LUMBRERAS, J.F.; CUNHA, T.J.F. (Ed.). Sistema brasileiro de classificação de solos 2.ed. Rio de Janeiro: Embrapa Solos, 2006. 306p.), and the top 20 cm layer has 677 g kg-1 sand, 147 g kg-1 silt, and 176 g kg-1 clay. Soil chemical characteristics were determined according to the procedures recommended by Silva (2009)SILVA, F.C. da. (Ed.). Manual de análises químicas de solos, plantas e fertilizantes 2.ed. Brasília: Embrapa Informação Tecnológica; Rio de Janeiro: Embrapa Solos, 2009. 627p.: pH in water of 7.3, measured in 2.5 soil:water (v/v); 9.1 g kg-1 organic C, obtained by the dichromate humid oxidation method; 6.3 and 0.98 cmolc kg-1 Ca+2 and Mg+2, respectively, extracted with KCl and determined by atomic absorption; and 65.8 mg kg-1 P, 0.5 cmolc kg-1 K+, and 0.19 cmolc kg-1 Na+, extracted with Mehlich-1 and determined by colorimetry and flame photometry.

The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates. Plot treatments consisted of the presence or absence of trees in the production system, whereas split-plot treatments consisted of three traditional production crops: 1, intercropping of maize (Zea mays L.) of the Sergipano variety and of cowpea [Vigna unguiculata (L.) Walp.] of the Moitinha variety; 2, perennial buffel grass (Cenchrus ciliaris L.) pasture; and 3, forage prickly-pear cactus [Opuntia ficus-indica (L.) Mill.]. Each split-plot of the treatment without trees had a 6x10 m area. Maize and cowpea were planted in the same row, with 1 m spacing between rows and 0.25 m spacing between plants; prickly-pear cactus was also planted in rows 1 m apart but with 0.5 m between plants; and buffel grass was planted in rows 0.5 m apart, with 0.1 m between plants. Each split-plot of the treatments with trees had an area of 10x30 m. Five rows of gliricidia [Gliricidia sepium (Jacq.) Kunth], interspaced with Manihot glaziovii Mull. Arg., were planted 6 m apart with 1 m between trees, and the production crops were planted in five rows between the tree rows.

The experiment was established at the start of the rainy season of 2006 with the planting of buffel grass seeds, partially burying cladodes of prickly-pear cactus cut from a nearby field and transplanting three-month-old seedlings of gliricidia and M. glaziovii previously cultivated in the area. At the time of planting, dry cattle manure was spread over the soil surface in a dose equivalent to 10 Mg ha-1. Maize and cowpea were planted for four years, from 2006 to 2009, always at the beginning of the rainy season, in February or March. Annual rainfall along these years totaled 987, 533, 725, and 756 mm, mostly concentrated from February to May.

Maize and cowpea were harvested every year after the end of the rainy season and their biomass was removed from the plots. The trees were cut at 1.5 m height in 2008 and 2009, one week before planting maize and cowpea, but not in 2007, when the trees were too small. The cut biomass was divided into tips (leaves plus twigs less than 1.5 cm in stem diameter) and wood (larger branches) and also removed from the plots. The forage cactus was only harvested in 2008 because of its long growing cycle, and its biomass was also removed.

To estimate N fixation, plant samples were collected in 2009 when the trees were over three years old and the planting of annual crops was in its fourth cycle. Fully expanded healthy leaves were collected from four plants of the N2-fixing species (gliricidia and cowpea) and from four plants of one non-fixing reference species in each subplot. M. glaziovii was the tree reference species, and the weed Alternanthera tenella was the herb reference species. Maize and buffel grass were not taken as reference species because of reports of their possible association with N-fixing microorganisms (Roesch et al., 2007ROESCH, L.F.W.; QUADROS, P.D. de; CAMARGO, F.A.O.; TRIPLETT, E.W. Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World Journal of Microbiology and Biotechnology, v.23, p.1377-1383, 2007. DOI: 10.1007/s11274-007-9376-9.
https://doi.org/10.1007/s11274-007-9376-...
). The leaves of all four plants were pooled together to form a single composite sample of each species in each subplot. The samples were oven dried at 65ºC for 72 hours, ground, and analyzed for total N and 15N concentrations (natural abundance).

N concentrations of leaf samples were determined in 0.25 g of the material digested with sulfuric acid using the standard Kjeldahl procedure (Silva, 2009SILVA, F.C. da. (Ed.). Manual de análises químicas de solos, plantas e fertilizantes 2.ed. Brasília: Embrapa Informação Tecnológica; Rio de Janeiro: Embrapa Solos, 2009. 627p.). N concentration of the larger branches (1.51%) was equal to that determined by Alves et al. (2011)ALVES, R.N.; MENEZES, R.S.C.; SALCEDO, I.H.; PEREIRA, W.E. Relação entre qualidade e liberação de N por plantas do semiárido usadas como adubo verde. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p.1107-1114, 2011. DOI: 10.1590/S1415-43662011001100001.
https://doi.org/10.1590/S1415-4366201100...
for these plants in the same location. The N concentration of cowpea grains (4.40%) was similar to that found by Arora & Das (1976)ARORA, S.K.; DAS, B. Cowpea as potential crop for starch. Starke, v.28, p.158-160, 1976. DOI: 10.1002/star.19760280503.
https://doi.org/10.1002/star.19760280503...
. N contents were obtained by multiplying N concentration by the biomass. In the case of tips, the biomass of leaves plus twigs was multiplied by the N concentration of leaves. In the case of cowpea, the straw biomass was multiplied by the leaf concentrations.

The natural abundance of 15N was analyzed by mass spectrometry and expressed using delta notation (‰): δ = (Rsample/Rstandard - 1)×1,000, in which Rsample and Rstandard are the 15N:14N ratios of the sample and the standard, respectively. When the difference between the δ15N value of N2-fixing legumes and the average δ15N value of the reference plants in the subplot was significant (p≤0.05), the proportion of fixed N was estimated using the following formula (Shearer & Kohl, 1986SHEARER, G.; KOHL, D.H. N2-fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology, v.13, p.699-756, 1986. DOI: 10.1071/PP9860699.
https://doi.org/10.1071/PP9860699...
): %Ndfa = [(d15N(reference) - d15N(fixing))/d15N(reference) - B]×100, in which d15N(reference) is the average value of the d15N of the reference plants (A. tenella for cowpea and M. glaziovii for gliricidia), d15N(fixing) is the d15N value of each legume sample, and B is the d15N value for fixing plants cultivated in the absence of soil N. The B value for gliricidia was assumed to be -1.45‰ (Boddey et al., 2000BODDEY, R.M.; PEOPLES, M.B.; PALMER, B.; DART, P.J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems, v.57, p.235-270, 2000. DOI: 10.1023/A:1009890514844.
https://doi.org/10.1023/A:1009890514844...
), and for cowpea, -1.51‰ (Nguluu et al., 2002). The fixed amounts were obtained by multiplying the total N contents of the legume plants by the %Ndfa values of their samples.

The data on 15N and total N concentration, total and fixed N amounts of gliricidia were subjected to analysis of variance, and the averages were compared by the Tukey test, at 5% probability. Data on cowpea were analyzed using the T test, because there were only two treatments (with and without trees).

Results and Discussion

There was no effect of the production system (traditional or agroforestry) on the 15N concentrations of the herb reference species (A. tenella), but the reference tree species (M. glaziovii) had a lower signal value when intercropped with maize + cowpea (Table 1). This lower signal can indicate the occurrence of transference of some of the N fixed by cowpea to the associated trees, as reported by Kurppa et al. (2010)KURPPA, M.; LEBLANC, H.A.; NYGREN, P. Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15N labelled soil: ecological and experimental considerations., Agroforestry Systems v.80, p.223-239, 2010. DOI: 10.1007/s10457-010-9327-6.
https://doi.org/10.1007/s10457-010-9327-...
.

Table 1:
15N concentrations (δ15N) of tree and herb species - gliricidia (Gliricidia sepium) and Manihot glaziovii, and cowpea (Vigna unguiculata) and Alternanthera tenella, respectively - and nitrogen fixed from the atmosphere (%Ndfa) by legumes in agroforestry and traditional systems in the semiarid Northeast of Brazil(1).

Cowpea plants were isotopically depleted in both production systems in comparison to the reference plants, whereas gliricidia intercropped with maize + cowpea had a higher 15N signal value than M. glaziovii. These patterns allowed to estimate the proportions of N derived from symbiotic fixation (%Ndfa) by cowpea in both the traditional and the agroforestry systems; however, those fixed by gliricidia could only be estimated when the tree was intercropped with prickly-pear cactus and buffel grass, since there was no apparent fixation in gliricidia when associated with the maize + cowpea intercropping.

High 15N concentrations in reference species and concentrations several δ15N (‰) units lower in legume species allow robust estimates of symbiotic fixation (Högberg, 1997HÖGBERG, P. Tansley review No 95 - 15N natural abundance in soil-plant systems. New Phytologist, v.137, p.179-203, 1997. DOI: 10.1046/j.1469-8137.1997.00808.x.
https://doi.org/10.1046/j.1469-8137.1997...
). Similar conditions have been observed by other authors in native species of the semiarid area evaluated in the present study (Freitas et al., 2010FREITAS, A.D.S.; SAMPAIO, E.V.S.B.; SANTOS, C.E.R.S.; FERNANDES, A.R. Biological nitrogen fixation in legume trees of the Brazilian caatinga. Journal of Arid Environments, v.74, p.344-349, 2010. DOI: 10.1016/j.jaridenv.2009.09.018.
https://doi.org/10.1016/j.jaridenv.2009....
; Reis Junior et al., 2010REIS JUNIOR, F.B. dos; SIMON, M.F.; GROSS, E.; BODDEY, R.M.; ELLIOTT, G.N.; NETO, N.E.; LOUREIRO, M. de F.; QUEIROZ, L.P. de; SCOTTI, M.R.; CHEN, W.-M.; NORÉN, A.; RUBIO, M.C.; FARIA, S.M. de; BONTEMPS, C.; GOI, S.R.; YOUNG, J.P.W.; SPRENT, J.I.; JAMES, E.K.Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytologist, v.186, p.934-946, 2010. DOI: 10.1111/j.1469-8137.2010.03267.x.
https://doi.org/10.1111/j.1469-8137.2010...
). The 15N abundance of the tree species of the agroforestry system intercropped with maize + cowpea indicated no apparent fixation in gliricidia, as previously mentioned. The reason for this absence of fixation is not known and it is intriguing because gliricidia is considered a species with high N2-fixing capacity (Paulino et al., 2009 PAULINO, G.M.; ALVES, B.J.R.; BARROSO, D.G.; URQUIAGA, S.; ESPINDOLA, J.A.A. Fixação biológica e transferência de nitrogênio por leguminosas em pomar orgânico de mangueira e gravioleira. Pesquisa Agropecuária Brasileira, v.44, p.1598-1607, 2009. DOI: 10.1590/S0100-204X2009001200006.
https://doi.org/10.1590/S0100-204X200900...
; Kurppa et al., 2010KURPPA, M.; LEBLANC, H.A.; NYGREN, P. Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15N labelled soil: ecological and experimental considerations., Agroforestry Systems v.80, p.223-239, 2010. DOI: 10.1007/s10457-010-9327-6.
https://doi.org/10.1007/s10457-010-9327-...
), and the trees fixed abundantly when intercropped with buffel grass and prickly-pear cactus.

Absence of fixation in plants belonging to species that are potentially high fixers has also been reported in the same (Souza et al., 2012SOUZA, L.Q. de; FREITAS, A.D.S. de; SAMPAIO, E.V. de S.B.; MOURA, P.M.; MENEZES, R.S.C.How much nitrogen is fixed by biological symbiosis in tropical dry forest? 1. Trees and shrubs. Nutrient Cycling in Agroecosystems, v.94, p.171-179, 2012. DOI: 10.1007/s10705-012-9531-z.
https://doi.org/10.1007/s10705-012-9531-...
) and in other semiarid areas (Faye et al., 2007FAYE, A.; SALL, S.; CHOTTE, J.-L.; LESUEUR, D. Soil bio-functioning under Acacia nilotica var. tomentosa protected forest along the Senegal River. Nutrient Cycling in Agroecosystems, v.79, p.35-44, 2007. DOI: 10.1007/s10705-007-9093-7.
https://doi.org/10.1007/s10705-007-9093-...
). The legumes were not inoculated, and native rhizobia populations compatible with the legume species could be absent in the soil. This is unlikely to be the case in relation to cowpea, a promiscuous species (Jaramillo et al., 2013JARAMILLO, P.M.D.; GUIMARÃES, A.A.; FLORENTINO, L.A.; SILVA, K.B.; NÓBREGA, R.S.A.; MOREIRA, F.M. de S. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon. Scientia Agricola, v.70, p.397-404, 2013. ), which had high proportions of N derived from biological fixation when planted in the region without inoculation (Freitas et al., 2012FREITAS, A.D.S. de; SILVA, A.F.; SAMPAIO, E.V. de S.B. Yield and biological nitrogen fixation of cowpea varieties in the semi-arid region of Brazil. Biomass and Bioenergy, v.45, p.109-114, 2012. DOI: 10.1016/j.biombioe.2012.05.017.
https://doi.org/10.1016/j.biombioe.2012....
). Indeed, cowpea plants had more than 60% N derived from fixation, both in the traditional and agroforestry systems, a performance similar to those already reported for most of the local varieties tested by Freitas et al. (2012)FREITAS, A.D.S. de; SILVA, A.F.; SAMPAIO, E.V. de S.B. Yield and biological nitrogen fixation of cowpea varieties in the semi-arid region of Brazil. Biomass and Bioenergy, v.45, p.109-114, 2012. DOI: 10.1016/j.biombioe.2012.05.017.
https://doi.org/10.1016/j.biombioe.2012....
in single crop systems. Gliricidia nodulation is uncertain when it is planted outside its native region (Bala et al., 2003BALA, A.; MURPHY, P.; OSUNDE, A.O.; GILLER, K.E. Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Applied Soil Ecology, v.22, p.211-223, 2003. DOI: 10.1016/S0929-1393(02)00157-9.
https://doi.org/10.1016/S0929-1393(02)00...
). However, the hypothesis of absence of compatible native rhizobia populations does not hold, because of the fixation of gliricidia in the same experiment when intercropped with buffel grass and prickly-pear cactus. Another possibility would be an inhibition of fixation due to the accumulation of N by the gliricidia plants in previous years. The intercropping of gliricidia, maize, and cowpea produced the highest amounts of aboveground biomass in the previous years (Martins et al., 2013MARTINS, J.C.R.; MENEZES, R.S.C.; SAMPAIO, E.V.S.B.; SANTOS, A.F. dos; NAGAI, M.A. Produtividade de biomassa em sistemas agroflorestais e tradicionais no Cariri Paraibano. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.581-587, 2013. DOI: 10.1590/S1415-43662013000600002.
https://doi.org/10.1590/S1415-4366201300...
) and probably also the highest amounts of belowground biomass. The decomposition of this biomass could increase the availability of mineral N, and it has been shown that high N availability reduces N fixation (Schipanski et al., 2010SCHIPANSKI, M.E.; DRINKWATER, L.E.; RUSSELLE, M.P. Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant and Soil, v.329, p.379-397, 2010. DOI: 10.1007/s11104-009-0165-0.
https://doi.org/10.1007/s11104-009-0165-...
).

Nitrogen concentrations in the legume plants (Table 2) were high in all systems, close to 4%, and the contents of N reflected the predominant effect of biomass production (Martins et al., 2013MARTINS, J.C.R.; MENEZES, R.S.C.; SAMPAIO, E.V.S.B.; SANTOS, A.F. dos; NAGAI, M.A. Produtividade de biomassa em sistemas agroflorestais e tradicionais no Cariri Paraibano. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.581-587, 2013. DOI: 10.1590/S1415-43662013000600002.
https://doi.org/10.1590/S1415-4366201300...
). Quantification of N in the straw is important, although seldom done in the region (Sampaio et al., 2004SAMPAIO, E.V.S.B.; TIESSEN, H.; ANTONINO, A.C.D.; SALCEDO, I.H.Residual N and P fertilizer effect and fertilizer recovery on intercropped and sole-cropped corn and beans in semiarid northeast Brazil. Nutrient Cycling in Agroecosystems, v.70, p.1-11, 2004. DOI: 10.1023/B:FRES.0000049356.83427.93.
https://doi.org/10.1023/B:FRES.000004935...
), because of its use as forage or because it is incorporated into the soil where it constitutes a net input to soil organic matter.

Table 2:
Nitrogen concentration (%), total and fixed N (kg ha-1) in gliricidia (Gliricidia sepium) and cowpea (Vigna unguiculata) in agroforestry and traditional systems in the semiarid Northeast of Brazil(1).

The highest amount of N accumulation in gliricidia tips occurred when it was intercropped with maize + cowpea, in spite of the absence of fixation, corresponding to double the accumulation in the other associations. Considering the harvest index of 0.37, obtained by Freitas et al. (2012)FREITAS, A.D.S. de; SILVA, A.F.; SAMPAIO, E.V. de S.B. Yield and biological nitrogen fixation of cowpea varieties in the semi-arid region of Brazil. Biomass and Bioenergy, v.45, p.109-114, 2012. DOI: 10.1016/j.biombioe.2012.05.017.
https://doi.org/10.1016/j.biombioe.2012....
for local cowpea varieties in the Brazilian Northeast, the straw biomass (leaves, stems, and legume pods) was estimated at 61 kg ha-1 in the agroforestry system and at 698 kg ha-1 in the traditional system. Nitrogen accumulation in cowpea was about 13 times higher in the traditional system than in the agroforestry one, and the accumulation in this last system corresponds to a low cowpea biomass production (Table 1), probably due to the severe competition of the trees for water and nutrients. Considering the total N contents, the presence of trees provided N accumulation several times higher in the agroforestry system.

The amount fixed by cowpea (straw + grains) in the traditional system was close to 30 kg ha-1 N but was much reduced in the presence of trees, reaching only 2.7 kg ha-1 N in the agroforestry system (Table 2). The gliricidia trees did not contribute to the amount of symbiotically fixed N in the agroforestry system with maize + cowpea intercropping; however, in the associations with buffel grass and prickly-pear cactus, the tree leaves added about 40 kg ha-1 of fixed N, obtained from the atmosphere. These inputs may be translated into significant reductions in the cost of fertilizers to intercropped crops, since they correspond from 40 up to 100% of the amounts of N in buffel grass and prickly-pear cactus produced in the systems. The incorporation of N in the agroforestry system is particularly interesting in the association with buffel grass, since pasture fertilization is almost never practiced in the region and soils tend to be deficient in this nutrient (Sampaio et al., 2004SAMPAIO, E.V.S.B.; TIESSEN, H.; ANTONINO, A.C.D.; SALCEDO, I.H.Residual N and P fertilizer effect and fertilizer recovery on intercropped and sole-cropped corn and beans in semiarid northeast Brazil. Nutrient Cycling in Agroecosystems, v.70, p.1-11, 2004. DOI: 10.1023/B:FRES.0000049356.83427.93.
https://doi.org/10.1023/B:FRES.000004935...
). The low productivity of cowpea and the absence of fixation by gliricidia trees in the agroforestry system resulted in a very low addition of fixed N (>1 kg ha-1), indicating that more research on this system is needed before it can be recommended for the region.

Conclusions

  1. In the agroforestry system with buffel grass (Cenchrus ciliaris) and prickly-pear cactus (Opuntia ficus-indica) in the semiarid of the state of Paraíba, Brazil, gliricidia (Gliricidia sepium) plants symbiotically fix high proportions of N and contribute with higher N amounts than in the traditional system.

  2. In the agroforestry system with maize (Zea mays) + cowpea (Vigna unguiculata) intercropping, gliricidia plants do not fix nitrogen, and the N input is limited to the fixation by cowpea, which is lower than in the traditional system due to its lower biomass production.

Acknowledgments

To Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, process numbers 478138/2007-5 and 574893/2008-3) and to Inter-American Institute for Global Change Research (IAI, process number CRN2-014), for financial support; and to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), for scholarship granted.

  • ALVES, R.N.; MENEZES, R.S.C.; SALCEDO, I.H.; PEREIRA, W.E. Relação entre qualidade e liberação de N por plantas do semiárido usadas como adubo verde. Revista Brasileira de Engenharia Agrícola e Ambiental, v.15, p.1107-1114, 2011. DOI: 10.1590/S1415-43662011001100001.
    » https://doi.org/10.1590/S1415-43662011001100001
  • ANDREWS, M.; JAMES, E.K.; SPRENT, J.I.; BODDEY, R.M.; GROSS, E.; REIS JUNIOR, F.B. Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecology and Diversity, v.4, p.131-140, 2011. DOI: 10.1080/17550874.2011.644343.
    » https://doi.org/10.1080/17550874.2011.644343
  • ARORA, S.K.; DAS, B. Cowpea as potential crop for starch. Starke, v.28, p.158-160, 1976. DOI: 10.1002/star.19760280503.
    » https://doi.org/10.1002/star.19760280503
  • BALA, A.; MURPHY, P.; OSUNDE, A.O.; GILLER, K.E. Nodulation of tree legumes and the ecology of their native rhizobial populations in tropical soils. Applied Soil Ecology, v.22, p.211-223, 2003. DOI: 10.1016/S0929-1393(02)00157-9.
    » https://doi.org/10.1016/S0929-1393(02)00157-9
  • BERTALOT, M.J.A.; GUERRINI, I.A.; MENDOZA, E.; PINTO, M.S.V. Desempenho da cultura do milho (Zea mays L.) em sucessão com aveia-preta (Avena strigosa Schreb.) sob manejos agroflorestal e tradicional. Revista Árvore, v.34, p.597-608, 2010. DOI: 10.1590/S0100-67622010000400004.
    » https://doi.org/10.1590/S0100-67622010000400004
  • BODDEY, R.M.; PEOPLES, M.B.; PALMER, B.; DART, P.J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems, v.57, p.235-270, 2000. DOI: 10.1023/A:1009890514844.
    » https://doi.org/10.1023/A:1009890514844
  • FAYE, A.; SALL, S.; CHOTTE, J.-L.; LESUEUR, D. Soil bio-functioning under Acacia nilotica var. tomentosa protected forest along the Senegal River. Nutrient Cycling in Agroecosystems, v.79, p.35-44, 2007. DOI: 10.1007/s10705-007-9093-7.
    » https://doi.org/10.1007/s10705-007-9093-7
  • FOROUGHBAKHCH, R.; HERNÁNDEZ-PIÑERO, J.L.; ALVARADO-VÁZQUEZ, M.A.; CÉSPEDES-CABRIALES, E.; ROCHA-ESTRADA, A.; CÁRDENAS-AVILA, M.L. Leaf biomass determination on woody shrub species in semiarid zones. Agroforestry Systems, v.77, p.181-192, 2009. DOI: 10.1007/s10457-008-9194-6.
    » https://doi.org/10.1007/s10457-008-9194-6
  • FREITAS, A.D.S.; SAMPAIO, E.V.S.B.; SANTOS, C.E.R.S.; FERNANDES, A.R. Biological nitrogen fixation in legume trees of the Brazilian caatinga. Journal of Arid Environments, v.74, p.344-349, 2010. DOI: 10.1016/j.jaridenv.2009.09.018.
    » https://doi.org/10.1016/j.jaridenv.2009.09.018
  • FREITAS, A.D.S. de; SILVA, A.F.; SAMPAIO, E.V. de S.B. Yield and biological nitrogen fixation of cowpea varieties in the semi-arid region of Brazil. Biomass and Bioenergy, v.45, p.109-114, 2012. DOI: 10.1016/j.biombioe.2012.05.017.
    » https://doi.org/10.1016/j.biombioe.2012.05.017
  • HÖGBERG, P. Tansley review No 95 - 15N natural abundance in soil-plant systems. New Phytologist, v.137, p.179-203, 1997. DOI: 10.1046/j.1469-8137.1997.00808.x.
    » https://doi.org/10.1046/j.1469-8137.1997.00808.x
  • JARAMILLO, P.M.D.; GUIMARÃES, A.A.; FLORENTINO, L.A.; SILVA, K.B.; NÓBREGA, R.S.A.; MOREIRA, F.M. de S. Symbiotic nitrogen-fixing bacterial populations trapped from soils under agroforestry systems in the Western Amazon. Scientia Agricola, v.70, p.397-404, 2013.
  • KURPPA, M.; LEBLANC, H.A.; NYGREN, P. Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15N labelled soil: ecological and experimental considerations., Agroforestry Systems v.80, p.223-239, 2010. DOI: 10.1007/s10457-010-9327-6.
    » https://doi.org/10.1007/s10457-010-9327-6
  • LI, F.L.; BAO, W.K.; WU, N. Effects of water stress on growth, dry matter allocation and water-use efficiency of a leguminous species, Sophora davidii. Agroforestry Systems, v.77, p.193-201, 2009. DOI: 10.1007/s10457-008-9199-1.
    » https://doi.org/10.1007/s10457-008-9199-1
  • LIMA, S.S. de; LEITE, L.F.C.; OLIVEIRA, F. da C.; COSTA, D.B. da. Atributos químicos e estoques de carbono e nitrogênio em Argissolo Vermelho-Amarelo sob sistemas agroflorestais e agricultura de corte e queima no Norte do Piauí. Revista Árvore, v.35, p.51-60, 2011. DOI: 10.1590/S0100-67622011000100006.
    » https://doi.org/10.1590/S0100-67622011000100006
  • MAIA, S.M.F.; XAVIER, F.A.S.; OLIVEIRA, T.S.; MENDONÇA, E.S.; ARAÚJO FILHO, J.A. Organic carbon pools in a Luvisol under agroforestry and conventional farming systems in the semi-arid region of Ceará, Brazil. Agroforestry Systems, v.71, p.127-138, 2007. DOI: 10.1007/s10457-007-9063-8.
    » https://doi.org/10.1007/s10457-007-9063-8
  • MARTINS, J.C.R.; MENEZES, R.S.C.; SAMPAIO, E.V.S.B.; SANTOS, A.F. dos; NAGAI, M.A. Produtividade de biomassa em sistemas agroflorestais e tradicionais no Cariri Paraibano. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.581-587, 2013. DOI: 10.1590/S1415-43662013000600002.
    » https://doi.org/10.1590/S1415-43662013000600002
  • MUNROE, J.W.; ISAAC, M.E. N2-fixing trees and the transfer of fixed-N for sustainable agroforestry: a review. Agronomy for Sustainable Development, v.34, p.417-427, 2014. DOI: 10.1007/s13593-013-0190-5.
    » https://doi.org/10.1007/s13593-013-0190-5
  • NGULUU, S.N.; PROBERT, M.E.; MCCOWN, R.L.; MYERS, R.J.K.; WARING, S.A. Isotopic discrimination associated with symbiotic nitrogen fixation in stylo (Stylosanthes hamata L.) and cowpea (Vigna unguiculata L.). Nutrient Cycling in Agroecosystems, v.62, p.10-13, 2002. DOI: 10.1023/A:1015440906428.
    » https://doi.org/10.1023/A:1015440906428
  • PAULINO, G.M.; ALVES, B.J.R.; BARROSO, D.G.; URQUIAGA, S.; ESPINDOLA, J.A.A. Fixação biológica e transferência de nitrogênio por leguminosas em pomar orgânico de mangueira e gravioleira. Pesquisa Agropecuária Brasileira, v.44, p.1598-1607, 2009. DOI: 10.1590/S0100-204X2009001200006.
    » https://doi.org/10.1590/S0100-204X2009001200006
  • PÉREZ MARIN, A.M.;; MENEZES, R.S.C. SALCEDO, I.H.Produtividade de milho solteiro ou em aléias de gliricídia adubado com duas fontes orgânicas. Pesquisa Agropecuária Brasileira, v.42, p.669-677, 2007. DOI: 10.1590/S0100-204X2007000500009.
    » https://doi.org/10.1590/S0100-204X2007000500009
  • PÉREZ MARIN, A.M.; MENEZES, R.S.C.; SILVA, E.D.; SAMAPIO, E.V. de S.B. Efeito da Gliricidia sepium sobre nutrientes do solo, microclima e produtividade do milho em sistema agroflorestal no Agreste Paraibano. Revista Brasileira de Ciência do Solo, v.30, p.555-564, 2006. DOI: 10.1590/S0100-06832006000300015.
    » https://doi.org/10.1590/S0100-06832006000300015
  • RADDAD, El A.Y.; SALIH, A.A.; EL FADL, M.A.; KAARAKKA, V.; LUUKKANEN, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant and Soil, v.275, p.261-269, 2005. DOI: 10.1007/s11104-005-2152-4.
    » https://doi.org/10.1007/s11104-005-2152-4
  • REIS JUNIOR, F.B. dos; SIMON, M.F.; GROSS, E.; BODDEY, R.M.; ELLIOTT, G.N.; NETO, N.E.; LOUREIRO, M. de F.; QUEIROZ, L.P. de; SCOTTI, M.R.; CHEN, W.-M.; NORÉN, A.; RUBIO, M.C.; FARIA, S.M. de; BONTEMPS, C.; GOI, S.R.; YOUNG, J.P.W.; SPRENT, J.I.; JAMES, E.K.Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytologist, v.186, p.934-946, 2010. DOI: 10.1111/j.1469-8137.2010.03267.x.
    » https://doi.org/10.1111/j.1469-8137.2010.03267.x.
  • ROESCH, L.F.W.; QUADROS, P.D. de; CAMARGO, F.A.O.; TRIPLETT, E.W. Screening of diazotrophic bacteria Azopirillum spp. for nitrogen fixation and auxin production in multiple field sites in southern Brazil. World Journal of Microbiology and Biotechnology, v.23, p.1377-1383, 2007. DOI: 10.1007/s11274-007-9376-9.
    » https://doi.org/10.1007/s11274-007-9376-9
  • SAMPAIO, E.V.S.B.; TIESSEN, H.; ANTONINO, A.C.D.; SALCEDO, I.H.Residual N and P fertilizer effect and fertilizer recovery on intercropped and sole-cropped corn and beans in semiarid northeast Brazil. Nutrient Cycling in Agroecosystems, v.70, p.1-11, 2004. DOI: 10.1023/B:FRES.0000049356.83427.93.
    » https://doi.org/10.1023/B:FRES.0000049356.83427.93
  • SANTOS, H.G. dos; JACOMINE, P.K.T.; ANJOS, L.H.C. dos; OLIVEIRA, V.A. de; OLIVEIRA, J.B. de; COELHO, M.R.; LUMBRERAS, J.F.; CUNHA, T.J.F. (Ed.). Sistema brasileiro de classificação de solos 2.ed. Rio de Janeiro: Embrapa Solos, 2006. 306p.
  • SANTOS, A.F.; MENEZES, R.S.C.; FRAGA, V.S.; PÉREZ-MARIN, A.M. Efeito residual da adubação orgânica sobre a produtividade de milho em sistema agroflorestal. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, p.1267-1272, 2010. DOI: 10.1590/S1415-43662010001200003.
    » https://doi.org/10.1590/S1415-43662010001200003
  • SCHIPANSKI, M.E.; DRINKWATER, L.E.; RUSSELLE, M.P. Understanding the variability in soybean nitrogen fixation across agroecosystems. Plant and Soil, v.329, p.379-397, 2010. DOI: 10.1007/s11104-009-0165-0.
    » https://doi.org/10.1007/s11104-009-0165-0
  • SILVA, F.C. da. (Ed.). Manual de análises químicas de solos, plantas e fertilizantes 2.ed. Brasília: Embrapa Informação Tecnológica; Rio de Janeiro: Embrapa Solos, 2009. 627p.
  • SHEARER, G.; KOHL, D.H. N2-fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology, v.13, p.699-756, 1986. DOI: 10.1071/PP9860699.
    » https://doi.org/10.1071/PP9860699
  • SOUSA, L.F.; MAURÍCIO, R.M.; MOREIRA, G.R.; GONÇALVES, L.C.; BORGES, I.; PEREIRA, L.G.R. Nutritional evaluation of ''Braquiarão'' grass in association with ''Aroeira'' trees in a silvopastoral system. Agroforestry Systems, v.79, p.189-199, 2010. DOI: 10.1007/s10457-010-9297-8.
    » https://doi.org/10.1007/s10457-010-9297-8
  • SOUZA, L.Q. de; FREITAS, A.D.S. de; SAMPAIO, E.V. de S.B.; MOURA, P.M.; MENEZES, R.S.C.How much nitrogen is fixed by biological symbiosis in tropical dry forest? 1. Trees and shrubs. Nutrient Cycling in Agroecosystems, v.94, p.171-179, 2012. DOI: 10.1007/s10705-012-9531-z.
    » https://doi.org/10.1007/s10705-012-9531-z.
  • STAHL, L.; NYBERG, G.; HÖGBERG, P.; BURESH, R.J. Effects of planted tree fallows on soil nitrogen dynamics, above-ground and root biomass, N2-fixation and subsequent maize crop productivity in Kenya. Plant and Soil, v.243, p.103-117, 2002. DOI: 10.1023/A:1019937408919.
    » https://doi.org/10.1023/A:1019937408919
  • WICK, B.; TIESSEN, H.Organic matter turnover in light fraction and whole soil under silvopastoral land use in semiarid Northeast Brazil. Rangeland Ecology and Management, v.61, p.275-283, 2008. DOI: 10.2111/07-038.1.
    » https://doi.org/10.2111/07-038.1

Publication Dates

  • Publication in this collection
    Feb 2015

History

  • Received
    04 July 2014
  • Accepted
    20 Jan 2015
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br