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ABSTRACT — Creep is a phenomenon that can occur in wooden structures since wood is a viscoelastic material.
Creep may change the purely elastic parameters determined in wood characterization initial tests, as its behavior
depends on the rheology of the material, even under a constant stress level. Mathematically, creep can be
characterized by models in which the immediate elastic deformation is increased by a viscous deformation,
resulting in a temporal function. For this reason, the calculation of the natural frequency of vibration and
the stability verification of a slender column should include the reducing effects of stiffness both of axial
force and creep. The first one can be considered through the geometrical portion and the second one by the
introduction, in the conventional portion, of a variable elasticity modulus over time, obtained in relation
to the adopted rheological model. A numerical simulation was performed to evaluate the aspects above, considering
a bar compressed by a force at the free end equivalent to 10% of the Euler critical force, plus its own weight,
adopting a rheological model with three parameters for the variation of the elasticity modulus. The results
show differences of 60% and 50% for the frequency and elasticity modulus, besides defining the exact instant
of column collapse in the case of its non-observance.

Keywords: Three-parameter model; Vibration; Stability.

A FLUENCIA NA FREQUENCIA FUNDAMENTAL E NA ESTABILIDADE DE
UMA COLUNA ESBELTA DE MADEIRA DE SECAO COMPOSTA

RESUMO — A fluéncia é um fenémeno que pode ocorrer em estruturas de madeira por ser esse um material
viscoelastico. A fluéncia pode alterar os parametros puramente eldasticos determinados nos ensaios iniciais
de caracterizag¢do da madeira, pois o seu comportamento depende da reologia do material, mesmo com
um nivel de tensdo constante. Matematicamente, a fluéncia pode ser caracterizada por modelos onde a deformagao
elastica imediata é acrescida de uma deformagdo viscosa, resultando em uma fungdo temporal. Por essa
razdo, o calculo da frequéncia natural de vibragdo e a verificagdo da estabilidade de uma coluna esbelta
devem incluir os efeitos redutores da rigidez tanto da for¢a axial quanto da fluéncia. O primeiro pode ser
considerado por meio da parcela geométrica e o segundo pela introdugdo, na parcela convencional, de
um modulo de elasticidade variavel com o tempo, obtido em relagdo ao modelo reologico adotado. Para
avaliar os aspectos mencionados, foi realizada uma simulagcdao numérica, considerando uma pe¢a comprimida
por uma forca na extremidade livre equivalente a 10% da for¢a critica de Euler, mais o seu peso proprio,
adotando-se um modelo reoldgico de trés pardmetros para a variacdo do modulo de elasticidade. Os resultados
indicaram diferencas de 60% e 50% para a frequéncia e para o modulo de elasticidade, além de definir
o instante exato de colapso da coluna em caso de sua inobservancia.

Palavras-chave: Modelo de trés pardmetros; Vibragdo, Estabilidade.
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1. INTRODUCTION

The slow increase of deformation under constant
stress over time is called creep. Mathematically, creep
can be represented by a time-dependent function
associated with viscoelastic rheological models capable
of describing the phenomenon, according to Findley;
Lai; Onaran (1989). The slow deformation, or creep,
in wooden structures, is a time-dependent phenomenon,
which is also related to loads and deformations, defined
as the increase of deformation under the action of loads,
or permanent stresses, over time. Creep produces residual
deformation and can change the characteristics of the
materials and their mechanical properties, and it is even
able to produce the failure of a structure, as reported
by Gottron; Harries; Xu (2014). When wooden structures
are used as horizontal components and loaded, they
undergo long-term deformation and, in different humidity
conditions, the wood has a tendency to increase its
deformation due to creep, which can lead to operational
problems due to excessive deformation, or may cause
safety problems due to loss of resistance, which can
decrease the load capacity and, in the case of columns,
reach the buckling stress, emphasize Epmeier; Johansson;
Kliger; Westin (2007).

In general, two types of criteria are used to represent
the creep within the structural design. The first one
is related to a deformation limit value, restricting it
to validity intervals, and the second one, less common,
takes into account a monotonic growth of deformation.
From a practical point of view, the technical standards
take into account the creep phenomenon in the design
of structures by two considerations: by proposing a
coefficient of increase or decrease of stiffness, or
proposing a coefficient of increase or decrease in
resistance as the loading acting time and humidity class,
according to Celia-Silva; Calil Junior (1992). The decrease
in stiffness is related to the fact that the axial force
is responsible for this effect and can lead to loss of
stability of a column. In this sense, Gambhir (2004)
refers to the influence of the compressive force
highlighting that once there is a reduction in the structural
stiffness, the effect of the loads on the structure increases,
which also increases the forces on the elements, so
the structure resistance capacity decreases. For this
reason, in the case of compressed columns, a premature
analysis can produce undesirable consequences, and
any failure causes catastrophic effects since it involves
the balance of structures, Timoshenko (1992).
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Regarding the study of wood mechanical properties,
itis a typically elastic or elastoplastic material, depending
on the level to which it is subjected. Its behavior,
concerning the elasticity, is considered as anisotropic,
i.e., a material whose elastic properties vary with the
considered direction, differently from an isotropic material,
which keeps its properties constant regardless of
direction. During tree growth, the internal structure
of the solid material which consists of wood becomes
highly oriented; for this reason, it is an anisotropic
material. On a macroscopic level, the arrangement of
the wood structure results from both length and diametral
growth processes. Therefore, wood structure is usually
referred to two privileged axes: the longitudinal direction
(L) along the fiber and on the radial direction (R) in
relation to the annual growth rings. The direction (T)
is tangential to the annual growth rings. The three
orthogonal planes (RT), (RL) and (LT) are then three
planes of symmetry to the internal structure of wood,
as explained by Oudjehane; Raclin (1995). Wood
anisotropy also results from its cell structure, which
is most composed of fibrous material, which will influence
its apparent mechanical properties. The anisotropy
changes the vibrational properties of viscoelastic
materials, i.e., it modifies the structural dynamics since
it depends on the elastic or Young’s modulus (£,) and
shear (G,), changing the standard of modes and vibration
frequencies, said by Brémaud; Gril; Thibaut (2011).

Wood anisotropy is well represented by the
mentioned orthotropic model, which takes the
longitudinal, radial and tangential directions, with elastic
parameters for each of them. That means there is a
modulus of elasticity and poison coefficient for each
of these directions, making impossible to operate the
known linear elastic relationship, specific to isotropic
material, between these parameters to determine the
transversal elasticity modulus. Accordingly, creep, given
the considerations presented in this study, is characterized
by specific deformation analyzed in the longitudinal
direction of the column, which varies with time, and
whose elastic reference is the elasticity modulus parallel
to fibers. In line with this approach, Schniewind; Barrett
(1972) state that wood can be considered as an orthotropic
viscoelastic material. They observed that for certain
purposes and under certain conditions, the analysis
of stress on wood can be considered as linear elastic
and viscoelastic and that the region of viscoelastic
behavior is large and has considerable practical
importance. A mathematical approach on creep which
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includes the three directions of wood orthotropy was
developed in the sixties of the twentieth century
(BHATNAGAIL GUPTA, 1967).

Because of its plastic behavior, even with a
constant level of tension, the deformations in structural
elements of wood tend to increase with time, i.e. after
the initial elastic deformations, additional deformations
occur, which can be reversible or not, but never complete.
The slow creep is partially reversible. For an unloading,
after elastic recovery, there is a later recovery, which
is called slow recoverable deformation, slow reversible
deformation, or delayed elastic deformation, and only
aremaining portion of the deformation is residual or
irreversible, being this portion of deformation called
creep, Leohard; Mong (1977).

In Brazil, there are some records of studies regarding
creep on wooden structures carried out by Almeida
(1990) and Celia-Silva; Calil Junior (1992). The studies
conducted by the first researcher, on tensioned parts,
revealed high levels of creep after the first twenty-
four hours of the assay, corresponding to a rapid creep
phenomenon, and a convergence after 90 days. The
measurements were made daily and involved the
recording of deformations and environmental conditions
(temperature and relative air humidity). On the other
hand, the second researchers conducted experiments
on slow deformation in wooden columns. Their studies
evidenced a tendency for creep stability after 60 and
90 days of loading. Studies on creep in wood, considering
it under several aspects, were more recently developed
by George et al. (2003), Wang, J.B.; Foschi, R.O.; Lam,
F (2012;2012), Reynolds, T.; Harris, R.; Chang, Wen-
Shao (2013), Honfi,D. et al. (2014), Sharapov, E.; Mahnert,
K.C; Militz, H. (2016) and Saifouni et al. (2016).

Commonly, the representation of creep is based
on rheological models, which associate deformations
deferred at the time. These models, according to Gomes
etal (2007), allow to simulate the response of the material
to forces and tensions applied to it. The inclusion of
these rheological models can be made both in static
analysis and dynamic of the structures. In the case
of dynamic analysis, the structure stiffness must be
composed of two terms; the first one corresponding
to the portion of conventional stiffness and the second
to the portion of geometric stiffness, according to Clough;
Penzien (1993). Thus, it is possible to adapt the first
portion of stiffness by introducing a variable elasticity
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modulus over time, making possible to monitor the
increase of deformations, according to the adopted
rheological model, keeping a constant stress level.
Therefore, the total stiffness assumes the form introduced
by the first portion, via elasticity modulus, in the
rheological model intended to represent the creep; and
the second portion is geometrical, which is a function
of normal operating force, which includes the own weight
of the structural element.

A numerical simulation was performed to evaluate
the creep in natural frequency and in the stability of
a slender wood column, taking into account a three-
parameter model to represent its viscoelastic behavior.
The formulation developed to calculate the column
natural frequency of vibration was based on the method
of virtual works and allowed the evaluation of the buckling
critical load and loss of system instability, besides
calculating the frequency of the first mode. The results
indicated significant differences in the fundamental
frequency and elastic modulus, considering values
obtained by a purely elastic analysis and those non-
linear with the creep, in relation to the material, and
geometric value considering the geometric stiffness.
It was also possible to define the exact moment of the
column collapse in the case of non-observance of creep,
considering a force of 10% of the critical load of Euler
concentrated at the free end of the structural element.
Comparison with design criteria and verification for
parts in flexo-compression and stability of the NBR
7190 - Wooden Structures Design (1996) were adopted
for this level of loading, as well as the definition of
the limit percentage of the Euler critical load, which
leads the system to the collapse, using these same
criteria and mathematical tools developed in the present
study.

2. MATERIALAND METHODS
2.1 Mathematical simulation support

The rheological models used to represent the
viscoelastic behavior of fluids and solids are usually
based on the association of springs and dampers that
predict total deformations and try to describe more
appropriately the behavior of each material or group
of materials, as presented in Figure 1. The model of
Group I (Figure 1a), for example, represents bodies
that have an initial elastic deformation and viscous
deformation that occurs over time, so this model is
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Figura 1 — Viscoelastic rheological models.
Figura 1 — Modelo reolégicos viscoelasticos.

more suitable for the description of certain solids. The
model of Group II (Figure 1b) describes the behavior
of liquids simulating an initial viscous outflow and
a slow elastic deformation over time. The model of
Group III (Figure 1c¢) shows an instantaneous elastic
response followed by a viscous response with a slow
deformation as well. The model of Group IV (Figure 1d)
simultaneously presents two slow viscous deformations
over time. These models can be used alone or in
associations, forming chains, in an attempt to obtain
the best representation for each situation.

One of the models more used to represent the creep
in several materials is the three-parameter model, in
which an elastic parameter £ is associated with a
viscoelastic model of parameters £, and 7, called Kelvin-
Voigt model, which is a simplification of the Burgers
model of Group type I (Figure 1a). According to Keramat;
Shirazi (2014), a single model of the Kelvin-Voigt is
enough to describe the viscoelastic nature of many
solid. Based on this consideration an adaptation of
the Burgers model was used by Kriankel; Lowke; Gehlen
(2015) to analyze the non-linear viscoelastic deformation
in bonded anchors. In relation to the wood, Mukudai
(1983) mentions that the functional form represented
by the Voigt and Maxwell models is very efficient since
they can be conveniently applied to assess the
viscoelastic behavior of that material through
mathematical models. In this sense Hering; Niemz (2012)
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(d) Viscoelastic model of four parameters —
Group IV

have used the Kelvin-Voigt model, together with
experimental activity to descript the creep in bended
pieces. A Burger chain of four elements was used by
Gao; Wang; Shao (2016) to study the behavior of Xuan
paper, making possible to description convenientily
the elastic, viscoelastic and plastic deformations
presented by the material.

The adoption of Kelvin-Voigt model has repeatedly
been made to study phenomena in various science
fields. Hackney; Aifantis; Tangtrakarn; Shrivastava
(2012) used this model to examine the creep behavior
of nanostructures of composites. In the context of the
finite element method, Chung; Tamma; Namburu (2000)
used the Kelvin-Voigt model to represent the primary
creep to investigated the thermo-viscoelastic of composite
structures. Puertas; Gallego (2014) used the same model,
together with the boundary element method, to consider
the viscoelasticity in the solution of the three-dimensional
dynamic problems.

Mathematically, the total deformation of the Kelvin-
Voigt model is given by equation (1),

c=&+ &, (1)

where e is the deformation in the elastic model
and e’ is the deformation in the plastic model. Take
into account its derivative relative to time, the total
deformation of the model is found by equation (2),
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which is the constitutive equation of the Kelvin-Voigt
model.

£= &+ & (2)

The equation (3), for this specific case, is obtained
by assuming E,=E, = E ,

oc=F 3

00616‘3 and o = Ecoe/gv + 78

From the previous equations, it is obtained the
differential equation (4) for the Kelvin-Voigt model,
with 7 representing the moment of load application.

é_+ EcOe/' + EcOe/' o =E é + EcOe_{' EcOe_/' e
]71 cOef ]71 2
0, fort<0 “4)
where o =
oy fort >0

As the stress is constant, the derivative of stress
relative to time is null. By applying the above stress
conditions, the equation (4) is reduced to equation
(5), which is an ordinary differential equation,

. E _E
cOef cOef —
E(‘Oef &+ —771 &£ (o (&)

whose general sglution, for > 0, with the initial
condition &0) = ——2— is given by equation (6).
cOef

1 1 e,
et) = oy)| —+——|1-e ™ . (6)

cOef cOef

Obviously, if the stress level remains constant,
the elasticity modulus must simultaneously reduce to
as the deformation increases, then:

E coer,
RENRE ™)
ch)d EL‘Oe/

After finding the variable elasticity modulus over
time, it is necessary to establish the conditions for
an analysis of vibrations that, from the point of view
of structural dynamics, make possible the obtainment
of the temporal variation of the system natural frequency.
One of the classic methods is the Modal Analysis.
This method allows the obtainment of information about
the behavior of a structural system and therefore reveals
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important aspects related to its dynamics, such as
frequencies and natural modes of vibration, according
to Carrion; Mesquita; Ansoni (2014). In addition, it
is possible to verify the stability of a structural system
and the moment ofits collapse, based on the nullability
conditions of the fundamental frequency and,
consequently, its stiffness.

The formulation developed in this simulation to
consider the creep in the vibration of a column is based
on the principle of virtual works associated with the
Rayleigh technique, which suggests that for a system
containing infinite degrees of freedom can be associated
with another system with a single degree of freedom
to bring its frequency closer, as described by Leissa
(2004). The process takes into account the suitable
choice of the generalized coordinate that describes
the structure deformation, considering the first vibration
mode. In the end, the equation of motion appears regarding
the generalized system properties such as stiffness
and mass, which are necessary to calculate the frequency.
It is important to note that the technique developed
by Rayleigh aimed to calculate the fundamental frequency
of vibration of elastic systems, and the precision obtained
by this method depends directly on the function chosen
to represent this vibration mode, as also said by Leissa
(2004).

The basic concept of the method is the principle
of conservation of energy, and can, therefore, apply
to linear structures (or not), according to Clough; Penzien
(1993). Temple; Bickley (1933) consider that the Rayleigh
technique is applied both to systems with infinite degrees
of freedom and continuous systems, and serves both
to determine the fundamental period of vibration and
to verify the stability of mechanical systems, but it
is not limited to these purposes. As seen in studies
carried out by Villasenor; Farfan; Guzmanb; Romero;
Castellanos; Sesma (2014), the Rayleigh technique was
used in the detection of subsurface cracks in solids.
Pena (2015) studied the asymmetric vibration of rigid
bodies, considering the damping of Rayleigh in the
context of small rotations, allowing the mathematical
simplification of the problem. Camara and Astiz (2014)
used the form function technique as recommended by
Rayleigh in the dynamic modal analysis of cable-stayed
bridges, within the region of elastic deformation of
the material.

It is considered the model of the bar in Figure 2,
oflength L, in a free motion non-damping free motion,
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Figure 2 — Mathematical model.
Figura 2 — Modelo matematico.

with the generalized coordinate ¢(?) defined on the
upper end of the element. The function v(x,?) provides
the horizontal displacements for each x position along
the height, in relation to a function ¢(x) that describes
the form of the vibration and meets the boundary
conditions of the problem. It is assumed this system
is composed of a prismatic bar, made of a viscoelastic
material, clamped on its the base, supporting, in addition
to its own weight 7, a mass m, at the free end,
representative of bodies fixed to its top. N(x) is the
normal generalized force and e(?) is the vertical
displacement of the bar.

It is also considered that the system motion does
not change the direction of the normal force. Thus, the
represented structure is a bar in bending, so that the
virtual work of internal forces 6W, is performed by the
bending moment M(x, ), acting on the deflection of the
virtual bar. It is assumed that the section remains flat
after deformation. The Principle of Virtual Works requires
that the virtual work of external forces is equal to the
virtual work of the internal forces. The virtual work of
the external forces is obtained by equation (8),

oW, = —j‘ Jf1(x)ov(x)dx + N(x)de, (8)

in which the is f,(x) = m (x) v(x,) the inertial
force. In turn, the virtual work of the internal forces
is given by equation (9).

2

L
W, = jM(x,t)(sv”(x)dx, com 8V'(x)=6
0

An infinitesimal element ds of the curved bar is
required to find the axial displacement e(?). The shortening
of the axis due to the axial displacement is given by
equation (10).
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ds—dx =Ndx* —dv* —dx=dx ’1+(%) —dx. 10

From the binomial development, considering that
the higher order terms are smaller compared to the first
order term, the initial series can be reduced, as observed
in equation (11).

Y (avY' (v , vy
) ALy L o
dx dx

The reduction of the series by the binomial
development allows rewriting equation (10) into a more
compact form, as shown in equation (12).

2 2
ds —dx =dx 1+l Gl —abc:l v . (12)
2\ dx 2\ dx
The total displacement e(?) throughout the column
comes from the integration of equation (12), as indicated

in equation (13) in which the first derivative of that
function is represented by an upper row to the right.

e(t) = %j[v'(x, 0] dx. (13)

The real and virtual displacements and their
derivatives, with the same notation established in
equation (13), which are expressed in function of the
generalized coordinate and the chosen shape function
to represent the considered vibration mode, are calculated
by equation (14).

v(x.t)= g0)q(t); F(x 1) = g)§(t); v'(x 1) = ¢ (x)'q(1);
V(x.0)= ¢ 0 q(0;7"(x 1) = ¢ (0)§(1); V" (x1) = p(0)"Sq(2); 1D

L

V'(x,1) = ¢"(x)q(1); Sv(x,1) = ¢(x)Iq(t); Se = jv'(x, 06V (x)dx.

0

Appropriately substituting the equations (13) and
(14) in the equations (8) and (9), the equations (15)
and (16) are obtained.

oW, = [—tf(r) [m ) (@) dx+q)[ N (#'(0) dx}?q e (15
SW, —{q(r) | E(r>1¢”<x)2de5q. (16

By equating the expressions (15) and (16) and
adjusting the terms, the equation of the free undamped
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motion appears regarding the generalized coordinate
q(t), as equation (17),

Mg () + Ky () g(t) - K

in which M, K and K are the generalized mass
and the generalized conventional and geometric
stiffness, described from the chosen form function
P (x)=1 —COS(’“AL). By assuming the trigonometric
function to describe the vibratory motion, the generalized
conventional stiffness is given by equation (18),

K,(f) = J' E@0)] [d ¢(x)j dx, as)

() =0, i)

where E(?) is the variable modulus of elasticity
with time, as shown in equation (7), and 7 is the inertia
of the section in relation to the considered motion.
The generalized geometric stiffness is calculated by
equation (19),

K, jN( )(dd’(x)j dx, 19

in which N(x) = [m +m (L - x)]g is the normal
force function, which includes the own weight of the
column and the force concentrated at the free end.
The generalized mass is obtained by equation (20),

L
M =my+m, with m= [ m((x)) dx, @)
0

where m is the mass concentrated at the top of
the bar and m is the mass per unit length obtained
by multiplying the section area by the density of the
material. As the natural frequency depends directly
on the total stiffness and inversely on the mass, it
should be calculated by equation (21).

o(t) = ‘/% (in rd/s), with K (1) = K,(1) - K,. @D

Therefore, the equation of the frequency of the
first mode of vibration, in Hertz, which includes the
geometric effect and creep, is finally provided by equation
(22),

4 = b
1 i%E(t)I_%ﬂzgzmosz-F%mg
F@O)=-— (inHz), @)
2 1_ 37-8
m, +_mL
Vs
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in which L is the length of the column, g is the
gravity acceleration and £(2) the temporal elastic modulus
as found in equation (7). In equation (22), it can be
observed the conventional portion of the stiffness
of the column to the left of the negative sign in the
numerator, in which is included the variable elasticity
modulus due to creep, and the stiffness geometric portion
to the right of the same sign, in which it is considered
the force concentrated at the free end of the column
by mass m, in addition to its own weight by the parameter
m, which is the mass distributed per unit length, both
multiplied by the gravity acceleration. In the denominator
is the generalized mass of the system, where there is
a factor of 0.227 multiplying the product #L. This fact
induces which buckling critical load of the column is
seen decreased from this value, when the own weight
of the structural element is introduced, which is in
line with Timoshenko (1992) who predicted, in static
analysis, that this factor would be of the order 1/3.

By applying the equation (22), it is performed,
using a single mathematical operation and at once,
a non-linear material analysis, with the creep, and a
geometric non-linear analysis, with the effect of the
normal force, dispensing the use of computational tools
or iterative calculations. It is worth mentioning that
the equation (22) was comparatively evaluated by
experimental activity, in physical laboratory, and by
modeling using the finite element method - FEM, by
Wahrhaftig; Brasil; Balthazar (2013), and again using
the FEM by Wahrhaftig and Brasil (2016), studying
the frequency of a real structure, considering for both
studies, linear and isotropic elastic material, presenting
excellent convergence of results in both cases.

2.2 Evaluated model problem

For this simulation, a composite section wooden
column was idealized, with the parameters of interest
shown in Table 1. The adopted gravity acceleration
g was 9.81 m/s%. The characteristic parallel resistance
to fibers (f,,,) and the elastic modulus (£ ) were adopted
considering class wood C-60. The effective elastic
modulus and calculating the resistance of the material
were defined according to the recommendations of
NBR 7190/1996 - Wood Structural Design (1996), according
to equation (23). The used weighting and modification
coefficients were: K, =0.7,K .. =10,K_ ..=0.8
and y, = 1.4, then:
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Table 1 — Data of numerical simulation
Tabela 1 — Dados da simulag¢do numérica.

WAHRHAFTIG, A.M. et al.

Section data

Column data

Inertia Area Length Slenderness/
I (cm?) A(cm?) L (m) A
227812.50 1800 6.60 140
Rheological parameters Mass
Elasticity (MPa) Viscosity Density Lumped Per unity length
E, (MPa) EEM (MPa) m, (MPa#*s) p (kg/m3) mﬂ(kg) m(kg/m)
24500 13720 32206086381.30 1100 51047.14 99
K ooi =Kot Kiods  Kinogs =0.7-1.0-0.8 =0.56.". mq
E oot ;KmndEcn=6%56-24500 =13720 MPaand f, ,= ) 7515 15 75
K_ "% =0.56—=24 MPa. m=oA ©
mo 14 P N
we wn
i 9
. . -
The numerical simulation was performed based on f
a column of height L and cross section as represented AllA ~ v
in Figure 3. The arrangement of the composite section (¢) Composition of the
was defined within a design reality typical of wooden ](Db) Section A -A — cross section
. . . . N . 1mensions 1m ¢m
structures and in function of the commercial limitations
. . 2222\
of laminated and glued wood, which had already been
adopted in a design carried out by Wahrhaftig and Carvalho (@) Column

(2016). Itis important to mention that the viscous parameter
was adjusted so that the deformations stabilized at 90
days, as shown in Figure 4(a), as indicated by Almeida
(1990), Celia-Silva; Calil Junior (1992) and Kataoka;
Bittencourt (2014). Thus, the variation of the elastic modulus
E(t) was obtained, represented by Figure 4 (b).

Itis emphasized the need to reduce the section inertia
moment by multiplying it by a reduction factor of 0.7,
since it is a composite section, constructed with screws,
which is an important procedure to provide protection
against plastic accommodation, specific of wooden
connections, which was studied by Kharouf; Mcclure;
Smith (2003) and Wilkinson; Rowland; Cooks (1981).

3. RESULTS

The column section was verified in relation to the
flexocompression and stability according to the criteria
of NBR 7190/1996 - Wooden Structures Design (1996),
proving to be able, as the results presented in equation
(24), in which K, = 0.5, and equation (25), respectively.

[c.m,}mmu%g, oy <N ITBSUN_ (o0
./‘:ud fum f c0d 0.18m (24)
M,y 8SLOTNm-04Sm _ ) ey pppg .- [ 00041, 0684 50684 7.
M=y 0.002 m* 24 24 24
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Figure 3 — Model of the structure.
Figura 3 — Modelo da estrutura.

%y Ot o 09640688 _ 5
Jeoa Jena 24 24

In equations (24) and (25), o,,, 0,,, and f, , are
the calculation stresses due to the normal stress and
bending moment, and calculation resistance to parallel
compression to the fibers, obtained according to equations
(26), with the results shown as MPa (10° Pa; Pa= N/
m?). The force concentrated at the free end of the bar,
which induces the stresses o, ,and o, , was established
to represent one-tenth of the Euler force (F,) expected
in equation (26)(c) where ¢=0.8, v, = 0.6 and v,
= 0.4 are the creep coefficients appropriate to the case
under study.

In equation (26) subindices ¢ for N, E and y mean
compression; E in F is the buckling critical force of
Euler; for e, the subindice i means initial, a accidental,
c creep; for win g means weighting. Regarding the
stress conditions in the design g and ¢ in N, they
indicate variable and permanent actions; £ means
characteristic, d for the design and ef'effective value,
calculated with the modification coefficients, shown

in section 2.2.
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Figure 4 — Results obtained by the numerical simulation.
Figura 4 — Resultados obtidos na simula¢do numérica.

M,=N_e, =4851.07 Nm, with N,

cd cd

N, =myg= 12393146 N, y, = 1.4,

c

=N, 7, =173504.051 N,

we

F, . ”ZEcOe/ I,
e, =, | ——L— |=2.796 cm, with F, =——="—-=1239314.65 N,
Fy =Ny " . L, 26)
e, =¢+e, +e, withe =—*+=0,¢, =——=22 cm, and
N, 300
#[ N+ (v Ny ) 71}

e, =(e, +e,)exp )] | 2.405 cm.

4. DISCUSSION

The frequency of the column was then numerically
calculated at the instants zero and 90 by equation (22),

SIIF

as shown in Figure 4(c) and Figure 4(d). In the first
case, the frequency variation was obtained by
considering the original height of the column, adopted
to obtain the limit slenderness established by the NBR
7190/1996 - Wooden Structures Design (1996). In the
second case, the height of the column was designed
to initiate its collapse at 90 days, defining thus the
limit height it can have when the creep is introduced
in the frequency calculation. In the first condition,
the column is stable, whereas in the second case, the
creep effect leads to loss of stability at the considered
instant (90 days). Any height of the structure which

Revista Arvore, Vicosa-MG, v.40, n.6, p.1119-1130, 2016
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is defined between the stability limit at 90 days (second
condition) and the limit established without creep, i.e.,
stability at instant zero (first condition), puts at risk
the system equilibrium, which can be observed in Figure
4(e). For a height of 8 m, for example, the collapse would
occur on the 16™ day.

5. CONCLUSION

The elasticity modulus of 6865.265 MPa calculated
by equation (7), at 90 days, represents a 50% decrease
compared to the initial value of 13720 MPa. The structure
frequency calculated at the initial time of loading is
0.262 Hz, and at 90 days is 0.106 Hz, representing a
decrease of 60%. The column reaches its stability limit
at the height of 7.35 m (slenderness of 156.19), collapsing
at 90 days. Without considering the creep effect, the
height limit is 10.37 m, at instant zero (slenderness
0f220.41); a height 0 29.14% higher than the previous
one. This aspect is of great importance because, since
if the height of the structure had been defined between
the limit established without the creep and the limit
determined considering the creep, the structure would
collapse even before completing 90 days in service.
For a height of 8 m (slenderness of 169.99), e.g., the
collapse would occur close to the 16™ day.

It can be concluded that the slenderness limit of
140, established by the Brazilian Standard, keeps the
structure in safety condition regarding the loss of
stability, considering a force 10% of the Euler force
concentrated at the free end of the column. Additionally,
it can be added that the safety limit condition is
established by equation (24) for a critical load 0f44.41%
of the Euler Force at the end of the structure when
it is simultaneously evaluated by equation (22).
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