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ABSTRACT 

The use of wood is widespread in rural constructions, and the truss systems stand out 
among its various applications. This specific system has several typologies and requires 
a thorough study to determine the most advantageous model for each project. The present 
study aims to apply the Computational Intelligence concepts to determine the minimum 
viable cross-section of a Howe truss. For the computational simulation, methods like 
Finite Elements were used to obtain the loads and the Firefly Algorithm for the 
optimization process, focusing on minimizing the total weight of the structural part. 
Studies were conducted varying the spans of the elements and the height to span ratio. 
The design assumptions for establishing the optimization method’s constraints follow the 
recommendations of the Brazilian standard for wood design, ABNT NBR 7190 (1997). 
Weights between 95.42 kg and 653.57 kg were obtained, and all optimization processes 
presented feasible solutions for the design constraints. 

 
 
INTRODUCTION 

The emergence of novel technologies has facilitated 
the development of optimized installations increasing the 
structural performance in a service. These performance 
requirements are desired in urban as well as rural 
constructions (Chrisp et al., 2003; Tahsildoost & 
Zomorodian, 2020). 

In rural buildings, wood is an attractive alternative 
material for improving energy efficiency in construction 
(Hens et al., 2021). Within such applications, the wooden 
trusses are some of the most used elements in constructing 
roofing systems (Krušinský et al., 2017; Z. Li et al., 2019), 
existing several typologies for this purpose. 

The design of roof structures is a complex process 
with several verifications. Numerous variables in the 
structural design process has led to the popularization of 
metaheuristic optimization, a branch of computational 
mathematics. 

Metaheuristic optimization is understood in the 
context of computational intelligence, a set of numerical 
tools using algorithms that reproduce the social behavior of 
animals (Zhang et al., 2013; Darwish, 2018; Salehi & 
Burgueño, 2018; Nguyen et al., 2020). In the artificial 
intelligence literature, these algorithms are presented as 
boosting algorithms due to their ability to interact with the 
environment and obtain information for decision making in 
subsequent iterations (Whitley et al., 1994; Ding et al., 2019). 

Such methods simulate an animal’s social behavior 
and natural intelligence, for example: (a) Genetic 
Algorithms (GA); (b) Particle Swarm Optimization (PSO); 
and (c) Firefly Algorithm (FA), which is the focus of this 
paper. These algorithms have been employed in various 
scientific fields, including stock market (Kumar & Mishra, 
2017), image processing (Hoang, 2019), inverse problems 
(Rauecker et al., 2019; Pereira Junior et al., 2021), etc. 
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Structural optimization has become a viable tool, 
applied to various structural engineering problems 
including sizing, such as timber beams (Pech et al., 2019; 
Mayencourt & Mueller, 2020; Schietzold et al., 2021), 
wooden frame structures (Mam et al., 2020), and wooden 
trusses (Villar et al., 2016; Villar-García et al., 2019). These 
methods can automate the structural sizing process (Assimi 
et al., 2017; Degertekin et al., 2018; Bianconi et al., 2019), 
assisting engineers to focus on to the important requirements, 
such as total cost, durability, and performance. 

Several types of trusses can be applied to 
engineering projects. Therefore, this research aims to use a 
Computational Intelligence algorithm, FA, for a parametric 
study of trusses for rural constructions. The optimization 
problem is based on minimizing the weight of the truss 
based on the design constraints of the Brazilian standard 
ABNT NBR 7190 (1997). Despite the references above, 
most studies related to structural optimization have their 
applications emphasize concrete and steel. Therefore, this 
work involves a parametric analysis of trusses, aiming for 
its application in the design of timber structures, forming a 
basis for future research. 

As stated earlier, the FA algorithm was employed for 
the same. In literature, FA was used for optimization in 
several structural systems with different materials, such as 
steel beam design, steel pressure vessel design, steel helical 
compression spring design, reinforced concrete beam 
design, steel cantilever beam design, and steel tower structure 
design (Gandomi et al., 2011; Talatahari et al., 2014). 

Moreover, the FA usage is not restricted to structural 
engineering problems, but several related engineering areas, 
such as system identification design problem, location-
design problem, groundwater remediation design, 
construction system reliability analysis, power system 
design, and antenna design (Ram et al., 2014; Kazemzadeh-
Parsi et al., 2015; Y. Li et al., 2016; Sadjadi et al., 2016; 
Setiadi & Jones, 2016; Upadhyay et al., 2016). This 
corroborates with the FA application to optimize timber 
truss, the research aim. 

 
MATERIAL AND METHODS 

For the development of this work, the criteria 
established by the Brazilian standard for timber structures, 
ABNT NBR 7190 (1997), were considered for the truss 
design. This section will present the optimization algorithm 
and the penalization method. The Objective Function (OF) 
and the details for the parametric study were calculated. 
And the Finite Element Method (FEM) was used to 
determine the loads in each bar of the truss and nodal 
displacements, the FEM was used. 

Algorithm used to optimize truss bars 

For truss optimization, FA was used, as developed 
by Yang (2008). The FA is a bio-inspired algorithm with 
population characteristics, i.e., two or more particles pass 
through the sample space seeking an optimal and viable 
solution. The biological concept used to develop this 
algorithm including bioluminescence and the interference 
of iterations during the crossing of fireflies. Thus, FA is 
based on the ability of fireflies to emit light and population 
individuals to perceive this light (Yang, 2008). 

 

Conceiving the initial populations, the firefly (or 
design variable) starts a random walk process, thus the 
firefly �⃗� “moves” according to an update function of the 
design variables (𝜔) (Equation 1), where �⃗� is the vector of 
design variables, 𝜔 is the update vector function of the 
design zvariable �⃗�, and 𝑡 is the number of iterations. 

�⃗�  = �⃗� + 𝜔  (1)
 
Based on this new direction, the possible candidate 

solutions were evaluated for generating the optimal design 
point (Wang et al., 2017). Thus, the update function of the 
movement of the fireflies’ iterations is given by [eq. (2)]. 

𝜔 = 𝛽 �⃗� − �⃗� + 𝛼(𝜂 − 0,5 𝜀) (2)
 
From [eq. (2)], 𝛽 is the attractiveness between the 

fireflies 𝑖 and 𝑗, �⃗�  is the firefly 𝑖, �⃗�  is the firefly 𝑗, 𝜂 is the 
vector of random numbers between 0 and 1, 𝛼 is the 
randomness factor, and 𝜀 is a unit vector. 

To ensure the randomness of the process, a 
randomness factor 𝛼 is used. Its behavior is described by 
following an exponential decay behavior according to the 
number of iterations t, following the formulation proposed 
by [eq. (3)], where 𝜃 is the decay constant equal to 0.98. 

𝛼 = 𝛼 + (𝛼  − 𝛼 ). 𝜃  (3)
 

As described, the term 𝛽 describes the attractiveness 
between the fireflies in the population (Equation 4), where 
𝛽  is the attractiveness for a distance 𝑟 = 0, 𝑟  is the 
Euclidean distance between fireflies 𝑖 and 𝑗 (Equation 5), 
and 𝛾 is the light absorption parameter (Equation 6). 

𝛽 = 𝛽  𝑒  ≅ 𝛽 /(1 + 𝛾 𝑟 )   (4)

  

𝑟 = �⃗� − �⃗� = �⃗� , − �⃗� ,   (5)

  
𝛾 = 1/(𝑥 − 𝑥  )   (6)
 
From eqs (5) and (6), 𝑘 is the k-th component of the 

vector of design variables �⃗�, 𝑑 is the number of design 
variables, 𝑥  is the top bound of the design variables and 
𝑥  is the bottom bound of the design variables. 

The algorithm parameters used in the study are 
presented in  

TABLE 1, based on the sensitivity study developed 
by Pereira et al. (2020). 

 
TABLE 1. FA input parameters. 

Parameter Meaning Adopted value 

𝛽  Attractiveness among fireflies 0.90 

𝑁  Number of generations  500 

𝑁  Population size 20 

𝛼  Minimum randomness factor 0.20 

𝛼  Maximum randomness factor 1.00 

𝑅  Penalty factor 105
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Pereira et al. (2020) developed a study applying the 
FA to optimize a steel truss. Notably, Pereira et al. (2020) 
study regarded the constraints based on the material 
mechanics, without considering the standard steel design 
requirements. Moreover, the study did not focus on the 
typologies and the parametric study. Therefore, the present 
research contributes to developing the optimization to 
understand the Howe typology behavior performing a 
parametric study for this purpose, applying the Brazilian 
standard for wood design, using their design and 
calculation precepts. 

OF and treatment of constraints 

The present study aims to minimize the total weight 
of the structural system considering the constraints of nodal 
displacements, mechanical resistance of the bars, and 
geometric criteria generating lateral instability in the 
structural system. The OF of the problem is expressed by 
[eq. (7)], where 𝐴  is the cross-section area of bar 𝑖, 𝜌  is the 
density of the material, 𝐿  is the length of the bar 𝑖 of the 
truss, and 𝑛 is the number of truss bars. 

𝐹𝑂 𝐴 , 𝜌 , 𝐿 = 𝐴 . 𝜌 . 𝐿  (7)

 
For the constraint treatment procedure, the external 

penalty technique was used (Kuri-Morales & Gutiérrez-
García, 2002; Yeniay, 2005). The OF was modified to 
obtain a pseudo-objective function, where 𝑔  and 
ℎ  represent the inequality and equality constraints, 
respectively. Equation 8 shows the penalty method adopted, 
and the penalized OF 𝑊 is presented in [eq. (9)]. 

𝑃(�⃗�) = max 0, 𝑔 (�⃗�) + [ℎ (�⃗�)]  (8)

  
𝑊 𝐴 , 𝜌 , 𝐿 , 𝑥 = 𝐹𝑂 𝐴 , 𝜌 , 𝐿 + 𝑅  𝑃(�⃗�) (9)

 
From [eq. (8)], 𝑃(�⃗�) is the static outer penalty 

function, 𝑗 and 𝑘 are j-th constraints of inequality and k-th 
constraints of equality, respectively, 𝑚 and 𝑛 are the total 
number of constraints of inequality and equality, 
respectively, �⃗� is the solution vector (random population), 
𝑔 and ℎ are the set of constraints of inequality and equality, 
respectively, and 𝑊(�⃗�) is the penalized OF. 

Description of truss and design variables 

For the optimization process, the present work 
adopted the flat truss of the Howe typology. The group of 
trusses was divided into seven spans with the lengths of 6, 
9, 12, and 15 meters. Thirty optimization process was 
performed for each truss to obtain a significant dispersion 
of the results. 

FIGURE 1 displays a generic representation of node 
distances (𝐵 = 𝐿/6 and 𝐻), with the bar design and position 
variables considered �⃗� , �⃗� , �⃗� , and �⃗� . To evaluate the 
influence of truss height, a parametric study was used where 
the height 𝐻 assumed the values of L/10, L/15, and L/20. 

The generic design variable �⃗�  represents the cross-
sectional area of the truss section, for each group of bars a 
certain design variable was adopted: �⃗�  for the bottom 
chord, �⃗�  for the top chord, �⃗�  for the vertical bars, and �⃗�  
for the diagonal bars.

 

 
FIGURE 1. Generic representation of the nodal distance and design projects of truss. 

 
For the application of the optimization process, 

wood of the dicotyledon group belonging to the resistance 
class C30 was considered, whose properties are depicted in 
standard ABNT NBR 7190 (1997). The specifications 
allowed for sizing are presented in TABLE 2 and the 
summary of the mechanical properties of the wood is 
presented in TABLE 3. 

 
TABLE 2. Specifications for the woods used in the design 
process. 

Specification Adopted 
Class Dicotyledonae C30 
Typo of wood Sawn 
Loading class Long duration 
Humidity class I 
Equilibrium humidity 12% 
Wood category 1st Category 

TABLE 3. Mechanical properties of calculus. 

𝑓 ,  (MPa) 𝑓 ,  (MPa) 𝐸 ,  (MPa) 

10.29 13.36 6960 
 

Requests and limit states 

The vertical load supported by the truss included a 
roof load: referring to a sandwich tile (G) of 200 N m-²; own 
dead load was calculated for each truss variation (DL) with 
the service load (S) of 250 N m-² and wind suction load (W) 
of 800 N m-². 

For the verification of limit states, based on the 
regulatory requirements of ABNT NBR 7190 (1997), three 
combinations were used, two of the Ultimate Limit State 
(ULS): combination 1 (1.4 DL + 1.4 G + 1.4 S); 
combination 2 (0.9 DL + 0.9 G + 1.05 W); and one for the 
Serviceability Limit State (SLS): combination 3 (1.00 DL + 



André L. Christoforo, Matheus H. M. de Moraes, Iuri F. Fraga, et al. 
 

 
Engenharia Agrícola, Jaboticabal, v.42, special issue, e20210123, 2022 

1.00 G + 0.3 S + 0.2 W). Later, all OF restrictions were 
verified with respect to such combinations. 

According to the influence area, a distance of 5 m 
was considered between the gantries, and the distributed 
loads were transformed into nodes load. The Integrated 
Development Environment of MATLAB® software was 
used for structural analysis and optimization. 

Design constraints considered 

The constraints (𝑔 (�⃗�)) are expressed by the eqs 
(10) to (14), where 𝑖 is a generic bar (𝑖 = 1, … , 𝑛 ), 
𝑛  is the number of truss bars analyzed, 𝑛 is a generic 
node (𝑛 = 1, … , 𝑛 ), and 𝑛  is the number of nodes 
of the truss bars. 

𝑔 (�⃗�) = 𝜎 /𝜎 − 1 ≤ 0  (10)

𝑔 (�⃗�) = 𝑢 /𝑢 − 1 ≤ 0  (11)

𝑔 (�⃗�) = 𝜆 /𝜆 − 1 ≤ 0  (12)

𝑔 (�⃗�) = 𝐴 /𝐴 − 1 ≤ 0  (13)

𝑔 (�⃗�) = 𝑏 /𝑏 − 1 ≤ 0  (14)

 
Equation 10 considers the ULS checking the action 

of normal stresses (𝜎 ) (traction or compression), where 𝜎  
is the normal stress limit. 

Equation 11 is used to check the SLS, where 𝑢  is a 
nodal displacement and 𝑢  is the displacement limit,     

𝑢  = 𝐿/200 (ABNT NBR 7190, 1997), where 𝐿 is the 
span of the structural system. 

Equation 12 represents the geometric limits of the 
bars based on the slenderness index (𝜆 ), where 𝜆  is the 
limit slenderness index, according to the standard ABNT 
NBR 7190 (1997), with 140 as the maximum value. 

The geometric constraint resulting from the ratio 
between the cross-sectional area of a bar (𝐴 ) and the 
minimum area (𝐴 ) is expressed by [eq. (13)], where 50 
cm² is the minimum cross-sectional area allowed (ABNT 
NBR 7190, 1997). 

Finally, [eq. (14)] expresses the geometric constraint 
associating the bar thickness (𝑏 ) and the minimum thickness 
(𝑏 ), given that the standard ABNT NBR 7190 (1997) 
limits minimum thickness for the main parts by 5 cm. 

 
RESULTS AND DISCUSSION 

In this section, the results of the truss optimization 
process are discussed and presented in TABLE 4. These 
values comprise the results of thirty executions of the 
optimization algorithm, where 𝑊  and 𝑊  represent 
the maximum and minimum values of the penalized OF, 
respectively, the amplitude (A), medium (𝜇), average (𝑥), 
standard deviation (𝜎), and feasibility rate (TF) represents 
the ratio of the number of tests satisfying all constraints and 
the number of tests performed. To summarize the results, 
identification was adopted for trusses of the type x-y-L/z, 
where “x” is the truss typology (H for truss Howe) and “y” 
is the truss span in meters (6, 9, 12, and 15), and “z” for the 
relationship H=L/z (10, 15, and 20).

 
TABLE 4. Summary of the results obtained from the truss optimization process. 

Truss 𝑊  (kg) 𝑊  (kg) A (kg) 𝜇 (kg) 𝑥 (kg) 𝜎 (kg) TF (%) 

H-6-L/10 148.9771 106.7069 42.2703 116.3885 119.0252 9.1675 100 

H-6-L/15 118.7732 97.8061 20.9671 106.3101 107.3664 5.6493 100 

H-6-L/20 125.1609 95.4152 29.7457 113.7032 112.5430 6.8704 100 

H-9-L/10 245.1870 168.5507 76.6363 206.8425 205.9876 17.2656 100 

H-9-L/15 240.8623 175.9630 64.8993 208.7818 206.8520 17.8703 100 

H-9-L/20 284.3665 238.2227 46.1438 261.7093 260.3088 12.0192 100 

H-12-L/10 413.3496 322.7571 90.5925 361.5206 362.0176 29.7980 100 

H-12-L/15 468.9180 265.1196 203.7984 389.5996 378.2887 57.1149 100 

H-12-L/20 545.2604 304.9837 240.2767 425.1910 413.7167 45.3212 100 

H-15-L/10 625.4143 510.1786 115.2357 555.2714 556.3199 30.6610 100 

H-15-L/15 653.5657 387.0949 266.4707 511.3104 525.7424 54.3117 100 

H-15-L/20 594.3057 411.7221 182.5837 550.7577 528.0167 53.5438 100 

 
The box plot (FIGURE 2) shows the weight change for each truss. For larger spans, the dispersion of the result increased 

as the increasing span also increased the loads, making the application of the optimization method more difficult. 
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FIGURE 2. Box plot of the minimum weight (W) of the trusses. 
 
Post the optimization process, the design variable 

values were obtained for each truss, with regard to the 
established design constraints, including the best result 

with a 100% feasibility rate. For this purpose, a summary 
of the design variables from the truss results is presented 
in TABLE 5. 

 
TABLE 5. Summarization of design variables. 

Truss 
Design Variables 

x1 (cm²) x2 (cm²) x3 (cm²) x4 (cm²) 

H-6-L/10 57.5 57.5 57.5 56.25 

H-6-L/15 57.5 57.5 57.5 57.5 

H-6-L/20 56.25 56.25 75 57.5 

H-9-L/10 56.25 72.45 75 56.25 

H-9-L/15 100.8 93.75 62.5 100.8 

H-9-L/20 112.5 112.5 78.75 75 

H-12-L/10 93.75 93.75 62.5 86.25 

H-12-L/15 62.5 57.5 75 112.5 

H-12-L/20 87.5 80 56.25 125 

H-15-L/10 125 115 62.5 115 

H-15-L/15 78.75 72.45 78.75 125 

H-15-L/20 187.5 75 62.5 56.25 

 
Subsequently, the OF (W) was evaluated as a function of the span (L), for the conditions delimited in the present study 

(FIGURE 3). 
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FIGURE 3. Bar plot minimum weight (W) of trusses as a function of span (L). 

When assessing FIGURE 3, it was observed that the 
variation in the height (H) has a direct connection with the 
minimum weight, accentuated for trusses with spans of 9 
and 12 m, implying that higher trusses were heavier with a 
variation of 25.84% and 16.21%, respectively. For the spans 
of 6 and 15 m, the change in the truss height showed lower 
significance in relation to the trusses with the other spans, 
where the truss with height L/10 resulted in heavier 
weights and the L/15 and L/20 returned close results 

regarding to minimum value, with a variation of 8.70% 
and 6.95%, respectively. 

Despite the difference between 6.95% and 8.70% 
weight variations, the height proportions resulted in 
structural systems satisfying the limit state equations 
adopted for the design problem. 

Once the total weight of the trusses was evaluated, 
the maximum truss displacement was determined to ensure 
the use of the structure in service. 

 

 

FIGURE 4. The curves maximum displacement as a function of span (L). 
 
In relation to displacement, all trusses were within the 

range established by the standard ABNT NBR 7190 (1997), 
and according to the curve values, trusses with height L/10 
showed lower displacements, with those of L/15 and L/20 
demonstrated 94% and 258% higher displacements in 
relation to truss with height L/10, respectively. 

The optimal response convergence curves among the 
weights of the trusses with heights L/10, L/15, and L/20 are 
shown in the FIGURE 5. With the increase in the span, the 
weight convergence occurred in numerous iterations due to 
increased loading causing greater complexity in the 
optimization process.
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FIGURE 5. Convergence curves for minimum weight (W) of trusses. 
 

Evaluation of stress constraints 

To evaluate the distribution capacity of the normal 
truss loadings, the results of normal stress constraints were 
evaluated and presented in [eq. (10)] and combination 2 (ULS 
combination considering the wind load with variable load). 

TABLE 6 demonstrates the number of samples (N), 
average (𝑥), standard deviation (𝜎), and confidence interval 
(CI) for trusses, regarding combination 1 (ULS combination 
considering the service load with variable load) and 
combination 2 (ULS combination considering the wind load 
with variable load). 

 
TABLE 6. Summary of the results of normal stress constraints of trusses. 

Truss N 𝑥 𝜎 CI of 95% 

H-6-L/10 50 - 0.7058 0.1720 (- 0.7785, - 0.6331) 

H-6- L/15 50 - 0.6571 0.2135 (- 0.7372, - 0.5769) 

H-6- L/20 50 - 0.6730 0.2299 (- 0.7506, - 0.5954) 

H-9- L/10 50 - 0.5994 0.2165 (- 0.6721, - 0.5267) 

H-9- L/15 50 - 0.6242 0.2235 (- 0.7043, - 0.5441) 

H-9- L/20 50 - 0.6321 0.2395 (- 0.7097, - 0.5545) 

H-12- L/10 50 - 0.5095 0.2836 (- 0.5822, - 0.4368) 

H-12- L/15 50 - 0.4530 0.3457 (- 0.5331, - 0.3729) 

H-12- L/20 50 - 0.5061 0.3498 (- 0.5838, - 0.4285) 

H-15- L/10 50 - 0.4703 0.3389 (- 0.5430, - 0.3976) 

H-15- L/15 50 - 0.4461 0.3393 (- 0.5263, - 0.3660) 

H-15- L/20 50 - 0.5366 0.2778 (- 0.6142, - 0.4590) 

 
As presented in [eq. (10)], the closer to zero the 

constraint result, the closer the normal stress is to the limit 
established by the standard. Based on the results of Table 6, 
the trusses of 6, 12, and 15 m span and the trusses of height 
L/15 demonstrated better distribution of normal stress loads, 
and the trusses with 9 m span those with height L/10 showed 
the best normal stress load distribution, using more load 
capacity of the structure. 
 

Evaluation of displacement constraints 

To evaluate the distribution capacity of the 
maximum displacements of the trusses, it is necessary to 
evaluate the results of the maximum displacement 
constraints, presented in [eq. (11)].  

TABLE 7 shows the number of samples (N), average 
(𝑥), standard deviation (𝜎), and CI for the trusses for 
combination 3 (SLS combination).
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TABLE 7. Summary results of constraints of displacement of trusses. 

Truss N 𝑥 𝜎 CI of 95% 

H-6-L/10 14 -0.7574 0.1875 (- 0.9171, - 0.5976) 

H-6-L/15 14 -0.6253 0.3075 (- 0.7951, - 0.4556) 

H-6-L/20 14 -0.5568 0.3476 (- 0.7346, - 0.3789) 

H-9-L/10 14 -0.6356 0.3156 (- 0.7953, - 0.4758) 

H-9-L/15 14 -0.6414 0.2961 (- 0.8112, - 0.4717) 

H-9-L/20 14 -0.628 0.3042 (- 0.8058, - 0.4501) 

H-12-L/10 14 -0.618 0.3294 (- 0.7778, - 0.4583) 

H-12-L/15 14 -0.5442 0.2973 (- 0.7139, - 0.3744) 

H-12-L/20 14 -0.4946 0.3477 (- 0.6724, - 0.3167) 

H-15-L/10 14 -0.6509 0.3344 (- 0.8106, - 0.4911) 

H-15-L/15 14 -0.4688 0.3607 (- 0.6386, - 0.2991) 

H-15-L/20 14 -0.4957 0.3248 (- 0.6736, - 0.3179) 

 
Similar to normal stress constraints, the closer to 

zero the result of the constraints, the closer the maximum 
displacement is to the limit established by the standard. 
Considering the results of  

TABLE 7, the trusses of 6, 9, and 12 m at trusses with 
height L/20 presented a better displacement distribution, and 
for the trusses of 15 m span the one with the best 
displacement distribution was the L/15. 

 
CONCLUSIONS 

Optimization application through the FA is helpful 
in effectively designing the wood structures. The height 
variations are directly connected to the maximum 
displacement. The trusses with the biggest heights result in 
lower maximum displacements. The maximum 
displacement is within the limit set by the Brazilian standard 
for wood design (ABNT NBR 7190, 1997). 

The height proportion with a larger range could be 
applied in future research along with shape optimization, 
wherein the coordinates of the joist nodes are the problem 
variables. In this case, it would be possible to obtain the 
optimal height proportion for the specific structural model. 
For future studies, other optimization methods could be 
applied along with other typologies, shape optimization, 
and wood from another resistance group to obtain 
comprehensive results and develop optimization knowledge 
applied to wood structures. 
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