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Abstract – The objective of this work was to evaluate the effects of genomic information on the genetic 
evaluation of hip height in Brahman cattle using different matrices built from genomic and pedigree data. 
Hip height measurements from 1,695 animals, genotyped with high-density SNP chip or imputed from  
50 K high-density SNP chip, were used. The numerator relationship matrix (NRM) was compared with the 
H matrix, which incorporated the NRM and genomic relationship (G) matrix simultaneously. The genotypes 
were used to estimate three versions of G: observed allele frequency (HGOF), average minor allele frequency 
(HGMF), and frequency of 0.5 for all markers (HG50). For matrix comparisons, animal data were either used 
in full or divided into calibration (80% older animals) and validation (20% younger animals) datasets. The 
accuracy values for the NRM, HGOF, and HG50 were 0.776, 0.813, and 0.594, respectively. The NRM and HGOF 
showed similar minor variances for diagonal and off-diagonal elements, as well as for estimated breeding 
values. The use of genomic information resulted in relationship estimates similar to those obtained based 
on pedigree; however, HGOF is the best option for estimating the genomic relationship matrix and results in 
a higher prediction accuracy. The ranking of the top 20% animals was very similar for all matrices, but the 
ranking within them varies depending on the method used.

Index terms: Bos indicus, beef cattle, genomics, rare alleles.

Acurácia da predição genômica para altura do quadril em bovinos 
Brahman com uso de diferentes matrizes de parentesco

Resumo – O objetivo deste trabalho foi avaliar os efeitos da informação genômica na avaliação genética 
para altura do quadril em bovinos da raça Brahman, por meio de diferentes matrizes construídas com dados 
genômicos e de pedigree. Utilizaram-se medidas de altura do quadril de 1.695 animais, genotipados com SNP 
chip de alta densidade ou imputados do 50 K SNP chip de alta densidade. A matriz de pedigree “numerator 
relationship matrix” (NRM) foi comparada à matriz H, a qual incorporou as matrizes NRM e de parentesco 
genômico (G) simultaneamente. Os genótipos foram utilizados para estimar três versões de G: frequência 
observada dos alelos (HGOF), média da menor frequência alélica (HGMF) e frequência de 0,5 para todos os 
marcadores (HG50). Para a comparação das matrizes, foram utilizadas informações completas ou divididas 
em conjuntos de dados de calibração (80% dos animais mais velhos) e de validação (20% dos mais jovens). 
Os valores de acurácia para NRM, HGOF e HG50 foram 0,776, 0,813 e 0,594, respectivamente. NRM e HGOF 

foram semelhantes, com menores variâncias para os elementos da diagonal e fora da diagonal, bem como 
para os valores genéticos estimados. O uso de informações genômicas resultou em estimativas de parentesco 
semelhantes às obtidas com base em pedigree; entretanto, HGOF é a melhor opção para estimar a matriz de 
parentesco genômico e resulta em maiores acurácias de predição. O ranking dos animais top 20% foi muito 
semelhante para as matrizes, mas a classificação dentro destas varia dependendo do método.

Termos para indexação: Bos indicus, gado de corte, genômica, alelos raros.
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Introduction

Traditionally, animal selection studies target traits 
of interest and use the phenotype of individuals 
and information of kinship derived from pedigree 
records, which is the basis for building the numerator 
relationship matrix (NRM) (Henderson, 1975). This 
animal breeding and selection method is efficient, but 
the process can be slow, especially for traits measured 
only in one sex, such as milk production; measured 
after the slaughter of animals, including meat quality; 
or measured late in life, as, for example, longevity 
(Goddard & Hayes, 2009) and hip height. In breeding 
programs focused on economically important traits, 
researchers seek to identify genes, genetic markers 
associated to these traits, or methodologies to enhance 
or accelerate genomic selection. The application of 
a single-step genome-wide association approach in 
Brahman cattle has allowed identifying multiple 
regions scattered across the genome that influence 
weights at different ages. The most interesting 
regions found were connected to previously identified 
quantitative trait loci (QTLs) and to genes influencing 
growth and weight traits (Martínez et al., 2017). 

The advancement of technology and the opportunity 
of genotyping a high number of individuals for 
numerous alleles make it possible to use information on 
alleles that can be shared through common ancestors in 
the pedigree, including ancestors that may be missing 
from the pedigree or not genotyped. This makes the 
use of a genomic relationship matrix (G) feasible 
(VanRaden, 2008), allowing to increase the accuracy 
of predicted breeding values in genetic evaluations. 
Genomic selection using the G matrix can increase 
the rate of genetic improvement and reduce the cost of 
progeny testing. This has been observed in the dairy 
system, although some practical barriers are still faced 
in its implementation in the beef sector, primarily 
due to the lack of short-term return on investment for 
most producers and to incremental and relatively small 
genetic gains (Rolf et al., 2014).

Breeding values are obtained, traditionally, using 
mixed model equations that adopt the NRM based 
on pedigree information. In one form of genomic 
selection, the NRM or the G matrix represent the 
additive genetic matrix. However, in most cases, the 
G matrix includes genomic information of fewer 
animals. Therefore, Legarra et al. (2009) and Misztal 
et al. (2009) proposed a method that integrates the 

NRM and G matrix in a single H matrix, enabling 
genetic evaluation based on the best linear unbiased 
prediction (Blup), which was successfully applied to 
dairy cattle (Aguilar et al., 2010). Forni et al. (2011) 
used different strategies to create the G matrix and 
subsequently integrate it with the NRM by varying the 
allele frequencies of a population of pigs; the authors 
concluded that building the G matrix this way did 
not affect the estimated breeding values and variance 
components of the studied population. Brito et al. 
(2017) also evaluated alternative genomic relationship 
matrices, validation designs, and genomic prediction 
scenarios in a sheep program, and found that the G 
matrix, using the observed allele frequency, presented 
the highest average accuracies and is recommended 
for genomic predictions. These results show the 
importance of assessing the contribution of genomic 
information in genetic evaluation processes in different 
species and different population structures.

The objective of this work was to evaluate the effects 
of genomic information on the genetic evaluation of 
hip height in Brahman cattle using different matrices 
built from genomic and pedigree data.

Materials and Methods

The investigated population of Brahman cattle has 
90% Bos indicus genetics (Bolormaa et al., 2013b). 
Hip height (HH, cm) measurements taken from 1,695 
Brahman animals, between 15 and 18 months of age, 
were used in the present study. These cattle represent 
a subset of the extensively phenotyped population bred 
by the Cooperative Research Centre for Beef Genetic 
Technologies (Beef CRC, Armidale, Australia) and 
described previously in detail (Barwick et al., 2009; 
Fortes et al., 2011; Hawken et al., 2012). All individuals 
in this population have genotype information for 777,000 
single nucleotide polymorphisms (SNPs), and these 
high-density SNP data were genotyped or imputed.

All these animals were genotyped using three 
different SNP chips (Illumina, Inc., San Diego, 
CA, USA): the BovineSNP50 beadchip, version 1, 
to genotype females; version 2, to genotype males, 
which, combined, are the 1,695 phenotyped animals; 
and the high-density SNP chip to genotype 917 
samples from sires and selected representative animals 
of the Beef CRC populations, which were genotyped 
with the high-density SNP chip to allow for genotype 
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imputation using the Beagle program (Browning & 
Browning, 2011) with average of imputation accuracy 
of 0.90. For further detail on genotyping, imputation, 
and quality control see Bolormaa et al. (2013a). 

In the quality control analysis, the SNP was 
excluded if the minor allele frequency was lower than 
0.05 or the correlation between the SNPs was higher 
than 0.95. After quality control procedures, 569,620 
SNPs remained to estimate the genomic relationship 
coefficients in the G matrices.

The pedigree information used to build the NRM was 
composed of 3,030 animals, including the genotyped 
ones, corresponding to 55.94% of the total population. 
Estimated breeding values for HH were calculated 
using the animal model with the fixed effects of sex, 
cohort (interaction between year of birth and farm), 
and age at HH measurement fitted as a covariate. To 
obtain the estimated breeding values, the NRM used 
a traditional method based on pedigree information. 

The combined pedigree-genomic relationship 
matrix, denominated H, was calculated using 
both pedigree and genomic information according 
to Aguilar et al. (2010). The G matrix was 
obtained using the method of VanRaden (2008):

G = −( ) −( ) −( )
=
∑M P M P p pj j
j

m

' ',2 1
1

where M is the matrix that specifies which marker 
alleles each individual inherited with m columns 
(m is the total number of markers) and n rows (n is 
the total number of genotyped individuals); and P is 
the matrix with the frequency of the second allele 
(pj), expressed as 2pj. The M matrix was filled by 0 
if first homozygous, 1 if heterozygous, or 2 if second 
homozygous. The frequencies used to obtain P were 
those described by Forni et al. (2011): observed allele 
frequency of each SNP (GOF), average minor allele 
frequency (GMF), and frequency of 0.5 for all markers 
(G50). To avoid problems with inversion in the mixed 
model equations, the method proposed by VanRaden 
(2008), with weighting factor of 0.95 between the G 
matrix and the NRM, was used (Aguilar et al., 2010).

After obtaining the weighted G matrix (Gw), the 
inverse of H was calculated using the following equation 
(Aguilar et al., 2010; Christensen & Lund, 2010): 
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where H-1 is the inverse of the pedigree-genomic 
relationship matrix; NRM-1 is the inverse of the 
pedigree-based numerator relationship matrix; Gw

-1 is 
the inverse of the genomic matrix; and NRM22

-1 is the 
inverse of the pedigree-based numerator relationship 
matrix of the genotyped individuals. Considering the 
variations in the allele frequencies used to build the 
G matrices, three versions of the H matrix were also 
built: HGOF, HGMF, and HG50.

To compare the accuracies of the genomic estimated 
breeding values (GEBVs) obtained with each H matrix, 
the mean accuracy was estimated using the prediction 
error variance (PEV), calculated by: 

r
PEV

i
j

ai

= −1 2σ

where ri is the accuracy of the mean additive value for 
each matrix i; αa

2 is the additive variance estimated for 
each matrix i; and PEVj is the prediction error variance 
for each animal j estimated by matrix i.

To obtain the inversions of these matrices, as well 
as the estimates of the variance components, genetic 
parameters, and the PEV, the restricted maximum 
likelihood (REML) methods in the Wombat software 
were used (Meyer, 2007). The mean accuracies of 
the GEBVs based on 1,695 GEBVs were calculated 
using phenotypes of all the animals genotyped for 
the prediction (GEN) and 80% of the phenotypic 
information, i.e., the subset of data corresponding to 
the oldest animals (old) in the dataset.

To compare the accuracy of prediction, the old subset 
(n = 1.356 animals) was used to predict the GEBVs of 
20% of the youngest animals (young subset, n = 339 
animals); this accuracy was estimated by omitting 
the phenotypes of the younger animals from the 
prediction. This way, an alternative accuracy metric, 
denominated prediction accuracy (r), was calculated, 
based on the correlations between the adjusted 
phenotype (Phenadj) and the GEBVs, as follows:

r cov Phen GEBV hadj j i= ( ), ,2

where hi
2 is the heritability estimated for HH for each 

matrix i (HGOF, HGMF, and HG50). The correlation between 
the GEBVs estimated with and without including the 
phenotypes of young animals in the prediction was 
also determined.
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The three versions of the H matrix were compared 
considering the ranking of the animals based on 
the estimated GEBVs. To compare the rankings, 
animals that had higher GEBVs for HH, i.e., top 
20% of the population (top 20%, n = 339), were 
investigated. The Spearman rank coefficient (ρ) 
was used to compare the top 20%, defined as the 
Pearson correlation coefficient between ranked 
variables (Yitzhaki & Schechtman, 2013), using the 
alternative formula proposed by Conover (1999):

ρ = −
∑
−( )

1 6
1

2

2

d
n n

i ,

where di
2 is the difference between the ranks of each 

observation for two variables and n is the number 
of observations. The standard Pearson correlation 
between rankings of animals in different matrices was 
also estimated.

Results and Discussion

Minor variances and both diagonal and off-diagonal 
elements were obtained for HGOF, HGMF, HG50, and 
the NRM (Table 1). For the diagonal elements, the 
NRM showed lower variance, probably because it is 
incomplete and the inbreeding value of the studied 
population is very low, indicating that there is a 
weak relationship between the evaluated families. 
Furthermore, the NRM calculates the probability 
of kinship, decreasing the variances of elements. 

However, when genomic information was used, these 
families did share common alleles and the estimated 
relationship coefficients were different. These results 
were expected because genomic relationships reflect 
a relationship that represents the actual gene fraction 
shared between individuals (Choi et al., 2017). The 
HGMF and HG50 matrices used the same allele frequency 
for all markers: 0.27 average minor allele frequency 
or 0.50, respectively. Observed allele frequencies were 
distant from 0.5 for many markers (Figure 1), which 
may be an effect of the SNP chip development, based 
mostly on Bos taurus and not on B. indicus data (Gibbs 
et al., 2009). These frequency distributions, however, 
were not reported by Choi et al. (2017), who also 
studied B. taurus cattle.

The data used to compare variance components were 
either the full phenotype dataset of genotyped animals 
(GEN, n=1,695) or a subset that included 80% of the 
oldest animals (old, n=1,356). In both GEN and old 
datasets, the variance components were similar when 
the matrices estimated with the same methodology 
were compared (i.e., the NRM of GEN was similar 
to that of the old dataset) (Table 2). However, when 
matrices estimated with different methodologies were 
compared, the variance components were different. 

Table 1. Statistics of the relationship coefficients estimated 
using the full pedigree and genomic dataset of the genotyped 
Brahman cattle(1).
Matrix Mean Minimum Maximum Variance

Diagonal elements
NRM 1.0003 1.0000 1.1250 3.7x10-5

HGOF 1.0281 0.8971 1.2588 3.4x10-3

HGMF 2.8420 2.5718 3.0816 3.6x10-3

HG50 1.3576 1.1979 1.5244 1.54x10-3

Off-diagonal elements
NRM 0.0086 0.0000 0.6250 1.4x10-3

HGOF -0.0006 -0.1062 0.6614 1.9x10-3

HGMF 1.9121 1.5498 2.5818 5.7x10-3

HG50 0.6776 0.4453 1.1599 2.6x10-3

(1)NRM, pedigree-based numerator relationship matrix; HGOF, genomic 
relationship matrix with observed allele frequency; HGMF, genomic rela-
tionship matrix with average minor allele frequency; and HG50, genomic 
relationship matrix with frequency of 0.5 for all markers. 

Figure 1. Distribution of observed frequencies for the 
second allele of the genotyped Brahman cattle.
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These differences between matrices are in contrast 
with the data presented by Forni et al. (2011), who 
detected that the additive variance was higher when 
the difference between the average diagonal and 
off‑diagonal elements of the matrix was lower. In 
the present study, the differences in the diagonal and 
off‑diagonal elements estimated with the NRM, HGOF, 
and HGMF were not significant (0.99, 1.03, and 0.93 
respectively), but the additive variances differed. Forni 
et al. (2011) found this relationship was true only for 
HG50, which, in the present work, showed a difference 
of 0.68 between coefficients.

The variance components obtained using HGOF 
and the NRM were quite similar in the present study, 
which is consistent with the findings of Riley et al. 
(2007). Variance components in HGMF and HG50 were 
less similar to those in the NRM, compared with HGOF, 
and may have been inflated with the use of fixed allele 
frequencies. Several researchers related problems 

with inflated estimates of variance components due to 
false kinship coefficients (Aguilar et al., 2010; Forni et 
al., 2011); in this case, in HGMF and HG50 matrices that 
showed higher values than the NRM or HGOF.

When observed allele frequencies are distant 
from 0.5, “rare” alleles have greater influence on the 
relationship estimated, and this may be the underlying 
reason why HG50 and HGMF were approximated to each 
other and distanced from the NRM and HGOF (Figure 1). 
This difference between the NRM and HG50 or HGMF 
was not verified by Forni et al. (2011), who tested 
the same variations of H in a population of pigs. The 
average minor allele frequency obtained in the studied 
population was similar to that reported by Forni et 
al. (2011): 0.24 and 0.27, respectively. However, the 
distribution of allele frequencies was different: while 
in the pig population allele frequencies were all close 
to 0.5, in the Brahman cattle population many markers 
had allele frequencies distant from 0.5. The presence 
of these “rare” markers may reflect the fact that the 
families in this population can be distinct. Estimates 
of genetic covariance in G matrices are influenced by 
allele frequencies in the population. Ideally, G matrices 
should be estimated using the allele frequencies from 
the unselected base population (Forni et al., 2011), 
which is not available. In a real situation, it is practically 
impossible to obtain this information, and the three 
methods tested alternative solutions. Relationships 
using the observed allele frequencies can provide more 
accurate predictions of genetic merit than those that 
use only pedigree-derived relationships in the NRM 
methodology. It is possible that this increased accuracy 
was a result of more precise estimates of genetic 
covariance between relatives, as suggested by Clark et 
al. (2012).

On average, the choice of a relationship matrix did 
not influence the GEBVs, as correlations were high 
(Figure 2). However, when validation phenotypes were 
omitted (20% young omitted), the GEBVs estimated 
for the youngest animals in the population varied and 
correlations between the GEBVs from the H matrices 
and the NRM were lower. Choi et al. (2017) also found 
lower correlations between pedigree-based estimated 
breeding values and the GEBVs when omitting 
phenotype values for intramuscular fat and marbling 
scores in Hanwoo cattle. 

The GEBVs predicted for the GEN and old datasets 
in all matrices did not differ significantly (Table 3). 

Table 2. Additive and residual variances and heritability 
estimates using pedigree and genomic matrices built with 
the full dataset of the genotyped Brahman animals (GEN) 
or with 80% (old animals) of the phenotypic information(1).

Matrix GEN (n=1,695) Old (n=1,356)
Additive variance

NRM 7.96(±1.10) 7.91(±1.32)
HGOF 8.52(±0.94) 8.57(±1.12)
HGMF 9.40(±1.04) 9.45(±1.24)
HG50 12.71(±1.40) 12.80(±1.67)

Residual variance
NRM 6.47(±0.76) 6.96(±0.95)
HGOF 5.84(±0.58) 6.26(±0.72)
HGMF 5.82(±0.58) 6.24(±0.72)
HG50 5.76(±0.58) 6.17(±0.73)

Heritability
NRM 0.55(±0.06) 0.53(±0.07)
HGOF 0.59(±0.05) 0.58(±0.06)
HGMF 0.62(±0.05) 0.60(±0.06)
HG50 0.69(±0.04) 0.67(±0.04)

Average prediction error variance for each animal
NRM 3.168 3.338
HGOF 2.890 3.100
HGMF 16.200 16.657
HG50 8.221 8.207

(1)NRM, pedigree-based numerator relationship matrix; HGOF,  
genomic relationship matrix with observed allele frequency; HGMF, genomic  
relationship matrix with average minor allele frequency; and HG50,  
genomic relationship matrix with frequency of 0.5 for all markers.
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Figure 2. Correlations between estimated breeding values obtained by the pedigree-based numerator relationship matrix 
(NRM) and the genomic relationship coefficients with observed allele frequency (HGOF), average minor allele frequency 
(HGMF), and frequency of 0.5 for all markers (HG50), using phenotypes from all 1,695 genotyped Brahman animals (A) and 
omitting 20% of the phenotypic information of 339 of the top 20% animals for validation purposes (B).
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The accuracy of the GEBVs when young phenotypes 
were omitted decreased, which is in alignment with 
Forni et al. (2011) and Choi et al. (2017). This was 
expected because the G matrices include more related 
animals. For the young dataset, the accuracy was lower, 
approximately 8%, when using the NRM rather than the 
inclusion of genomic information. A closer relationship 
between the reference and validation set showed a 
higher accuracy of the GEBV (Choi et al., 2017). In 
the present study, the average accuracy reflects more 
variance component estimates than predictive ability; 
therefore, HGOF provided a better ratePEV thi aiσ2  than 
the other matrices. The average accuracy for HGOF the 
highest in all population scenarios. The correlations 
shown in the young scenario for genomic matrices 
were higher than those in the NRM.

Besides the advantage of HGOF presenting variance 
components similar to those of the NRM, it also 
resulted in higher accuracies for the predicted GEBVs, 
which may be an artefact of inflated additive variance 
as observed previously. It is possible that HGOF was 
the best option in the present study for two reasons: 
the presence of extreme allele frequencies observed 
for many markers and the fact that the validation 
population was not independent from the calibration 
dataset. As the young animals used for validation are 
related to the old animals (calibration), it is expected 
that the observed allele frequencies be similar in both 
subgroups of this Brahman population. In practice, 
animals that are related to the reference population will 
benefit the most from genomic selection, with higher 

chances of receiving accurate GEBVs. Mehrban et al. 
(2017) evaluated methods for genomic prediction in 
Hanwoo cattle and found low accuracies between the 
training and validation groups. These lower accuracies 
are mainly attributed to the small training population 
size and to the large effective population size.

Another difference between matrices is related to 
the ranking of individual animals. With the selection 
of 20% of the genotyped animals with higher GEBVs 
(top 20%, n = 339), 87% of them were the same 
(common animals) when the NRM was compared with 
any of the H matrices (Table 4). Between different H 
matrices, 99% of the top 20% animals were the same 
(Figure 3). However, the ranking of these top 20% 
animals was different between matrices, impacting 
the correlations between matrices (Figure 2 B). In 
the comparisons between the H matrices, almost all 
top 20% animals were the same and the Spearman 
coefficient between ranking positions was higher. In 
the comparisons between the NRM and H matrix, 
the correlations between animal rankings were also 
similar, around 0.83.

The top 20% animals were a similar group 
irrespective of which H matrix or NRM formulation 
was used. However, within this top 20%, the 
individual rankings of animals varied. Variations in 
the ranking of animals may be a problematic issue for 
the practical application of genomic selection because 
of commercial implications. In some countries, bull 
ranking is used as a marketing tool, and the bull ranked 
as number 1 could sell more doses of semen or achieve 
a higher price on an auction and sire a higher number 

Table 3. Average accuracies of estimated breeding values 
(EBVs), as well as correlations between EBVs and adjusted 
phenotypes of the genotyped Brahman cattle(1).
Matrix Accuracy Correlation

GEN(2) Old(3) Young(4) GEN Old Young
NRM 0.776 0.699 0.457 0.969 0.900 0.479
HGOF 0.813 0.746 0.536 0.938 0.868 0.613
HGMF - - - 0.916 0.853 0.612
HG50 0.594 0.598 0.594 0.870 0.882 1.000

(1)NRM, pedigree-based numerator relationship matrix; HGOF, genomic 
relationship matrix with observed allele frequency; HGMF, genomic rela-
tionship matrix with average minor allele frequency; and HG50, genomic 
relationship matrix with frequency of 0.5 for all markers. (2)All genotyped 
animals (n=1,695). (2)Eighty percent of the population represented by the 
oldest animals (n=1,356). (3)Twenty percent of the population represented 
by the youngest animals that had their phenotypes omitted for validation 
(n=339).

Table 4. Pearson correlations between estimated breeding 
values above the diagonal and Spearman coefficients 
calculated between the rank position of each animal below 
the diagonal for Brahman animals (top 20%, n=339) in 
common between the different matrices and that show the 
highest genomic estimated breeding values(1).

NRM HGOF HGMF HG50

NRM - 296 (0.996) 296 (0.996) 296 (0.996)
HGOF 0.834 - 339 (0.999) 337 (0.999)
HGMF 0.836 0.999 - 337 (0.999)
HG50 0.837 0.999 0.999 -

(1)NRM, pedigree-based numerator relationship matrix; HGOF, genomic 
relationship matrix with observed allele frequency; HGMF, genomic rela-
tionship matrix with average minor allele frequency; and HG50, genomic 
relationship matrix with frequency of 0.5 for all markers. 

http://dx.doi.org/10.1590/S0100-204X2018000600008


724 M.M. Farah et al.

Pesq. agropec. bras., Brasília, v.53, n.6, p.717-726, June 2018 
DOI: 10.1590/S0100-204X2018000600008 

Figure 3. Correlations estimated with different relationship matrices for ranking between: A, all 1,695 genotyped Brahman 
animals; and B, 339 top 20% animals. Rankings were based on the estimated breeding values of all the 1,695 animals 
genotyped. NRM, pedigree-based numerator relationship matrix; HGOF, genomic relationship matrix with observed allele 
frequency; HGMF, genomic relationship matrix with average minor allele frequency; and HG50, genomic relationship matrix 
with frequency of 0.5 for all markers.
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of offspring in the following generation, for example. 
Evidently, if a different bull is ranked using different 
methods (NRM, HGOF, HGMF, and HG50), there is room 
for discussion and conflict of interest.

Conclusions

1. The use of the observed allele frequency (HGOF) is 
the best option for estimating the genomic relationship 
matrix and results in a higher accuracy of predictions. 

2. The ranking of the top 20% animals is very 
similar for all matrices, but ranking within these varies 
depending on the method used.
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