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ABSTRACT – It is important to evaluate the application of new technologies in the field of computational
science to forest science. The goal of this study was to test a different kind of metaheuristic, namely Clonal
Selection Algorithm, in a forest planning problem. In this problem, the total management area is 4.210 ha
that is distributed in 120 stands in ages between 1 and 6 years and site indexes of 22 m to 31 m. The problem
was modeled considering the maximization of the net present value subject to the constraints: annual harvested
volume between 140,000 m3 and 160,000 m3, harvest ages equal to 5, 6 or 7 years, and the impossibility
of division of the management unity at harvest time. Different settings for Clonal Selection Algorithm were
evaluated to include: varying selection, cloning, hypermutation, and replacement rates beyond the size of
the initial population. A generation value equal to 100 was considered as a stopping criteria and 30 repetitions
were performed for each setting. The results were compared to those obtained from integer linear programming
and linear programming. The integer linear programming, considered to be the best solution, was obtained
after 1 hour of processing. The best setting for Clonal Selection Algorithm was 80 individuals in the initial
population and selection. Cloning, hypermutation, and replacement rates equal to 0.20, 0.80, 0.20 and 0.50,
respectively, were found. The results obtained by Clonal Selection Algorithm were 1.69% better than the
integer linear programming and 4.35% worse than the linear programming. It is possible to conclude that
the presented metaheuristic can be used in the resolution of forest scheduling problems.

Keywords: Operational research; Artificial intelligence; Artificial immunological system.

METAHEURÍSTICA CLONAL SELECTION ALGORITHM PARA OTIMIZAÇÃO
DO PLANEJAMENTO FLORESTAL

RESUMO – Dada a importância de se avaliar novas tecnologias para otimização do planejamento florestal,
este trabalho objetivou introduzir a metaheurística Clonal Selection Algorithm na resolução de um problema
de ordenamento da produção florestal. Considerou-se uma área manejada de tamanho igual a 4.210 ha,
contendo 120 talhões com idades entre 1 e 6 anos e índice de sítio variando entre 22 m e 31 m. O problema
foi modelado com o objetivo de se maximizar o valor presente líquido global do empreendimento e considerou
como restrições uma demanda anual entre 140.000m3 e 160.000 m3, colheita apenas nas idades de 5, 6
e 7 anos e a imposição de não fracionamento dos talhões no momento do corte. Foram avaliados diferentes
configurações da metaheurística Clonal Selection Algorithm, variando-se as taxas de seleção, clonagem,
hipermutação e substituição, além do tamanho da população inicial. Considerou-se como critério de parada
uma quantidade de gerações igual a 100 e para cada parametrização avaliou-se 30 repetições. Os resultados
foram comparados com aqueles obtidos utilizando-se programação linear e programação linear inteira.
Para a programação inteira considerou-se a melhor solução após 1 hora de processamento. A melhor configuração
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1. INTRODUCTION

Hierarchical forest planning problems must consider
decisions about activities that will be done in time
and space. These decisions are necessary to maintain
a constant flow of wood, obtain the maximum economic
return, and improve ecological and social aspects, among
other objectives (Kaya et al., 2016; Ezquerro et al., 2016;
Dong et al., 2016). These choices must be made
considering an optimization process at all hierarchical
levels in the decision making processes (strategic, tactical,
and operational). To do so, it is important to select
the best set of actions, or make the best decisions,
for a given problem that considers limited resources
(Kaya et al., 2016). However, the number of decision
variables and constraints considered in the modeling
is too wide in most situations. Some of these constraints
can be singular and it is difficult to obtain an optimal
solution using exact algorithms. This prevents variable
values from being obtained in an intuitive way and
considers only the planner’s expertise or is performed
by a trial and error method.

Mathematical models for forest planning can be
formulated as a Linear Programming problem (LP), a
Linear Integer Programming problem (IP) or a Mixed
Integer Linear Programming problem (MIP) when the
problems are relatively simple (Troncoso et al., 2016).
Additionally, they can be solved using deterministic
algorithms such as Simplex, and Branch and Bound
(Hillier and Lieberman, 2013).

These algorithms are recommended when the
problems are considered to belong to the P class
(polynomial time). Problems in this class can be solved
with deterministic methods in a brief time, or in a
polynomial time. Nondeterministic algorithms are used
when the problems are considered as NP
(nondeterministic polynomial time). This suggests the
need for further development and application of heuristics
methods (Yoshimoto et al., 2016; Jin et al., 2016).

A heuristic is an iterative method that searches
good feasible solutions for a problem but does not
ensure the attainment of a global solution (Hillier and

Lieberman, 2013; Jin et al., 2016; Ezquerro et al., 2016).
Heuristics algorithms are formulated to explore a wide
area in the solutions space. They do it in a random
or semi-random way (Yoshimoto et al., 2016). Their
primary advantage is their flexibility, because they can
be used to solve problems in which additivity and
proportionality requirements are not feasible (Jin et
al., 2016). However, they can be susceptible to local
optimum problems because they do not have the ability
to escape from these regions changing drastically the
local search. They also are specific for a problem and
require a distinct model for each situation.

Hence, heuristic algorithms that have an ability to explore
different regions of the solution space were developed and
are called metaheuristics. They are techniques based on
general operations applicable to most parts of combinatorial
problems (Gaspar-Cunha et al., 2013). They are found in
a wide area of metaheuristics (Boussaid et al., 2013) to
include the following: Tabu Search (TS), Simulated Annealing
(SA), Genetic Algorithm (GA), Ant Colony (AC), GRASP
and HERO, Particle Swarm Optimization (PSO), Bee Colony
(BC), Multiagent Systems (MAS) and Artificial Neural
Networks (ANN). Also, there have been many applications
in planning and forest science developed since 1980 (Jin
et al., 2016; Ezquerro et al., 2016). The number of papers
regarding forest planning problems solved by metaheuristics
have already surpassed the number of scientific works that
use classical methods in operation research (Ezquerro et
al., 2016). This has occurred due to the fact that metaheuristics
have potential use in complex forest management plans (Dong
et al., 2016). Simulated annealing is the most cited method
in the literature (Ezquerro et al., 2016).

Other metaheuristic methods have been developed
to support recent studies in artificial intelligence. It
allows the application of these methods to be applied
throughout the field of operation research. A set of
algorithms that are emerging in combinatorial problems
is the Artificial Immune Systems (AIS). They are bio-
inspired algorithms based on natural immune system
behavior whose main function is to detect and protect
the organism against foreign organisms that can be

foi a que considerou 80 células na população inicial, taxas de seleção, clonagem, hipermutação e substituição
iguais a 0,20, 0,80, 0,20 e 0,50, respectivamente. Os resultados apresentados pela metaheurística Clonal
Selection Algorithm foram 1,69% superiores à programação linear inteira e 4,35% inferior a programação
linear. Conclui-se que a metaheurística apresentada pode ser utilizada para resolução de problemas de ordenamento
florestal.

Palavras-Chave: Pesquisa operacional; Inteligência artificial;Sistemas imunológicos artificiais.
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a cause of diseases (Sreeram and Panicker, 2015;
Bernardino et al., 2011). Among them, Clonal Selection
Algorithm (CSA), or Clonalg, is the most used algorithm
in optimization problems (Wang et al., 2016; Riff et
al., 2013). This algorithm is based on clonal selection
and affinity maturation principles (Liu et al., 2010;
Boussaid et al., 2013).

In this study we evaluated the metaheuristic CSA
behavior considering different sets of parameters values
and their relative efficiency compared to Linear
Programming and Linear Integer Programming models
in solving a forest planning problem.

2. MATERIAL AND METHODS

Case study

A eucalyptus forest with 4.210 ha divided into
120 stands (management units) was considered in this
study. The distribution of area per forest age is irregular:
339 ha with 1-year-old, 768 ha with 2-year-old, 1031
ha with 3-year-old, 601 ha with 4-year-old, 958 ha with
5-year-old, and 513 ha with 6-year-old forestry. Production
estimates of wood for each stand and each age were
obtained from the equation V

i
 = 6,09 – 117,55 I

i
-1 S

i
-1,

where V
i
 is the volume for the stand i, I

i
 is the age

of stand i, and S
i
 is the site index for the stand i. These

estimates were developed by the authors considering
data from a continuous forest inventory. Values of the
site index ranged from 22 m to 31 m, and had an index
age equivalent to six years.

Management prescriptions for each stand
considered the possibility of harvest in one of three
ages (five, six, and seven years) with immediate planting
activity and a time horizon of the forest plan equal
to sixteen years. Thus, 81 different prescriptions for
each of the 120 stands were evaluated. These
prescriptions demanded 9720 decision variables. The
Model I structure was considered to maximize the net
present value (NPV) with constraints that assured an
annual production of wood between 140,000 m3 and
160,000 m3.

The annual discount rate used was equal to 8
percent, the price of wood sales equal to R$ 80.00 per
cubic meter, and harvester cost equal to R$ 30.00 per
cubic meter. Silvicultural costs ranged according to
the age of each stand and were obtained from Binoti
(2010): R$ 4.059,05 ha-1 on first-year; R$ 1.627,81 ha-1 on

second-year; R$ 757,95 ha-1 on third-year; and R$ 88,12
ha-1 on the fourth-year of forest growth until harvest
age.

Linear Programming and Linear Integer Programming

LP and IP models were formulated as suggested
by Rodrigues et al. (2004). A unique difference between
these models is the absence of constraints 2 and 5
in the LP model:

Subject to

where GNPV is the global net present value for
all the forest in reais; Cij is NPV for stand i when assigned
the prescription j in reais; Xij is the decision variable
and represents the proportion area of stand i that will
be managed with prescription j; M is the total number
of stands; N is the total number of different prescriptions
for each stand; Vij(k) is the total volume of wood for
the stand i, when assigned the prescription j, in the
period k of planning horizon; Dmink and Dmaxk are
minimum and maximum wood demand for the period
k of the planning horizon.

Constraint (2) guarantees that all stand areas receive
one prescription. Constraints (3) and (4) limit the annual
harvested volume between minimum and maximum values
of demand, and constraint (5) imposes that there is
only one management prescription for each stand. This
last constraint was applicable to the IP model.

LP and IP models were solved using the Lingo
software and the Simplex and Branch and Bound
algorithms, respectively. A computer with a Windows
10 operating system, 64-bit, processor Intel Core i7
with 2.0 GHz and 8 GB of ram memory was used.

M    N

ij     ij
i=1  j=1

Max GNPV = C X (Eq- 1)

(Eq- 2)

(Eq- 5)

(Eq- 3)

(Eq- 4)
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Clonal Selection Algorithm

The CSA algorithm is inspired by the natural process
of antibodies clonal selection. This process considers
that only cells that recognize a specific antigen must
be proliferated (Wang et al., 2016). During proliferation,
these cells suffer a somatic hypermutation, that can
be gradually improved in their ability to recognize the
antigen and make the immune response more effective
(Qiu and Lau, 2014). One generation of cells in this
algorithm, or one iteration in the search process, includes
the candidate solutions formulation, selection, cloning,
mutation, and a new selection and a change of the
initial population. All these aspects are related to the
evolutionary algorithms (Boussaid et al., 2013).

The CSA starts its search process by creating a
pre-determined number of antibodies which represent
possible solutions to the problem when applied to
combinatorial problems (Figure 1). The antibodies of
initial population are evaluated in terms of a problem
objective function value (as represented by Equation
1 presented for the linear programming problem) and
a set of best-adapted antibodies which is selected
according to a selection rate. Next, these antibodies
are cloned and suffer a hypermutation process to generate
cells with a better affinity to the antigen, in other words,
to generate better solutions to the problem.

The best clones of the new population are selected
to compose the next population which will substitute
the previous population by exclusion of less adapted
individuals. According to Castro and Von Zuben (2002),
the number of generated clones for each selected antibody
is calculated by:

n
c
(ac

i
) = (ac

t
)

where n
c
 is the number of clones for the selected

antibody,  is the cloning rate, and ac
t
 is the total number

of antibodies in the initial population.

Considering a hypermutation rate (), a Castro
and Von Zuben (2002) and Wang et al. (2016) equation
was used to calculate the number of mutations for each
clone:

a(c
i
) = exp (-*f

i
)

where  is the number of mutations for clone i,
f

i
 is the normalized fitness function value and * is

hypermutation parameter calculated considering the
hypermutation rate of the system:

* = 5(1 - )

Equation 8 was used to normalize the input value
of the hypermutation rate between 0 and 1. This becomes
easier to understand by instead considering an interval
between 5 (absence of hypermutation) and 0 (total
hypermutation).

No literature exists that evaluates the CSA in forest
problems, thus it was necessary to test different
arrangements of its parameters in order to obtain a
setup that generates satisfactory results. In this way,
different values for the hypermutation rate (test 1),
cloning rate (test 2), selection rate (test 3), replacement
rate (test 4) and initial population size (test 5) were
considered.

Three values for hypermutation, cloning, selection
and replacement rates were evaluated: 0.20, 0.50 and
0.80, respectively. Three values for initial population
size were considered: 20, 50 and 80 individuals,
respectively. The identification of the optimal setup
was done in steps with each one representing one
parameter selection. Firstly, different values for
hypermutation rates were considered, maintaining other
parameters fixed. The cloning rate was evaluated with
the best hypermutation rate with all other parameters
fixed. Next, the best selection rate, replacement rate
and initial population size were defined.

(Eq-6)

(Eq-7)
Figure 1 – Flowchart of processing routine of Clonal Selection

Algorithm. Adapted from Castro and Von Zuben
(2002).

Figura 1 – Fluxograma da rotina de processamento do Clonal
Selection Algorithm. Adaptado de Castro and Von
Zuben (2002).

(Eq-8)
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Each evaluation considered 30 repetitions and the
stopping criteria was defined as a number of iterations
equal to 100. The configuration that obtained the optimal
values for the average of fitness, maximum fitness, and
a small value of standard deviation at end of 100 generations
was chosen.

Identical constraints imposed on the integer linear
programming model were also considered (minimum and
maximum annual harvested volume and only one
prescription for each management unit). The objective
function was penalized when a constraint was broken.
Thus, the fitness function was decreased by R$ 100.00
for each cubic meter of wood above or over the demand
minimum and maximum in each year of the planning
horizon. This method is the same adopted by Rodrigues
et al. (2004).

Metaheuristic processing was performed using MeP
(Metaheuristics for Forest Planning) software developed
in the Java language at Operations Research and Forest
Modeling Laboratory of the Federal University of Minas
Gerais.

3. RESULTS

The CSA processing finished when the stopping
criteria was reached and the processing time varied
according to the parameters values used. For an initial
population size of 20 cells, the average processing time
was equal to 33 seconds for each repetition (with a minimum

equal to 32 s and a maximum equal to 36 s), for 50 cells
the value was 81 seconds (with a minimum equal to 80
s and a maximum equal to 84 s) and for 80 cells the value
was 139 seconds (with a minimum equal to 134 s and
maximum equal to 151 s).

The best CSA parametrization considered an initial
population size equal to 80 cells, a replacement rate equal
to 0.50, a selection rate equal 0.2, a cloning rate equal
to 0.80, and a hypermutation rate equal to 0.2 (Table 1).

Considering the results of CSA, there was a quick
convergence of solutions to values near the final value
found, except for cases in which greater hypermutation
rates were used (Figure 2). When the algorithm exhibits
an increase in the cloning rate, it converges faster to
the best solution with a less number or generations.
There were no observed drastic behavior differences
when the values of replacement and selection rates were
changed. The increase in the initial population size allowed
the algorithm to reach optimal values with few iterations
and a minor value of standard deviation.

The Linear Integer Programming solution was obtained
after 1 hour of processing, but the algorithm did not
converge to the global optimal solution; on the other
hand, Linear Programming identified the global optimal
solution. The CSA solution was a better solution than
the one identified by IP, 3.54% greater. The CSA solution
was identified to be 4.35% inferior to the LP solution.

Test IPS RER SER CLR HYR NGE Maximum Minimum Average Standard
of fitness of fitness of fitness deviation

of fitness
(R$) (R$) (R$) (R$)

20 0.2 0.2 0.2 0.2* 100 29,679,553 30,441,581 30,125,437 193,602
1 20 0.2 0.2 0.2 0.5 100 25,024,349 29,762,745 27,788,508 1,442,727

20 0.2 0.2 0.2 0.8 100 4,482,727 20,582,717 12,403,374 4,287,838
20 0.2 0.2 0.2 0.2 100 29,679,553 30,441,581 30,125,437 193,602

2 20 0.2 0.2 0.5* 0.2 100 30,065,528 30,627,268 30,340,494 144,735
20 0.2 0.2 0.8 0.2 100 29,986,526 30,579,158 30,337,133 148,248
20 0.2 0.2 0.5 0.2 100 30,065,528 30,627,268 30,340,494 144,735

3 20 0.2 0.5 0.5 0.2 100 30,065,499 30,603,016 30,343,623 159,285
20 0.2 0.8* 0.5 0.2 100 29,879,122 30,727,585 30,363,336 181,738
20 0.2* 0.8 0.5 0.2 100 29,879,122 30,727,585 30,363,336 181,738

4 20 0.5 0.8 0.5 0.2 100 30,010,931 30,665,962 30,302,277 142,759
20 0.8 0.8 0.5 0.2 100 30,021,089 30,498,711 30,293,191 122,057
20 0.2 0.8 0.5 0.2 100 29,879,122 30,727,585 30,363,337 181,738

5 50 0.2 0.8 0.5 0.2 100 30,197,987 30,660,003 30,467,552 127,292
80* 0.2 0.8 0.5 0.2 100 30,403,942 30,791,495 30,565,538 106,559

Where: IPS is the initial population size; RER is the replacement rate; SER is the selection rate; CLR is the cloning rate; HYR is the
hypermutation rate; e NGE is the number of generations.

Table 1 – Results from evaluations considering different parameters of Clonal Selection Algorithm.
Tabela 1 – Resultados das avaliações realizadas com diferentes parâmetros para o Clonal Selection Algorithm.
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Figure 2 – Evolution of solutions average for each iteration of Clonal Selection Algorithm considering different settings.
HYR, CLR, SER and RER are hypermutation, cloning, selection and replacement rates. IPS is the initial population
size.

Figura 2 – Evolução das médias das soluções obtidas a cada iteração do Clonal Selection Algorithm considerando diferentes
configurações. Onde: HYR, CLR, SER e RER representam as taxas de hipermutação, clonagem, seleção e substituição;
IPS é o tamanho da população inicial.



7

Revista Árvore. 2017;41(6):e410607

Meta-heuristic clonal selection ...

The LP solution did not obtain binary values for
all decision variables. This fact occurred in 25 of them
(0.26%). These values were distributed in 12 of 120
stands. One stand received three different prescriptions
and the other eleven received two prescriptions.

The annually harvested volume constraint was
attempted in the best identified solution for all methods.
Differences were observed in relation to the period
when more or less wood volume is harvested (Figure 3).
Also, there were differences in the total volume produced
and in the variation of harvester along two consecutive
years. Total volume obtained with the best solutions
were: 2.265.710 m3 for LP; 2.387.331 m3 for IP; and 2.339.034
m3 for CSA. Minimum and maximum annual harvested
volume were: 140.000 m3 and 158.058 m3 for LP; 140.598
m3 and 159.209 m3 for IP; and 140.435 m3 and 157.951
m3 for CSA. Maximum variations in the harvested volume
from one year to another were: 12,90% for LP; 13,24%
for IP; e 6,79% for CSA.

4. DISCUSSION

Strategic forest planning problems that aim to create
a harvest prescription at a stand level are recognized
by their high complexity. This suggests a need for the
usage of loss impeditive mathematical programming
models, such as linear programming. The results show
that it is possible to realize LP generating an optimal
solution with an objective function value greater than
other methods (Silva et al., 2003).

However, this solution assumes that it will be
necessary to adopt different prescriptions for a single
stand. This causes a subdivision of the management
unit because the harvest operation can be applied in
different periods. Considering that is impossible to
realize a harvest operation in only a stand fragment,
in most cases, it is necessary to impose an integrity
constraint in the mathematical model. This is necessary
because rounding the solutions from linear programming
is not recommended in these cases (Silva et al., 2003).
Thus, the LP model results presented must be considered
as an informational value to compare with the other
methods that consider the adoption of only one
prescription for each management unit. According to
Dong et al. (2016), LP results can be considered as
performance evaluation criteria for metaheuristics.

It is more difficult to obtain a solution that attempts
other constraints, such as minimum and maximum annual
harvested volume, when stand integrity constraint is
adopted. Therefore, for the three methods evaluated,
the forest production flow along time maintained between
140,000 m3 and 160,000 m3. However, there was a
difference in the total harvested volume obtained in
the horizon planning and a variability in the amount
of wood harvested along two consecutive years.

Linear programming presented the greatest value
for global net present value, although it presented a
minor total harvested volume. This can be explained
by an optimal definition of harvest areas along years

Method Best solution value % in relation to LP % in relation to IP
Linear Programming R$ 32,191,790 100.00% 106.31%
Integer Linear Programming R$ 30,279,900 94.06% 100.00%
Clonal Selection Algorithm R$ 30,791,495 95.65% 101.69%

Table 2 – Best solutions results found by each method and its proportion in relation to linear programming (LP) and integer
linear programming (IP).

Tabela 2 – Resultados das melhores soluções encontradas por cada método e sua proporção em relação ao resultado da
Programação Linear (LP) e Programação Linear Inteira (IP).

Figure 3 – Evolution of annual cut volume considering the
best solutions found by linear programming (LP),
integer linear programming (IP) and Clonal Selection
Algorithm (CSA). The dashed lines indicate the
values of maximum and minimum annual demand.

Figura 3 – Evolução do volume de colheita anual considerando
as melhores soluções encontradas para a
Programação Linear (LP), Programação Linear
Inteira (IP), Clonal Selection Algorithm (CSA).
As linhas tracejadas indicam os valores de demanda
máxima e mínima anual.
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in a horizon plan, once this model is more flexible. The
CSA solution generated a minor variation in the harvested
volume in two succeeding periods. This is desirable
in practical cases where the structure (workers and
machines, for instance) necessary in harvest operations
cannot be drastically changed from one year to another.
It is important to emphasize that a constraint considering
the variation of harvested volume in two succeeding
years was not modeled.

CSA results were superior to the IP results. This
highlights the importance of studies utilizing new
algorithms to solve the same problem. Indeed, CSA
has been presented satisfactory results in different
optimization problems, as mentioned by Sreeram and
Panicker (2015) and Bernardino et al. (2011). In this
way, according to Yoshimoto et al. (2016), if the quality
of a solution is considered high when compared to
a determinist technique, then the heuristic method is
preferable. Yet, when well structured, heuristics can
provide near optimal solutions to complex problems
(Kaya et al., 2016).

Usually, metaheuristic methods do not find a global
optimum solution. However, this is not a problem since
there is a high level of uncertainty in volume estimates,
prices forecasts, pest occurrence, diseases and others
abiotic factors that affect the forest planning (Jin et
al., 2016).

Another highlighted result is related to the time
spent for CSA to gain good solutions. The best one
was found in only 3 minutes while IP spent 60 minutes
to find an inferior solution to the CSA method. Indeed,
in combinatorial problems, time is an important factor
and is sometimes used as an algorithm quality indicator.
The time necessary to obtain a good and feasible solution
in forest planning is additionally very important because
analysts must generate different planning scenarios
in a short amount of time. This is done to allow the
manager to elect one of these scenarios and directs
the forest investments along a strategical plan. Thus,
quick algorithms that generate good solutions that
attempt all constraints in a short amount of time must
be considered and prioritized in practical applications.

Parameter values affect directly the metaheuristic
performance, as observed by Rodrigues et al. (2004)
and Jin et al. (2016). In CSA, the hypermutation rate
parameter presented results with the greatest variability
in our evaluation. As high as this parameter was, the

worse was the algorithm behavior. This is explained
by the fact that too many high hypermutation rates
can create randomly new solutions in practice and
eliminate solutions that had presented good values
of fitness. High rates can also cause drastic mutations
in the best solutions in each generation, mainly because
the mutations suffered by the antibodies are inversely
proportional to their fitness value (Qiu and Lau, 2014).

According to Boussaid et al. (2013), mutation
operators work as a local optimum escaped operator
in evolutionary algorithms. Thus, it is necessary to
calibrate mutation rates to guarantee that only the
interested solution neighborhood be explored.
Aggressive mutations, which change too many gene
values, can make the search randomized, and this is
not desirable.

The final solution of CSA did not present wide
variations neither in relation to cloning, selection, and
replacement rates nor in relation to the size of the initial
population. The increase in the cloning rate reached
good solutions with very few generations; that is
desirable. The proliferation of antibodies is directly
proportional to the affinity of the antigen (Qiu and
Lau, 2014) and this phenomenon is called affinity
maturation. In other words, the better a solution is,
the more time the antibody is cloned, which improves
the search by solutions each time. This also occurred
when the initial population size was increased.

Cloning rate and the number of antibodies are
associated with the number of evaluated solutions by
generation. As high it is, even higher so will be the
search in the solutions space. This increases the
possibility of finding good solutions with few iterations.
However, if the stopping criteria is the number of
generations, a high cloning rate causes loss of
performance in terms of processing time, mainly, when
the initial population size is very large. Thus, it is always
necessary to evaluate these parameters values to choose
ones that can obtain good results conciliating generation
number and processing time.

5. CONCLUSION

According to the results obtained in this study,
it is possible to conclude that CSA is efficient when
used to solve combinatorial optimization problems in
forest planning. Moreover, to choose the best set of
parameters it is crucial to get good solutions with less
computational efforts.
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