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ABSTRACT – The Iron Quadrangle (IQ) region in Minas Gerais is remarkably geobiodiverse, despite a long 
history of anthropogenic pressures such as mining and urbanization, but still lacks detailed studies on the 
distribution of its remaining native vegetation in diff erent substrates. In this study, we utilized Advanced 
Spaceborne Thermal Emission and Refl ection Radiometer (ASTER) images, besides Gamma-spectrometry 
(Gamma) survey data associated with existing geological mapping (GM) and extensive fi eldwork, to discriminate 
and quantify remnants of vegetation on ferruginous substrates in the IQ. The Maximum Likelihood (ML) 
algorithm was used to classify the vegetation types, thus named: open Rupestrian Field, shrubby Rupestrian 
Field, Capão Forest, Cerrado stricto sensu, Cerrado Field, Seasonal Forests, Pastures and Reforestation (the 
latter three regardless of substrate type) associated with the predominant substrates (ferruginous ironstone, 
phyllites, and quartzite). The use of ASTER images alone did not allow a reliable separation of ferruginous 
and non-ferruginous substrates, but the integration of all diff erent data (ASTER-ML + Gamma + GM) allowed 
the provisional mapping of the vegetation associated with ferruginous substrates, potentially ferruginous 
and non-ferruginous substrates. The resulting map shows that the vegetation on ferruginous and potentially 
ferruginous substrates cover 8.7% and 6.9% of the IQ, respectively. The detailed analysis of the distribution 
and fragmentation of phytophysiognomies on ferruginous substrates is of great importance for developing 
strategies to conserve the geobiodiversity of the IQ, and need to be further refi ned by checking and fi eld 
mapping by novel approaches.

Keywords: Supervised classifi cation; Remote sensing; Aerogeophysical data. 

MAPEAMENTO DA VEGETAÇÃO SOBRE SUBSTRATOS FERRUGINOSOS 
UTILIZANDO IMAGENS ASTER E GAMAESPECTROMETRIA NO 

QUADRILÁTERO FERRÍFERO, MINAS GERAIS

RESUMO –A região do Quadrilátero Ferrífero (QF) em Minas Gerais apresenta notável geobiodiversidade, a 
despeito de uma longa história de pressões antrópicas (mineração, urbanização), mas ainda carece de estudos 
detalhados sobre a distribuição das formações vegetais nos diferentes substratos. No presente estudo, utilizou-se 
imagens Aster, levantamentos gamaespectométricos (Gama), mapeamentos geológicos existentes e trabalhos de 
campo, para a discriminação e quantifi cação dos remanescentes da vegetação sobre substratos ferruginosos e 
outros no QF. Utilizou-se o algoritmo da Máxima Verossimilhança (MaxVer) para a classifi cação das tipologias 
de vegetação associadas aos substratos predominantes (canga-ferruginosos, fi litos e quartzitos), assim 
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denominados: Campo Rupestre Aberto, Campo Rupestre Arbustivo, Capão Florestal, Cerrado Stricto Sensu, 
Campo Cerrado, Florestas Estacionais, Pastagens e  Refl orestamentos, sendo os três últimos não discretizados 
quanto ao substrato. A utilização das imagens Aster apenas não permitiu uma separação confi ável de substratos 
ferruginosos dos não ferruginosos, sendo necessária a utilização de produtos de processamento de dados Gama 
e de geologia. A integração entre as bases de informação (Aster-MaxVer + Gama + geologia) permitiu o 
mapeamento da vegetação associada a três tipos de substratos: ferruginoso, potencialmente ferruginoso e não-
ferruginoso. O mapeamento revelou que a vegetação sobre substrato ferruginoso e potencialmente ferruginoso 
recobrem, respectivamente, 8,7% e 6,9% no QF. Estes dados preliminares inéditos permitem análises mais 
detalhadas do padrão de distribuição e fragmentação das fi tofi sionomias sobre substratos ferruginosos, com 
grande importância para as estratégias de conservação da geobiodiversidade do QF, e necessitam de checagens 
de campo e reconhecimento da vegetação, por meio de técnicas inovadoras. 

Palavras-Chave: Classifi cação supervisionada; Sensoriamento remoto; Dados aerogeofísicos.

1.INTRODUCTION

The Iron Quadrangle (IQ) region has a remarkable 
geobiodiversity (Fernandes, 2016) but lacks detailed 
mapping of its vegetation formations. Such mapping 
could provide technical support for decision-making 
regarding the conservation of remaining forest and 
Ferruginous Rupestrian Grassland formations. The 
region suff ers from strong anthropogenic pressures on 
native ecosystems, mainly as a result of mining and 
urbanization (Jacobi et al., 2007).

In the mountainous regions, Lateritic Rupestrian 
Fields, also termed Ferruginous Rupestrian Fields 
(or Grasslands), or “canga vegetation,” develop 
on ferruginous substrates (Vincent, 2004; Viana 
and Lombardi, 2007). These unique ecosystems, 
colonized by specialist plants adapted to oligotrophic 
environments, are capable of tolerating a number of 
severe environmental fi lters, such as shallow soils, 
severe water defi cits, low fertility, high oxidized 
iron concentrations, and low water retention, as well 
as large daily thermal amplitudes, frequent fi res, 
high sun exposure, and constant winds (Vincent, 
2004; Jacobi et al., 2007; Schaefer et al., 2016). The 
vegetation shows several anatomical, morphological, 
physiological, and reproductive adaptations that allow 
it to survive in these environments (Alves and Kolbek, 
1994).

The plant communities in the IQ vary as a 
function of the substrate type, so that the spectral 
attributes of soils and surface rocks, in some cases, 
may assist in mapping the vegetation. Remote-
sensing techniques, by identifying subtle changes 
in vegetative cover, can enable the identifi cation of 
changes in substrate conditions, establishing the 

rock–soil–vegetation association (Almeida Filho, 
1984). The advent of Advanced Spaceborne Thermal 
Emission and Refl ection Radiometer (ASTER) sensor 
images has enabled discrimination of geological as 
well as vegetation targets (Lima et al., 2005; Gil et al., 
2014). Some studies (Rouskov et al., 2005; Rajendran 
et al., 2011) used satellite sensors (Landsat Thematic 
Mapper and ASTER-Terra) for the identifi cation 
and discrimination of iron-rich deposits through the 
composition of multispectral indexes. However, this 
technique becomes limited when such regions are 
vegetated, which minimizes the eff ects of the energy 
refl ected by the ferruginous substrates.

Additionally, the gamma-spectrometric (Gamma) 
data obtained by aerogeophysical surveys enables the 
elimination of the eff ects of vegetation cover and the 
direct discrimination of ferruginous substrates by 
inferences regarding the geochemical characteristics 
of the rocks. Also, Gamma spectrometry responds 
to concentrations of potassium (K) radioisotopes, 
uranium (U) and thorium (Th) series radioisotopes. 
In rocks and soils; these concentrations are directly 
proportional to the intensity of the gamma radiation 
emitted by their radioactive decay (Wilford et al., 1997; 
Santos et al., 2008), and are frequently associated with 
the geochemical signature of substrates. This allows, 
for example, the separation of ferruginous and non-
ferruginous substrates, with diff erent geochemical 
compositions. However, the use of Gamma data has 
some limitations in terms of distinguishing certain 
substrates based on their similar responses, unresolved 
radioactive barriers, or diff erences in soil moisture; 
therefore, these data should be used with caution, and 
preferably combined with all available information 
(Wilford et al., 1997) in regolith studies.
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In this sense, this work aimed to apply remote-
sensing techniques associated with geological 
data (Lobato et al., 2005) with ASTER images and 
Gamma data to discriminate vegetation remnants on 
ferruginous substrates and other substrates, in the IQ 
region.

2.MATERIALS AND METHODS

2.1.Study area

The IQ is located in central Minas Gerais, with 
7,800 km2 in area. All procedures were conducted 
considering a 5-km buff er from the IQ limits (Figure 1). 
According to a geological cartography by Lobato et 

al. (2005), approximately 6.4% of the IQ consists 
of iron-rich formations (ferruginous substrates) that 
are associated with generally shallow soils, where a 
predominant rupestrian vegetation cover ranges from 
fi eld to cerrado to upper montane forest.  A range of 
characteristic soils can be found in these areas, showing 
great landscape and geoenvironmental diversity with the 
occurrence of a ferruginous substrate (Schaefer et al., 
2008, Schaefer et al., 2016). 

The denomination “ferruginous substrate,” in 
this study, is broad and more comprehensive than the 
word “canga”, and comprises a range of substrates 
(fresh rock, altered rock, sedimentary cover, canga, and 
soils) associated with the following lithotypes in the 

Figure 1 – Limits of the Iron Quadrangle. ASTER image scenes (with the respective date and numeration: YYMMDD(XX)) and ternary 
image (CMYK) of the radioisotopes K (C), eTh (M) and eU (Y) of the gamma-ray image.

Figura 1 – Limites do Quadrilátero Ferrífero, cenas das imagens Aster (com as respectivas datas e numeração: AAMMDD(XX)) e imagem 
ternária (CMYK) dos radioisótopos K(C), eTh (M) e eU(Y) da gamaespectometria.
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geological map (Lobato et al., 2005): canga, detrital-
lateritic cover, , iron oxide supergene concentrations, 
hematite bodies, ferruginous dolomites, iron formations, 
hard hematite, itabirite, dolomitic itabirite, laterite and 
ferruginous detritus, hard hematite lenses, magnetite, 
high content iron ore, hematite ore, residual lateritic 
soil, and associated colluvium and eluvium. However, 
these lithotypes may occur as secondary component 
in non-ferruginous geological units, so that the term 
“ferruginous substrate” is not limited to the delineation 
of the aforementioned lithotypes.

2.2.Pre-processing of ASTER images

Ten ASTER scenes were used, covering the 5-km 
IQ buff er (Figure 1). ASTER bands 1 to 9 were those 
processed comprising the visible and near-infrared 
(VNIR) and shortwave infrared (SWIR) wavelengths. 
The SWIR bands, with a 30-m spatial resolution, were 
resampled using the nearest neighbor method to 15 m for 
compatibility with the VNIR bands (15 m). The images 
were georeferenced from terrestrial control points 
and orthorectifi ed GeoEye images; the fi nal data were 
projected in zone 23 K SIRGAS2000 UTM. ASTER 
images were then converted to radiance values based 
on the maximum and minimum radiance values of each 
band. These procedures were performed using ArcGIS 
10 software. Then, the Fast Line-of-sight Atmospheric 
Analysis of Hypercubes (FLAASH) method of the ENVI 
5.0 software was used for the atmospheric correction of 
the ASTER images.

2.3.Supervised classifi cation

In addition to bands 1 to 9 of the ASTER images, 
multispectral indexes were included in the supervised 
classifi cation, in which the following band ratios were 
considered to show certain spectral patterns. 1) To 
show areas with ferruginous substrates, the red–green–
blue (RGB) band composition R = band 2/band 1, G = 
band 4/band 3, and B = band 4/band 5 (Rouskov et al., 
2005), was used and 2) to aid in vegetation mapping, the 
Normalized Diff erence Vegetation Index (NDVI) was 
used ((band 3 – band 2) / (band 3 + band 2)) (Rouse 
et al., 1974). The Maximum Likelihood algorithm (ML) 
was used and the following vegetation cover classes 
were separated and subdivided as a function of the 
substrate type (ferruginous, quarzitic, and phyllitic): 
Open Rupestrian Field (ORF), Shrubby Rupestrian Field 
(SRF), Capão Forest (CF), Cerrado Field (CF), and 
Cerrado Stricto Sensu (CSS). Training and validation 

samples were collected from all phytophysiognomies 
based on geological data (Dorr, 1969; Lobato et al., 
2005) and associated with the following substrates: 
ferruginous, quarzitic, or phyllitic (including 
serpentinites, metabasalts, and shales).

A large part of the area, totaling 894 control points, 
was covered to collect training and validation samples 
using a Garmin 60CSx Global Positioning System receiver. 
In areas of diffi  cult access, samples were collected as 
fi eld truths based on the interpretation of high-resolution 
images (GeoEye) of the Native Vegetation Coverage 
Map of the State of Minas Gerais (Scolforo et al., 2006) 
and through queries to the Google Earth image bank. 
Additionally, samples were collected in regions where 
the following vegetation classes had no association with 
lithology: lakes, pastures, and reforestation (Eucalyptus 
and/or Pinus). Training and validation samples were 
collected in a polygon format consisting of 1,152 and 775 
polygons, respectively. Classes of urban areas and areas 
infl uenced by mining were not included in the supervised 
classifi cation and were overlapped after fi nal processing 
via manual mapping over GeoEye images.

To evaluate the classifi cation accuracy, validation 
samples were used and the Kappa index and Global 
Accuracy were calculated. The Kappa index is a statistic 
that measures the agreement between fi eld truths and a 
classifi ed map, noting the map’s legitimacy (Congalton, 
1991). These values were classifi ed as proposed by 
Monserud and Leemans (1992). From only the training 
samples, the Kappa index was evaluated for all band 
and index combinations to identify the infl uence of each 
band or index on the classifi er settlement. In addition, 
following the classifi cation, 40-pixel (~1-ha) groupings 
were eliminated and replaced by the most representative 
neighboring pixels. For all these operations, ArcGIS 10 
software was used.

2.4. Gamma-spectrometry Survey

Continuous surfaces were generated through 
interpolation for data enhancement using the minimal 
curvature algorithm of the radioisotopes K, eTh, and 
eU to highlight the lateritic covering and colluvium of 
ferrous formations (Boyle, 1982; Wildford et al., 1997). 
Ternary radioisotopic images were also generated 
using the C(K)M(eTh)Y(eU)K color scale. The ternary 
Gamma image was cropped to the 5-km IQ buff er 
(Figure 1) and an unsupervised classifi cation was 
performed using the IsoCluster method resulting in 10 



Mapping vegetation on ferruginous substrates...

Revista Árvore 2019;43(4):e430406

5

classes. Then, the classes were superimposed onto the 
available survey geological units (Lobato et al., 2005) 
and correspondence with the ferruginous and non-
ferruginous substrates was visually assessed, allowing 
the image to be reclassifi ed from 10 to only 2 classes by 
grouping. Thus, the classes obtained during the Gamma 
analysis were used to complement and validate the 
separation of ferruginous and non-ferruginous substrates 
from the phytophysiognomic classes obtained from the 
classifi cation of each ASTER scene. These procedures 
were performed using the ArcGIS 10 software.

2.5. Geological Data

From the available IQ geological map (Lobato 
et al., 2005), two additional characteristics were 
processed and used for data refi nement and integration 
as follows: 1) Geological units with subordinate 
ferruginous formations: these do not correspond to the 
actual ferruginous substrates, but show inclusions of 
banded iron formations, represented by the following 
geological units: the Quebra Osso Group, Nova Lima 
Group (Catarina Mendes, Córrego da Paina, Córrego do 
Sítio, Mestre Caetano, Mindé, Morro Vermelho, Ouro 
Fino and Santa Quitéria Units), Caraça Group (Batatal 
Formation), Piracicaba Group (Cercadinho Formation 
and Fecho do Funil Formation), Sabará Group, Itacolomi 
Group (Santo Antônio Formation and Itacolomi Facies 
Units), and Cambotas Formation; detritic-lateritic  cover 
unit (Lobato et al., 2005). 2) Excluded geological units 
with no Fe-rich formations: which refer to geological 
formations without the presence of banded iron 
formations, used as references to erroneously reclassify 
the mapped areas as ferruginous substrates. These were 
the Bação Complex, Belo Horizonte Complex, Bonfi m 
Complex, Caeté Complex, Guanhães Complex, Santa 
Bárbara Complex, Caraça Group (Moeda Formation, 
only the core area of Caraça Mountain), Gnaisse Souza 
Noschese Unit, Granito Borrachudos Unit, Granito Peti 
Unit and Rocha Intrusiva Unit (Lobato et al., 2005). 
This fi lter was mainly used for areas where there was 
no Gamma data (Figure 1), i.e. the north-northwest and 
north-northeast regions of the study area. 

3.RESULTS

3.1.Supervised classifi cation and validation 

Scene 070826 (02), which covers most of the IQ 
(Figure 1) and has no cloud cover, was used as a reference 
for the supervised classifi cation. It was the basis for 
proposing the best band combinations and multispectral 

indexes for the Kappa index evaluation. Classifi cation 
was performed considering all combinations of individual 
bands and multispectral indexes comprising the best 
Kappa indexes. Thus, six ASTER bands comprising the 
best Kappa indices — namely bands 1, 2, 3, 4, 6, and 7 
— were selected. ASTER sensor bands 5, 8, and 9 were 
not included because they did not provide combinations 
with high Kappa indexes. Band ratios were also selected 
to show ferruginous substrates according to Rouskov 
et al. (2005) and the NDVI. The band 4/band 5 ratio, 
suggested by Rouskov et al. (2005), did not change the 
Kappa index value, thereby also showing that it provided 
no contribution to the classifi cation. Thus, this was the 
only ratio not adopted for the other scenes.

Thus, by evaluating the confounding matrix of 
the reference scene, it was observed that, in general, 
the Ferruginous Rupestrian Fields (Open and Shrubby) 
were more spectrally separated from the Rupestrian 
Fields compared to that of the other lithologies, that 
is, they were better identifi ed. In this regard, a cluster 
was proposed in which the phytophysiognomies 
on ferruginous substrates were maintained and the 
phytophysiognomies on non-ferruginous substrates 
were grouped (quartzites and phyllites), which improved 
the Kappa index in all scenes. According to Monserud 
and Leemans (1992), Kappa values obtained for the 
fi nal classifi cation of this grouping were considered 
reasonable, good, or very good except for those scenes 
with lower spatial expression (Table 1 and Figure 1). 
For the fi nal analysis of the supervised classifi cation, 
the Kappa index was calculated through the validation 
samples for the entire study area considering only the 

OBS: Scenes 040824 (07) and 040824 (08) have vegetation classes only on 
ferruginous substrates and on quartzites; thus, no grouping is necessary.

 Scenes  Kappa Indexes/ 
   Global Accuracy

  All classes Groupings

070826 (02) 0.17 / 0.31 0.46 / 0.50
070826 (03) 0.52 / 0.58 0.61 / 0.65
070826 (09) 0.44 / 0.51 0.60 / 0.64
070614 (03) 0.50 / 0.57 0.62 / 0.65
070614 (04) 0.13 / 0.30 0.53 / 0.58
040824 (06) 0.79 / 0.81 0.75 / 0.78
040824 (07) 0.83 / 0.85 -
040824 (08) 0.94 / 0.95 -
010731 (01) 0.26 / 0.38 0.40 / 0.47
010731 (02) 0.07 / 0.19 0.36 / 0.42

Table 1 – Kappa indices and overall accuracy for each scene 
considering all classes and groupings.

Tabela 1 – Índices Kappa e exatidão global para cada cena 
considerando todas as classes e o agrupamento.
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vegetation samples on ferruginous and non-ferruginous 
substrates. The fi nal Kappa index obtained was 0.61 and 
the overall accuracy was 0.64, showing  good agreement 
between the fi eld truths and classifi ed map according to 
Monserud and Leemans (1992).

3.2.Integration of data 

The integration of ML classifi cation data with 
Gamma and geological data allowed the separation of 
three substrate types: ferruginous, potentially ferruginous, 
and non-ferruginous. Figure 2 shows a synthesis of data 
integration used as a diff erentiating criterion between 
ferruginous and potentially ferruginous substrates. 
After integrating the data, areas in the geological map 
considered as Fe-rich lithotypes and those indicated as 
ferruginous substrate in the three information sources 
were considered areas with vegetation on a ferruginous 
substrate. In a complementary manner, the ferruginous 
substrate polygons indicated by the integration of the 
data extrapolating and intercepting the ferruginous 
lithotypes presented in the geological map (Lobato et al., 
2005) had their limits considered as the vegetative cover 
on the ferruginous substrate.

Areas with a potentially ferruginous substrate were 
associated with a positive indication in two databases, i.e., 
the ASTER images and the Gamma classifi cations; by the 
ASTER image classifi cation and the geological map as a 
unit with iron formations at the subordinate level; or in 
the classifi cation of Gamma data and the geological map 
as a unit with subordinate iron formations. The areas with 
a non-ferruginous substrates correspond to the remaining 
areas indicated and also excluded areas of other geological 
units such as gneisses, granites, and other associations with 
no known occurrence of Fe-rich formations, particularly 
for areas without Gamma coverage (Figure 1).

3.3. Quantifi cation of vegetation on ferruginous 
substrates

The remaining areas of ecosystems developed 
on a ferruginous substrate cover 676.9 km2 (8.7%) of 
the IQ (Table 2 and Figure 3). The most representative 
phytophysiognomies are the Capão Forest /Seasonal 
Forest and the Shrubby Rupestrian Field followed by the 
Open Rupestrian Field, Cerrado Stricto Sensu, and Cerrado 
Field, respectively (Table 2). The areas impacted by 
anthropogenic activity are the urban areas, areas aff ected 

Figure 2 – Flowchart synthesis of the intersection of the information planes. The positive (+) signs indicate the vegetation mapped on 
ferruginous substrates.

Figura 2 – Fluxograma síntese do cruzamento dos planos de informação. Os sinais positivos (+) indicam a vegetação mapeada sobre 
substratos ferruginosos.
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by mining, pastures, and reforestation which  together 
correspond to 24.6% of the total IQ area, proving the great 
pressure exerted on the natural ecosystems of this region.

4.DISCUSSION

The strong anthropogenic pressure on vegetation 
remmants associated with the ferruginous substrates 
in the IQ region (Jacobi et al., 2007), which represent 
extremely important areas for biodiversity conservation 
in the transition between two large Brazilian hotspots, the 
cerrado and Atlantic forest (Myers et al., 2000; Fernandes, 
2016), justifi es detailed studies of the distribution and 

conservation degree of these phytophysiognomies. In 
this sense, the use of remote sensing techniques enables 
identifi cation of these phytophysiognomies and associated 
substrates (pedological and geological) (Yamaguchi and 
Naito, 2003; Kalinowski and Oliver, 2004; Rouskov et 
al., 2005; Rajendran et al., 2011). For some remote orbital 
sensors obtained through refl ectance signals from objects 
on the Earth’s surface (passive sensors), vegetation can 
interfere or hinder substrate identifi cation, particularly 
in a closed canopy. However, other sensors, such as 
gamma spectroscopy, can penetrate vegetation and obtain 
geochemical data from the upper 30 cm of soils (Minty, 
1997; Wilford et al., 1997).

Phytophysiognomies   Area  % to the total

  ha   km2

  Ferruginous Substrate

Open Rupestrian Field 10 630.67   106.31 1.36%
Shrubby Rupestrian Field 15 892.22   158.92 2.04%
Capão Forest / Seasonal Forest 26 454.74   264.55 3.39%
Cerrado Field 7 336.35   73.36 0.94%
Cerrado Stricto Sensu 7 371.52   73.72 0.94%
Subtotal 67 685.50   676.86 8.67%

  Potential Ferruginous Substrate

Open Rupestrian Field 7 496.91   74.97 0.96%
Shrubby Rupestrian Field 10 653.05   106.53 1.36%
Capão Forest / Seasonal Forest 22 855.54   228.56 2.93%
Cerrado Field 5 008.68   50.09 0.64%
Cerrado Stricto Sensu 7 500.24   75.00 0.96%
Subtotal 53 514.42   535.15 6.86%

  Non-Ferruginous Substrate

Open Rupestrian Field 33 580.87   335.81 4.30%
Shrubby Rupestrian Field 58 146.75   581.47 7.45%
Capão Forest 127 220.58   1 272.21 16.30%
Cerrado Field 46 226.14   462.26 5.92%
Cerrado Stricto Sensu 37 467.56   374.68 4.80%

Subtotal 302 641.90   3 026.43 38.77%

  Other classes

Seasonal Forest/Ombrophylous 157 172.27   1 571.72 20.13%
Reforestation 11 029.14   110.29 1.41%
Pasture 110 611.01   1 106.11 14.17%
Urban Areas 48 885.04   488.85 6.26%
Areas Infl uenced by Mining 21 414.18   214.14 2.74%
Lakes 3 132.05   31.32 0.40%
Clouds 3 246.14   32.46 0.42%
Cloud shadows 1 305.34   13.05 0.17%

Subtotal 356 795.17   3 567.94 45.71%

Grand Total  780 636.99   7 806.38 100.00%

Table 2 – Total and relative area for each phytophysiognomy associated with ferruginous, potentially ferruginous, and non-ferruginous 
substrates mapped in the Iron Quadrangle, Minas Gerais.

Tabela 2 – Área total e relativa para cada fi tofi sionomia associada aos substratos ferruginosos, potencialmente ferruginosos e não-
ferruginosos mapeadas no Quadrilátero Ferrífero, Minas Gerais.
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Regarding the images with spectral data from the 
ASTER sensor, the combination of bands with the best 
Kappa indexes—initially calculated with the training 
samples only—includes six ASTER bands. ASTER 
sensor bands 5, 8, and 9 were not included because 
they were not predominant among combinations with 
higher Kappa indexes. Rowan and Mars (2003) suggest 
a good spectral separation of lithological categories 
for ASTER sensor bands 5 to 9 except for ferruginous 
deposits. The VNIR bands (Bands 1, 2, and 3) have 
information regarding metal absorption, particularly 
iron (Adams, 1974; Rowan et al., 1995), and chlorophyll 
absorption during vegetation photosynthesis (Knipling, 
1970). These data corroborate the greater importance 
of these bands for mapping these phytophysiognomies. 
In this regard, the grouping of phytophysiognomies in 
classes on ferruginous substrates and diff erentiated 
phytophysiognomies on non-ferruginous substrates 

(quartzites and phyllites) is also important for the 
improvement in the Kappa index in all scenes (Table 1), as 
it also favors the aspects that show phytophysiognomies 
related to the ferruginous substrates.

In addition to the combination of ASTER bands, 
the inclusion of band ratios to highlight the ferruginous 
substrates (Rouskov et al., 2005) and NDVI were also 
chosen as those with the highest Kappa indexes. The 
4/5 band ratio was also noted by Bierwirth (2002) as 
important in the identifi cation of laterites although it 
was not infl uential in this study. NDVI signifi cantly 
contributes to the identifi cation of diff erent vegetation 
types as it is infl uenced by the productivity and 
photosynthetic dynamics of phytophysiognomies 
(Rouse et al., 1974; Petorelli et al., 2005).

The defi nition of areas with greater uncertainties, 
defi ned as potentially ferruginous substrates, reinforces 

Figure 3 – Final vegetation map of ferruginous and potentially ferruginous substrates of the IQ region.
Figura 3 – Mapa fi nal da vegetação sobre substrato ferruginoso e potencialmente ferruginoso da região do QF.
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the diffi  culty of mapping these vegetation typologies 
using spectral data, particularly when associated with 
specifi c substrates, as in the IQ region where there are 
great variations in geological units with diff erent degrees 
of metamorphism (Lobato et al., 2005). Thus, Gamma 
data, in addition to assisting geological and pedological 
surveys (Vasconcellos et al., 1994; Wilford et al., 1997; 
McBratney et al., 2003; Santos et al., 2008), can be 
extremely important for mapping phytophysiognomies 
associated with diff erent substrates.

Therefore, this mapping allows for a more 
comprehensive analysis of the distribution and 
fragmentation pattern of the phytophysiognomies on 
ferruginous substrates which may generate information 
of great importance for future planning.  These data 
can be combined with more in-depth fl oristic studies 
to support future IQ geobiodiversity conservation 
strategies and provide a more reliable predictability 
of the impacts caused by anthropogenic actions on 
these ecosystems. Additional work, such as reducing 
data using Principal Component Analysis or using 
more specifi c remote sensors such as Magnetometry, 
is required to improve the classifi cation accuracy, 
particularly for a more precise defi nition of potentially 
ferruginous areas. These results should be taken with 
caution due to confusing identifi cation of potentially 
ferruginous substrates, and further vegetation mapping 
combined with fi eld recognition, must be done, 
employing novel approaches. 

5.CONCLUSIONS

Selected ASTER sensor bands, band ratios for 
ferruginous substrates, and NDVI were combined 
with Gamma and geological data allowed a consistent 
and reliable vegetation mapping of ferruginous, non-
ferruginous and potentially ferruginous substrates, the 
latter with lower confi dence level. This mapping shows 
the complexity of the study region and allows detailed 
analysis of the distribution and vegetation fragmentation 
pattern of ferruginous substrates, which is of great 
importance for conservation strategies in the remarkably 
geobiodiverse IQ region in Minas Gerais, one of the 
largest iron mining area worldwide.
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