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ABSTRACT 

The aim of this study was to present and to evaluate methodologies for the estimation of 

soil resistance to penetration (RP) using artificial intelligence prediction techniques. In 

order to do so, a data base with values of physical-water characteristics of the soils 

available in the literature was used, and the performances of Artificial Neural Networks 

(ANN) and Support Vector Machines (SVM) were evaluated. The models generated 

from the ANNs were implemented through the multilayer perceptron with 

backpropagation algorithm of Matlab software, varying the number of neurons in the 

input and intermediate layers. For the procedure from SVM, the RapidMiner software was 

used, varying input variables, the kernel function and the coefficients of these functions. 

The efficiency of the techniques was analyzed by the ratio 1:1, and later, compared to the 

Busscher non-linear model (Busscher, 1990). The results showed that the artificial 

intelligence models (ANN and SVM) are efficient and have predictive capacity superior 

to the Busscher model, under data conditions of soils with textural classes and different, 

and similar managements, although with higher performance index values for conditions 

of soils of the same textural class exposed to the same management. 

 
 

INTRODUCTION 

The sustainable use of natural resources, especially 

soil and water, has become a topic of increasing relevance 

and the focus of numerous researches. Among these 

researches (Tavares Filho et al., 2012, Cortez et al., 2017, 

Ribon & Tavares Filho, 2008) a number of studies have 

been carried out on the soil compression process, 

mentioning the use of models or functions that identify the 

physical quality of it (Fernandes et al., 2016).The 

understanding of this process is essential to estimate the 

changes that can occur in the soil structure when subjected 

to a certain external pressure. 

The soil compaction promotes an increase in soil 

density and its mechanical resistance, as well as reducing 

the total porosity by altering the pore distribution by size 

(Ajayi et al., 2009; 2010; Chioderoli et al. 2012). The 

compacted soil also promotes increased load carrying 

capacity (Dias Junior et al., 2007, Deperon Júnior et al., 

2016), limiting nutrient absorption, water infiltration and 

redistribution, gas exchange, seedling emergence and the 

development of the root system, which results in decreased 

production (Arvidsson, 2001; Dauda & Samari, 2002; 

Gubiani et al., 2013; Toigo et al., 2015). These conditions 

promote the increase of erosion as well as the power of the 

equipment used in soil preparation (Canillas & Salokhe, 

2002). Martins (2012) states that, due to the technological 

development of mechanized harvest and its potential to 

promote soil compaction, researchers have used various 

physical and mechanical properties to quantify the effect 

of compaction on soil structure, and resistance to 

penetration is the most frequently used (Cortez et al., 

2017; Dias Junior et al., 2008; Molina Junior et al., 2013).  

In this context, the knowledge of resistance to 

penetration can be used to develop management strategies 

that minimize the risks of reduced productivity and 

additional soil compaction due to the impacts caused by 

operations, mainly motor mechanized. 

Even with the existence of several methodologies to 

estimate soil resistance to penetration, including empirical, 

analytical and numerical methods, they have as 

disadvantages the non-consideration of some important 

parameters, such as mineralogy, thus limiting to soils with 

similar behaviors, or a high computational cost of the 

algorithms analysis. However, studies carried out by 
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Soares et al. (2014), estimating water retention curves in 

agricultural soils, showed that the results obtained by 

pedotransfer functions generated by artificial neural 

networks are often better than those obtained by traditional 

methods.  

The Artificial neural networks (ANN), which 

encompass several techniques that can emulate human 

behavior, stand out in the field of Artificial Intelligence 

(AI). In addition to the ANN, the Support Vector 

Machines are a technique based on Statistical Learning 

Theory (Takahashi, 2012), which has received great 

attention in recent years. Studies related to soil load 

bearing capacity, such as Martins & Miranda (2012), 

showed that the support vector machines led to a better 

estimation of the safety factor and a better evaluation of 

the stability of the slopes in earth dams. 

Based on the above, there is the need to research 

the field of Artificial Intelligence in soil physics that deals 

with the load bearing capacity, aiming to evaluate the 

estimation of resistance to penetration obtained by 

artificial neural networks and support vector machines. 

 

 MATERIAL AND METHODS 

For the development and training of the models 

(ANN and SVM), a database was elaborated based on the 

physical-hydrographic characteristics of the soils obtained 

through research and investigation of the national and 

international literature of soil load bearing capacity. 

The following were selected as input variables for 

the formulation of the models: clay content (Cla), sand 

(san) and silt (Sil), soil density (Sd), particle density (Pd) 

and soil volumetric moisture (θ). The models were 

composed of six different arrangements, the first 

composed of all the input variables and the following were 

established by removing some of these (Table 1).  

 

TABLE 1. Independent input variables in the computational models of resistance to penetration (RP) estimation. 

Model 
Variables  

Cla (%)  Sil (%) San (%) Pd (g.cm-3) (Sd g.cm-3) (cm3.cm-3) 

ANN1/SVM1 ●  ● ● ● ● ● 

ANN2/SVM2 ●  ● ●  ● ● 

ANN3/SVM3 ●  +        ● ●  ● ● 

ANN4/SVM4      ● ● 

ANN-FA/SVM-FA      ● ● 

ANN-MA/SVM-MA      ● ● 

 

The database created with the information available 

in the literature is published in Pereira (2017). 

The models generated from the ANN were 

implemented through the Multi-Layer-Perceptron with 

backpropagation algorithm and Levenberg-Marquardt 

optimization, using the Neural Network Toolbox of 

Matlab®2008b software. The architecture of the neural 

network used was composed of an input layer, a hidden 

layer and an output layer. For the hidden layer, variations 

in the number of neurons were tested, using 10, 20, 30, 40 

and 50 neurons, according to Braga (2014) in order to 

verify which topology generated the best results. 

Knowing that at the beginning of the training, the 

free parameters are generated at random, and according to 

Soares et al. (2014) these initial values may influence the 

final training result, each combination of the variables in 

the ANN was trained 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 17, 19, 

25 and 30 times. After the training, the best result was the 

one with the best coefficient of determination (R²) between 

the data obtained in the literature for validation and the 

data estimated by the artificial neural network simulation.  

The SVM training was carried out in the 

RapidMiner5 software, selecting the epsilon-SVR option 

for the SVM type, in order to vary the entries (Table 1), 

the type of kernel function (Table 2) and γ and C 

parameters. Each input model was trained with kernel 

functions of the types: linear, polynomial (2nd and 3rd 

degree), Radial Basis Function and sigmoidal. For each of 

the kernel functions, the C parameter was also tested with 

values of 0, 50, 100 and 150. The γ parameter was also 

tested for each of the variations of C and the kernel 

function, except for the linear kernel function that does not 

present the γ in its formulation. 

TABLE 2. Kernel functions used for different SVM 

architectures. 

Kernel Type Função ( ) 

Linear  

Polynomial 
 

RBF 
 

Sigmoidal  
 

For each ANN and SVM architecture, the data were 

randomly divided, by software, in 75% for training and 
25% for validation, following the indication of Nagaoka et 
al. (2005).  

Based on the estimated penetration resistance 
values, linear regression equations were adjusted to be 
analyzed graphically by the 1: 1 ratio. The dependent 

variables were the respective RP values obtained from the 
database and the independent variables were the values 
estimated by the methods under study (ANN and SVM). 
We also evaluated the estimated values of RP by the non-
linear model of Busscher (1990), since this is very cited 
for such estimation (Blainski et al., 2008; Ribon & Tavares 

Filho, 2008; Gubiani, 2012; Suzuki et al., 2008, Roboredo 
et al., 2010), comparing them to the study methods, for 
input data related to soils of several textural classes, sandy 
loam soil, and very clayey soil. 

To evaluate the results obtained by each method, 
the performance index (id) was used, which was 

determined by the product of the correlation coefficient (r) 
and the concordance index (c), according to the 
methodology described by Braga et al. (2014), being the 
performance classes: great (id above 0.85), very good (id 
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from 0.76 to 0.85), good (id from 0.66 to 0.75), regular (id 
from 0.61 to 0.65), weak (id from 0.51 to 0.60), very weak 
(id from 0.41 to 0.50) and poor (id of less than 0.41). 

 

RESULTS AND DISCUSSION 

Figures 1a, 1b and 1c show the graphical relations 

between the values of soil resistance to penetration (RP) 

obtained in the literature and the values estimated by 

artificial neural networks, support vector machines and by 

the Busscher model, respectively, for classes textures. 

In the ANN1 model, the estimation of soil 

resistance to penetration (RP) obtained the best result with 

R² of 0.7262 (Figure 1a) when using the topology 

constituted by 50 neurons in the intermediate layer and 5 

repetitions in the network training, while in the SVM1, the 

topology constituted by the kernel function RBF and the C 

parameters equal to 100 and γ equal to 10 was the one that 

best fitted the data with R² of 0.7520 (Figure 1b). Both 

artificial intelligence methodologies presented good 

results, since, according to Andrade et al. (2013), the 

coefficient of determination of 0.62 obtained when 

estimating RP was considered satisfactory. Differently 

from what happened with the ANN and SVM models, the 

Busscher model did not obtain a good result, since it 

presented coefficient of determination of 0.0221 (Figure 

1c). 
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FIGURE 1. Graphical representation of the RP values 

observed in the literature in relation to those estimated by 

ANN1 (a), SVM1 (b) and Busscher (c), for soils of diverse 

textural classes.  

 

In the ANN2, the topology that presented the 

highest predictive capacity was composed of 50 neurons in 

the hidden layer and 10 trainings, presenting a R² of 

0.6517 (Figure 2a) lower than the previously obtained 

(ANN1), which leads to deduce that the variable (Pd) 

exerts a strong influence on the estimation of RP through 

artificial neural networks. Stefanoski et al. (2013) point 

out that the values of particle density (Pd) are strongly 

influenced by the organic matter content, which in turn 

contributes effectively to the estimation of soil resistance 

to penetration (Ribon & Tavares Filho, 2008). 

The behavior of the support vector machines was 

not similar to that of the neural networks, since even 

reducing the number of input variables, the SVM2 model 

presented R² of 0.7634 (Figure 2b) higher than that 

obtained with SVM1, presenting this result with the same 

topology. 
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FIGURE 2. Graphical representation of the RP values 

observed in the literature in relation to those estimated by 

ANN2 (a), SVM2 (b) and Busscher (c), for soils of diverse 

textural classes.  

 

The ANN3 and SVM3 models are differentiated 

from the previous ones by the Silt + Clay variable, which 

is the sum of the two variables presented separately in the 

ANN2 and SVM2 models, since it is easier to obtain. The 

ANN3 model presented a coefficient of determination (R²) 

equal to 0.6107 (Figure 3a), lower than that obtained in 

ANN2, although SVM3 obtained R² of 0.7136 (Figure 3b), 

lower than SVM2, but higher than ANN2, even with 

simpler input variables. The SVM3 model obtained these 

results using the C parameters equal to 100 and γ equal to 

15 for the training process. 
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FIGURE 3. Graphical representation of the RP values 

observed in the literature in relation to those estimated by 

ANN3 (a), SVM3 (b) and Busscher (c), for soils of diverse 

textural classes.  

 

The ANN4 and SVM4 models are composed by the 

variables soil density (Sd) and volumetric moisture (θ), 

these being the same ones used in the non-linear model 

developed by Busscher (Busscher, 1990).The adjustment 

of the RP values obtained in the literature, when compared 

with those estimated in both ANN4 (Figure 4a) and SVM4 

(Figure 4b), presented a great dispersion, since the 

coefficients of determination (R²) were 0.1502 and 0.1432, 

respectively. Although the R² values obtained by artificial 

intelligence models (ANN4 and SVM4) were low, they 

were much higher than 0.0136, obtained by the Busscher 

model. 
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FIGURE 4. Graphical representation of the RP values 

observed in the literature in relation to those estimated by 

ANN4 (a), SVM4 (b) and Busscher (c), for soils of diverse 

textural classes. 

 

Table 3 shows that when using all the data, in order 

not to discriminate soil types or management type, the 

performance of the artificial neural networks for the 

estimation of soil resistance to the penetration was better 

in ANN1, being classified as "Very good" as well as the 

support vector machines. However, the performance index 

(id) of ANN1 was slightly lower (0.7779) than that of 

SVM1, which obtained an "id" equal to 0.8021. These 

models were much superior to the Busscher model, 

classified as "poor" and with a performance index of 

0.0389.

  

TABLE 3. Values of the correlation coefficient (r), coefficient of determination (R²), agreement index (c), performance index 

(id) and the qualitative performance class of the different soil resistance to penetration (RP) estimation models. 

General 

Model c r R² id Class 

Busscher 0.2619 0.1487 0.0221 0.0389 Poor 

ANN1 0.9147 0.8521 0.7261 0.7794 Very Good 

SVM1 0.9249 0.8672 0.7520 0.8021 Very Good 

Busscher 0.2224 0.1166 0.0136 0.0259 Poor 

ANN2 0.8935 0.8073 0.6517 0.7213 Good 

SVM2 0.9296 0.8738 0.7635 0.8123 Very Good 

Busscher 0.2224 0.1166 0.0136 0.0259 Poor 

ANN3 0.8731 0.7815 0.6107 0.6824 Good 

SVM3 0.9163 0.8448 0.7137 0.7741 Very Good 

Busscher 0.2230 0.1167 0.0136 0.0260 Poor 

ANN4 0.5915 0.3876 0.1502 0.2293 Poor 

SVM4 0.6220 0.3784 0.1432 0.2354 Poor 

 

Considering the same conditions of the previous 

database, the performance of support vector machines 

(SVM) obtained its highest performance index (0.8123) 

for the input data of the SVM2-RP model (sand, silt, clay, 

soil density and volumetric moisture), also with "very 

good" classification, being, therefore, the best model for 

the estimation of soil resistance to penetration for general 

data. In addition, the SVM3 model, despite obtaining a 

lower "id" value (0.77), is still classified as "very good", 

being a good option to estimate RP because there is no 

need to carry out the separation of the silt and clay 

fractions, facilitating and accelerating the obtaining of 

input data. 

The ANN4 and SVM4 models contain as input 

variables soil density (Sd) and volumetric moisture (θ) 

similar to the non-linear model of Busscher, which counts 

only with these same variables, also being classified as 

"poor". However, the predictive capacity of the support 

vector machines (SVM) followed by the artificial neural 

networks (ANN) is much higher than the Busscher method 

that obtained "id" of only 2.6% when observing the values 

obtained in their performance indexes (id) close to 23% 

and coefficients of determination (R²). This result 

corroborates with Almeida et al. (2008), who with similar 

model stated that several soil resistance and penetration 
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equations are required based on different granulometry and 

density conditions. 

Table 4 shows the performance of the models with 

an input architecture similar to the previous model (soil 

density and volumetric moisture), with the difference that 

the input data were soils with the same textural class, but 

from different locations (sandy loam from different 

localities). 

 

TABLE 4. Values of the correlation coefficient (r), 

coefficient of determination (R²), agreement index (c), 

performance index (id) and the qualitative performance 

class of the different models of soil resistance to 

penetration (RP) estimation for sandy loam soil (SL). 

Sandy Loam  

Model c r R² id Class 

Busscher 0.33 0.13 0.02 0.04 Poor 

ANN-FA 0.69 0.57 0.32 0.39 Poor 

SVM-FA 0.68 0.47 0.22 0.32 Poor 

 

In this condition, although all the models were 

classified as "poor", the inferiority of the predictive 

capacity of the Busscher model is evident, they presented 

"id" equal to 0.04. The ANN was the method of estimation 

that obtained the best results (id = 0.39) for soils of the 

same textural class without taking into account the locality 

of the sample. 

The methodologies were also tested for very clayey 

(VC) soil data of the same property and exposed to the 

same management. Table 5 shows that in singular 

conditions all methods presented performance indexes 

classified as "good", highlighting, as well as in previous 

architectures, the models generated by artificial 

intelligence ANN and SVM with performance indexes of 

0.71 and 0.69, respectively. However, there was no 

discrepancy between those methods and the Busscher 

method that obtained "id" equal to 0.68. 

 

TABLE 5. Values of the correlation coefficient (r), 

coefficient of determination (R²), agreement index (c), 

performance index (id) and the qualitative performance 

class of the different models of soil resistance to 

penetration (RP) estimation for very clayey soil (VC). 

Very clay 

Model c r R² id Class 

Busscher 0.86 0.79 0.62 0.68 Good 

ANN-MA 0.88 0.80 0.65 0.71 Good 

SVM-MA 0.86 0.80 0.63 0.69 Good 

 

CONCLUSIONS 

The models based on artificial intelligence (ANN 

and SVM) presented a performance index superior to the 

non-linear model of Busscher in all the studied scenarios, 

being able to be used for the estimation of resistance of the 

soil to the penetration. 

The artificial neural networks (ANN) presented 

superior predictive capacity than the other methods to 

estimate soil resistance to penetration for soil data of the 

same textural class. 

The support vector machines (SVM) presented 

higher predictive capacity than the other models for soil 

resistance to penetration for soil data with different 

textural classes and management. 
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