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We herein present an experiment where the concentrations of tartrazine, sunset yellow and amaranth in samples containing these 
three food dyes are determined by system of equations (SE) and classical least squares (CLS) multivariate calibration methods using 
light absorption data. Firstly, concentrations are obtained by means of the well-known SE method, that is, by solving a set of three 
linear equations in which the Beer-Lambert’s proportionality coefficients are obtained from analytical curves. Then, it is shown that 
the CLS method is a natural extension to SE, with an arbitrarily large number of equations. Nevertheless, within the CLS method, 
the unknown coefficients are found using mixtures with known concentrations of each dye. In order to introduce the students to the 
basics of algorithms and numerical computations, data treatment is performed in a command-line fashion using a freely available 
software. Advantages of multivariate calibration models over univariate ones are made clear, and the performance of the CLS and 
SE methods is compared based on the root-mean-square error. 
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INTRODUCTION

In the last few years, Chemometrics has become common in the 
majority of undergraduate and graduate chemistry curricula. One 
of the reasons for this is the ever-increasing trend in both industry 
and academic research applications. According to the International 
Chemometrics Society (ICS), Chemometrics is a chemical discipline 
that uses mathematical and statistical methods to design or select 
optimal measurement procedures and experiments, and to provide 
maximum chemical information by analyzing chemical data.1 
Principal component analysis (PCA) and partial least squares 
regression (PLSR) are probably the most widespread chemometric 
methods worldwide, with several laboratory experiments already 
reported.2-9 Examples of their use include classification of elements 
within the periodic table,2 classification of vegetable oils by infrared 
spectroscopy (FTIR)3 and nuclear magnetic resonance (1H NMR),4 
quantification of paracetamol in commercial tablets using near-
infrared (NIR) spectroscopy,5 quantification of biodiesel content in 
blends of biodiesel and conventional diesel by gas chromatography 
mass spectrometry (GC-MS),6 and others.7-9

Another important chemometric method that has analytical 
applications,10-12 although little explored in undergraduate and 
graduate chemistry laboratories, is the classical least squares (CLS) 
regression.13 The CLS approach is grounded on the assumption that 
in a measurement, a system’s response (e.g. absorbance) is given 
by summing the individual response of each active constituent (e.g. 
absorbing specie). It is further assumed that the individual response 
of every (active) constituent is proportional to its amount in the 
sample. Therefore, there is a linear relation between measured 
response and the concentration of each sample’s constituent. In the 
experiment proposed herein, the concentrations of three food dyes 
(tartrazine, sunset yellow and amaranth) in aqueous solutions are 
spectrophotometrically determined using the Beer–Lambert law. 
Under the assumption that the linear relationship between absorbance 
and concentration holds over a wide range of light wavelengths (e.g. 
visible region), the CLS model is built by minimizing the sum of 

squared differences between predicted and measured absorbances 
for that set of wavelengths. Such minimization results in a set of 
proportionality coefficients (i.e. molar absorptivities) giving the least 
value for those squared differences. Those coefficients are obtained 
using a group of reference samples (calibration set), where the 
concentration of each constituent is known. Once the CLS coefficients 
are determined, the model can be employed to predict the amount 
of each constituent in a sample from its measured absorbances. 
Because CLS is a full spectrum method, it can provide improvement 
in precision over methods that are restricted to a small number of 
wavelengths, such as the well known system of equations (SE) 
method, considered below.

For multi-constituent systems displaying the aforementioned 
relations of additivity and linearity between the observed response 
and concentrations, the amount of each specie in a sample can be 
determined by solving a minimum set of linear equations, with the 
number of variables being equal to the number of equations. That 
approach is usually termed the SE method. The SE matrix equation is 
identical to that of CLS (see Supporting Information for more details). 
Nevertheless, they differ in the way equations are solved. Within SE 
method, the proportionality coefficients are obtained from analytical 
curves of the pure constituents.

Since the 1960s, several laboratory practices using the SE method 
have been proposed.14-17 Most of them involve 2-constituent systems 
whose constituents are readily determined by that method, although 
laboratory experiments for 3-constituent systems were reported as 
well. Instances of 3- constituent analysis are the experiment proposed 
by Harker III and colleagues,14 for simultaneous spectrophotometric 
determination of the isomeric cresol (o-, m-, and p-cresol), and that 
by Sigmann and Wheeler,15 for quantification of FD&C Yellow 5, 
FD&C Red 40 and FD&C Blue 1 color additives present in powdered 
drink mixes. Conversely, a limited number of laboratory experiments 
using CLS can be found in the literature and most of which are 
focused on comparing its performance to other multivariate regression 
methods.18,19 Possibly, this is due to the advantages of the inverse 
models over the simplest direct CLS multivariate model. In the direct 
models, the signal is considered to be directly proportional to the 
concentration, as dictated, for example, by Lambert–Beer’s law in 
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classical UV-visible spectroscopy. On the other hand, in the inverse 
models, the concentration is considered to be directly proportional to 
the signal.13 Thus, classical models assume that the major source of 
errors are in the response measurements, whereas a more appropriate 
assumption is that errors are primarily related to the measurement of 
concentration. In general, the greatest source of errors is associated 
to sample preparation, such as dilution, weighing and extraction 
procedures, rather than the instrumental reproducibility.20 However, 
CLS has a high pedagogical value due its simplicity, thus giving 
the students grounds to understand more advanced multivariate 
calibration methods. For example, the multivariate curve resolution-
alternating least squares (MCR-ALS) method, which has been largely 
applied in the last years,21 has a common theoretical basis with CLS.10 

Thus, we present a laboratory experiment for Analytical 
Chemistry courses to introduce Chemometrics to undergraduate 
students using their previous knowledge of the Beer–Lambert law. 
After recording the absorption spectra of aqueous solutions containing 
tartrazine, sunset yellow and amaranth, students initially find the 
concentration of each food dye through the SE method. Next, by 
expanding the number of variables from three to an arbitrarily 
large number of wavelengths (comprised within the visible region), 
the CLS method is employed to find the unknown concentrations. 
All data analysis is performed step-by-step by the students using a 
freely available software for numerical computations. An important 
limitation of CLS – namely, the existence of unknown background 
constituents – is also illustrated here. 

EXPERIMENTAL 

The experiment is primarily aimed at upper-level undergraduate 
students of chemistry courses; however, it is also amenable to other 
courses where students have some knowledge of linear algebra and 
analytical chemistry. We suggest two lab sessions of 3-4 hours to 
perform the experiment. Students may be split into small groups 
of 2‑3  members. During the first session, each group prepares 
solutions of the standard curves and records their spectra. Solutions 
corresponding to the calibration and validation sets are also prepared 
in that lab session. Additionally, the instructor may provide unknown 
samples to be analyzed by the groups. The first lab session ends after 
the spectra of all solutions have been recorded. The second lab session 
is focused on data analysis. Students may act in groups or individually, 
depending on the availability of working terminals at the computer 
lab. Class starts with a brief introduction to the language syntax of 
the software chosen for the algebraic computations. Subsequently, 
students determine the concentration of tartrazine, sunset yellow and 
amaranth in the validation samples (and optionally, for the unknown 
ones) through the SE and CLS methods. The numerical computations 
are carried out using the GNU Octave software,22 following the 
instructions provided in the Supporting Information.

Samples and data collection

From stock solutions of 500 mg L-1, in 0.1 mol L-1 HCl, 
containing a single dye (tartrazine, sunset yellow or amaranth), 
groups are required to prepare univariate analytical curves with final 
concentrations ranging from 5 to 25 mg L-1. The univariate analytical 
curves should contain at least 5 different concentrations.

Eighteen solutions containing tartrazine, sunset yellow and 
amaranth were also prepared by dilution of the single stock solutions 
(see Table 1). From that table one notice that the concentration of 
each constituent within a sample can have one of the following 
values (mg L-1): 5.00, 7.00, 9.00, 11.00 or 13.00. The corresponding 
concentration was randomly selected using the “randperm” Octave’s 

built-in function. That function creates “random” permutations based 
on the Mersenne-Twister pseudo-random number generator. In order 
to minimize concentration correlation within the set of samples, the 
concentrations may also be chosen using an experimental design, 
keeping a common sense that the calibration mixtures should 
be representative, as much as possible, of the combination of 
concentrations to be found in the future unknown samples.13

The absorption spectra were recorded over the 400‑620 nm range 
using a 0.1 mol L-1 HCl solution as blank. All measurements were 
performed in a UV-Vis spectrophotometer (Cary 50, Varian) equipped 
with a 1.0 cm quartz cell.

Data analysis

For CLS analysis, the recorded absorbances of the eighteen 
samples are arranged in a matrix having 18 rows (number of samples) 
and 221 columns (number of variables). Those samples were further 
separated into two sets. The first 14 samples were selected to be the 
calibration set. These samples were employed to set up the CLS 
model. The remaining 4 were used for external validation (validation 
set). The basic CLS theory is presented in the Supporting Information 
as well as the steps for the development of the model using GNU 
Octave (or MATLAB).

The procedure to perform the SE calculations using GNU 
Octave (or MATLAB) is also described in detail in the Supporting 
Information. First, the students need to determinate the wavelength 
of maximum absorbance for each food dye (λmax) using the pure 
spectra of tartrazine, sunset yellow and amaranth. Then, the molar 
absorptivity can be determined using Beer–Lambert plots. Finally, 
the students can solve the equations to calculate the concentration of 
each food dye within the mixtures.

The predictive ability of each method and for each constituent 
was assessed in terms of the root-mean-square error (RMSE) of the 
validation set:

Table 1. Concentration of each dye in the samples used for CLS analysis

Sample
Tartrazine 
(mg L-1)

Sunset yellow 
(mg L-1)

Amaranth 
(mg L-1)

1 9.00 9.00 7.00

2 11.00 11.00 13.00

3 7.00 7.00 11.00

4 5.00 5.00 5.00

5 7.00 5.00 13.00

6 11.00 11.00 7.00

7 9.00 9.00 5.00

8 5.00 11.00 11.00

9 11.00 5.00 13.00

10 11.00 5.00 5.00

11 7.00 7.00 9.00

12 9.00 11.00 11.00

13 5.00 9.00 7.00

14 13.00 13.00 13.00

15 5.00 7.00 11.00

16 7.00 9.00 5.00

17 13.00 13.00 9.00

18 9.00 7.00 7.00
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In the above equation,  and ci represent the predicted and 
reference values for the concentration of a dye at sample “i”, 
respectively, in a set formed by Nv validation samples.

RESULTS AND DISCUSSION

The individual absorption spectra of tartrazine, sunset yellow 
and amaranth, as well as the spectrum of a solution containing 
these three dyes, are shown in Figure 1. Students will find that the 
maximum absorbance for tartrazine, sunset yellow and amaranth 
occurs at 429, 482 and 523 nm, respectively. It can also be seen 
that the mixture spectrum is highly overlapped, particularly at the 
wavelengths of 429 and 482 nm, where the molar absorptivity of all 
dyes is about of the same order of magnitude (see Table 2). At 523 nm, 
absorptions of sunset yellow and amaranth are both significant. 
Therefore, quantitative analysis by the single-equation approach of the  
Beer–Lambert law cannot be satisfactorily applied to this system. For 
that reason, the SE and CLS methods were proposed.

Following the instructions available as Supporting Information, 
students were able to develop the SE and CLS models. Table 3 
shows the predicted concentrations for tartrazine, sunset yellow 
and amaranth obtained with SE and CLS models. In order to 
compare the accuracy of the methods, the samples listed (15-18) 
are those from the validation set of the CLS model. All models 
showed satisfactory results, with predicted concentrations close 
to the reference values. CLS gives the best predictive ability with 
RMSE for tartrazine, sunset yellow and amaranth equal to 0.122, 
0.112 and 0,165 mol L-1, respectively. In order to compare the 
performance of the models, an F-test was evaluated. The F-values 
were obtained by the ratio of the variances (RMSE squared), 
where RMSE1 > RMSE2. If Fcalculated is greater than the Fcritical, the 
two RMSEs are significantly different. Results indicated that the 
differences in the RMSE values of the SE and CLS models were 
not significant for tartrazine ( ), 
sunset yellow ( ) and amaranth  
( ), for a confidence level of 95%.

Students may also access the accuracy of the models through 
a “predicted versus measured” plot. Figure 2 shows that plot for 
tartrazine. From that figure, one can see that both data sets (calibration 
and validation) show good agreement with the reference values for 
the concentrations. Furthermore, such a comparison can be put into 
a more quantitative basis by using the correlation coefficient of the 
linear regression modeling. The SE and CLS models both yielded 
high correlation coefficients (> 0.99), thus indicating that they were 
able to predict accurate concentrations of the three food dyes. It is 
also worth of mention that the slopes of the corresponding linear 
regressions were near 1 whereas the intercepts were near 0.

The accuracy of the CLS model can be additionally checked by 
comparing the CLS-resolved spectra with the spectra of the standard 

Table 2. Molar absorptivity (10-2 L mol-1 cm-1), obtained from the univariate 
analytical curves, of the pure dyes in aqueous solutions containing 0.1 mol L-1 
of HCl

λ/nm Tartrazine Sunset Yellow Amaranth

429 4.20 2.15 0.87

482 1.43 4.82 2.43

523 0.04 2.21 3.68

Figure 1. Measured visible absorption spectra of tartrazine (5.00 mg L-1), 
sunset yellow (5.00 mg L-1) and amaranth (5.00 mg L-1) in 0.1 mol L-1 of HCl. 
The mixture spectrum contains the same concentration of each dye

Table 3. Reference and predicted concentrations (mg L-1) determined by the SE and CLS methods

Sample
Tartrazine Sunset Yellow Amaranth

Reference SE CLS Reference SE CLS Reference SE CLS

15 5.00 5.03 5.05 7.00 7.08 6.97 11.00 10.96 11.07

16 7.00 6.96 7.15 9.00 8.96 8.97 5.00 5.00 5.30

17 13.00 12.78 13.14 13.00 12.78 12.85 9.00 8.58 9.11

18 9.00 8.89 9.12 7.00 7.04 7.16 7.00 6.65 6.93

RMSE 0.127 0.122 0.122 0.112 0.273 0.165

Figure 2. Comparison between the concentrations of tartrazine predicted by 
CLS for the calibration (c) and validation (v) samples with the corresponding 
reference values. The exact agreement is represented by the solid line
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pure compounds. As explained in the Supporting Information, the 
CLS method decomposes the unknown spectral measurement into its 
pure constituent spectra if they are known. According to that section, 
the pure spectrum of tartrazine in a given sample is estimated from 
the product between the first row of matrix  and the predicted 
concentration of that constituent in the sample. On the other hand, 
the pure spectrum of sunset yellow is obtained when the second 
row of  is multiplied by the concentration of that constituent, and 
the spectrum of amaranth is estimated using the third row of  in a 
similar way. Results showed that the CLS-resolved spectra profile of 
the three food dyes were very similar to the visible absorption spectra 
of pure samples shown in Figure 1.

Although CLS is a powerful tool for studying mixtures of 
analytes, it cannot be successfully applied to all types of samples. 
The method works only if all active constituents within the sample 
are known. In order to demonstrate this drawback, students may build 
a new model using the same dataset but omitting the concentration 
information of a constituent in the sample. For example, when the CLS 
model is set up without the concentration of amaranth, the RMSE for 
tartrazine and sunset yellow become equal to 0.467 and 2.331 mg L-1, 
respectively, whereas in the previous model, where the amount of all 
active constituents are known, the corresponding RMSE are 0.122 and 
0.112 mg L-1 (see Table 3). In order to circumvent such a limitation, 
inverse calibration methods were proposed.1 Within those methods, 
calibration can be performed without knowledge of all possible 
sample constituents in the calibration phase. In Chemometrics, the 
most widely used multivariate inverse calibration methods are PLS 
and PCR. Experiments exploring the PLS method are available from 
this journal.5

CONCLUSIONS

In chemical analysis, determination of chemical information is 
traditionally done using a minimal amount of output data generated 
through an experiment, for example, obtaining the concentration of 
an analyte by measuring light absorption in a single wavelength. By 
way of a simple and inexpensive experiment, students can learn that 
all data produced in a measurement may contain useful information 
that can be employed to build a more robust and reliable calibration 
model, through multivariate analysis. Due to its conceptual simplicity, 
the CLS method can be developed without the need for any specialized 
software package. This makes it a valuable model to introduce the 
students to the overall principles of multivariate calibration analysis. 
Furthermore, the hands-on approach adopted here to process the 
absorption data and to set up the calibration models allowed the 
students to gain knowledge on the basics of computer algorithms 
and numerical computations using high-level computer languages. 

Finally, some systems are particularly well suited to be analyzed 
through CLS, such as the simultaneous quantification of analgesic 
and anti-inflammatory agents in pharmaceutical preparations.12,23 
Students may easily adapt the current experiment in order to handle 
those systems.

SUPPLEMENTARY MATERIAL

In the Supporting Information, available at http://quimicanova.
sbq.org.br, the reader will find a brief description of the SE and 
CLS methods as well as the steps necessary for the development of 
those models using the GNU Octave (or MATLAB) software. The 
corresponding data required to perform the SE and CLS analysis are 
publicly available at “https://gitlab.com/lnvidal1/cls-data” website.

ACKNOWLEDGMENT

JRC thanks the Coordenação de Aperfeiçoamento de Pessoal de 
Nível Superior (Capes), for a master’s scholarship. PMS acknowledge 
the Conselho Nacional de Desenvolvimento Científico e Tecnológico 
(CNPq) for the financial support of this work (Grant 409111/2016-3).

REFERENCES

	 1. 	Otto, M.; Chemometrics: Statistics and Computer Application in 
Analytical Chemistry, 3rd ed., Wiley: New York, 2017.

	 2. 	Lyra, W. S.; Silva, E. C.; Araújo, M. C. U.; Fragoso, W. D.; Veras, G.; 
Quim. Nova 2010, 33, 1594.

	 3. 	Souza, A. M.; Poppi, R. J.; Quim. Nova 2012, 35, 223. 
	 4. 	Anderson, S. L.; Rovnyak, D.; Strein, T. G.; J. Chem. Educ. 2017, 94, 

1377.
	 5. 	Souza, A. M.; Breitkreitz, M. C.; Filgueiras, P. R.; Rohwedder, J. J. R.; 

Poppi, R. J.; Quim. Nova 2013, 36, 1057.
	 6. 	Pierce, K. M.; Schale, S. P.; Le, T. M.; Larson, J. C.; J. Chem. Educ. 

2011, 88, 806.
	 7. 	Oliveira, R. R.; Neves, L. S.; Lima, K. M. G.; J. Chem. Educ. 2012, 89, 

1566.
	 8. 	Valderrama, L.; Paiva, V. B.; Março, P. H.; Valderrama, P.; Quim. Nova 

2016, 39, 245. 
	 9. 	Sidou, L. F.; Borges, E. M.; J. Chem. Educ. (2020), DOI: 10.1021/acs.

jchemed.9b00924
	10. 	Amigo, J. M.; Ravn, C.; Eur. J. Pharm. Sci. 2009, 37, 76. 
	11. 	Sabin, G. P.; Rocha, W. F. C.; Poppi, R.; J.; Microchem. J. 2011, 99, 542.
	12. 	Singh, V. D.; Daharwal, S. J.; Spectrochim. Acta, Part A 2017, 171, 369. 
	13. 	Olivieri, A.; Introduction to Multivariate Calibration A Practical 

Approach, 1st ed., Springer International Publishing: Switzerland, 2018.
	14. 	Harker, G. G.; Huntington, J. L.; Gruber, T. A.; Hargis, L. G.; J. Chem. 

Educ. 1970, 47, 712.
	15. 	Sigmann, S. B.; Wheeler, D. E.; J. Chem. Educ. 2004, 81, 1475.
	16. 	MacQueen, J, T.; Knight, S. O.; Reilley, C. N.; J. Chem. Educ. 1960, 37, 

139. 
	17. 	Mehra, M. C.; Rioux, J.; J. Chem. Educ. 1982, 59, 688. 
	18. 	Gilbert, M. K.; Luttrell, R. D.; Stout, D.; Vogt, F.; J. Chem. Educ. 2008, 

85, 135. 
	19. 	Ribone, M. É.; Pagani, A. P.; Olivieri, A. C.; J. Chem. Educ. 2000, 77, 

1330.
	20. 	Brereton, R. G.; Analyst 2000, 125, 2125.
	21. 	Juan, A.; Jaumot, J.; Tauler, R.; Anal. Methods 2014, 6, 4964.
	22. 	https://www.gnu.org/software/octave/doc/v4.4.1/, accessed November 

2020.
	23. 	Goicoechea, H. C.; Olivieri, A. C.; J. Pharm. Biomed. Anal. 1999, 20, 

681.

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

https://www.gnu.org/software/octave/doc/v4.4.1/

	_Hlk57580850
	MTBlankEqn
	_Hlk57581090

