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ABSTRACT 

To provide an efficient and reliable calibration method with reduced time cost and 
increased accuracy, the angle of repose (AoR) in the simulation is batch-processed based 
on Python and the GA-BP neural network is used to improve the prediction accuracy of 
the DEM parameters of coated fertilizer particles. The single-factor test data were firstly 
interpolated to obtain sufficient training samples, thus avoiding the drawback that the BP 
network tends to fall into the local minimum during the training process. Then the GA-BP 
neural network was trained in combination with the orthogonal combination test, and the 
fitted correlation coefficients were all greater than 0.975, indicating that the algorithm has 
strong generalization performance and good stability. The predicted values matched the 
expected output values, indicating that the GA-BP neural network can accurately predict 
the nonlinear function output, and the network predicted output can be approximated as 
the actual output of the function. With the actual AoR as the output value, the simulation 
value of the AoR was obtained as 24.457° when the coefficient of restitution (CoR), 
coefficient of static friction (CoSF), and coefficient of rolling friction (CoRF) were 0.509, 
0.176, and 0.0332, respectively, and the relative error with the actual value was 0.068%, 
indicating that the well-fitted GA-BP neural network could accurately predict the DEM 
parameters of fertilizer particles. 

 

 

INTRODUCTION 

Particles in a variety of forms – ranging from rock 
soil to food grains and pharmaceutical powders – play an 
important role in many industries (Benvenuti et al. 2016; 
Landry et al., 2006). The Discrete Element Method (DEM) 
was originally proposed by Cundall & Strack (1979),    
has been widely used to simulate particle behaviour in   
these granular processes (Cleary & Sawley, 2002), and       
can provide a lot of information (such as particle trajectories 
and interactions) that are difficult to obtain by      
physical experiments (Chen et al., 2021; Han et al., 2016; 
Xiao et al., 2021). 

To obtain reliable simulation results, the established 
DEM models should be calibrated first. Researchers have 
tried many methods to calibrate or measure the discrete 

element parameters, and these can generally be divided into 
two categories: direct calibration and indirect calibration 
(Beakawi Al-Hashemi & Baghabra Al-Amoudi, 2018; Wang 
et al., 2020; Zhang et al., 2020). In direct calibration, the 
particle properties are measured by experiments and directly 
used as simulation inputs. However, some of the properties 
are very difficult to measure due to the particle shape and 
size. In indirect calibration, the macroscopic behaviour of 
the particles is measured by experiments and then calibrated 
in reverse by changing a series of simulation parameters 
until the measured macroscopic behaviour is matched (Xia 
et al., 2019).  

The angle of repose (AoR) is taken as an essential 
macroscopic parameter in characterizing the flowability of 
particles. The AoR is defined as the angle between a 
horizontal surface and the slant height of a conical heap of 
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the loose granular material at the critical point when this 
slope collapses. By comparing the experimental and 
simulated values of the AoR, the material parameters and 
contact parameters can be calibrated (Tan et al., 2021). The 
value of the AoR can be obtained by reading the heap’s 
surface value directly by a protractor and calculating the 
value with the heap’s measured diameter and height. 
However, there are two non-negligible problems, which are 
summarized in previous reports (Müller et al., 2021; Tan et 
al., 2020): lower repeatability (errors between two 
measurements performed by one operator) and lower 
reproducibility (errors between the measurements by 
different operators in different laboratories). Due to the 
weakness and uncertainty in the calibration of parameters 
based on the comparison between measured and simulated 
AoRs, more precise and reliable calibration is necessary for 
the simulation of irregular materials in DEM industrial 
applications (Tan et al., 2021). 

When calibrating multiple parameters, a large number 
of experiments are required to ensure the model accuracy, 
which is time-consuming and inefficient. To make up for the 
above shortcoming, central composite design (CCD) (Yoon, 
2007), the Taguchi method and orthogonal experiments 
(Hanley et al., 2011), Latin hypercube sampling and the 
Kriging method (Rackl & Hanley, 2017) are used to 
generate samples. Then the optimized algorithm consisting 
of a polynomial response surface (Xia et al., 2019), neural 
network (Benvenuti et al., 2016), and the radial basis neural 
network method (Zhou et al., 2018) can be used to process 
the data and get the calibration results. The above    
method can reduce the number of experiments, but there   
is a problem of large relative errors between the   
measured value and the simulated value due to the large 
convergence threshold. 

Our study aims to provide an efficient and reliable 
calibration method with reduced time cost and increased 
accuracy. In order to achieve this goal, the AoR value in the 

simulation is batch-processed based on Python to improve 
the accuracy; the experimental data is iteratively optimized 
based on the GA-BP neural network to improve the 
prediction accuracy of the DEM parameters. 
 
MATERIAL AND METHODS 

DEM modelling of fertilizer granules 

In this paper, the film-coated controlled-release 
compound fertilizers (N-P2O5-K2O 24-6-10) were sourced 
from Shandong Nongyang Biological Technology Co., Ltd., 
China (Figure 1b), 100 randomly selected fertilizer granule 
samples were measured in three directions: length, width, 
and thickness, using digital calipers (accuracy 0.01 mm), 
and the average triaxial dimensions of the fertilizer particles 
were 4.08 mm×3.97 mm×3.89 mm. The equivalent diameter 
D and sphericity Sp were calculated using [eq. (1)] and 
found to be 3.98 mm and 0.975, respectively, and the size 
distribution is shown in Figure 1a. A single sphere with an 
average diameter of 3.98 mm and standard deviation of 0.52 
was used in the DEM simulation to build the fertilizer 
granule simulation model (Figure 1c). 
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                            (1) 

Where:  

D is the equivalent diameter of the fertilizer granules, 
mm;  

L is the length of the fertilizer granules, mm;  

W is the width of the fertilizer granules, mm;  

T is the thickness of the fertilizer granules, mm, 

Sp is the sphericity. 

 

 

FIGURE 1. Fertilizer particle equivalent diameter distribution (a), actual fertilizer particles (b) and DEM modelling (c). 
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A random sample of 300 fertilizer granules was 
selected, and the mass and volume were measured using a 
digital balance (accuracy 0.001 g) and a measuring cylinder 
(accuracy 0.01 mL), respectively (drainage method), and the 
true density of the fertilizer granules was calculated as 1.46 
g/cm3 using [eq. (2)]. The moisture content of the fertilizer 
granules was measured as 0.88% using a rapid moisture 
analyzer (accuracy 0.001 g). 

0

1 0

=real

m

V V



                          (2) 

Where:  

ρreal is the true density of the fertilizer particles, 
g/cm3;  

m0 is the mass of the fertilizer particles, g;  

V1 is the total volume of the fertilizer particles and 
water in the measuring cylinder, cm3, 

V0 is the volume of water in the measuring cylinder, 
cm3.

 

 

FIGURE 2. AoR simulation test. 

 
In this study, the material which interacts with the fertilizer particles, such as the funnel and the bottom cylinder wheel 

(Figure 2), is made of ABS (Liu et al., 2018; Zhu et al., 2018). The other discrete element parameters used in this paper are 
shown in TABLE 1. 

 

TABLE 1. Discrete element parameters. 

Parameters Fertilizer ABS 

Poisson's ratio 0.225(literature) 0.394(literature) 

Shear modulus / Pa 1.528×108(literature) 8.9×108(literature) 

Density / g/cm3 1.460(measured) 1.06(literature) 

Coefficient of restitution 0.3~0.7(to be calibratd) 0.47(literature) 

Coefficient of static friction 0.12~0.24(to be calibratd) 0.42(literature) 

Coefficient of rolling friction  0.025~0.045(to be calibratd) 0.095(literature) 
 
Angle of repose test 

Equipment EDEM2020 of Altair Engineering, Inc. was 
used to numerically simulate the AoR of the fertilizer particles. 
Due to the fact that the moisture content of the fertilizer is low, 
a Hertz‒Mindlin (no-slip) contact model was adopted to 
calculate the particle-particle contact and particle-geometry 
interactions, as shown in Figure 3. Hertz‒Mindlin (No Slip) is 

the default model used in EDEM, which is accurate and 
efficient in force calculation. In this model, the normal force 
component is based on Hertzian contact theory (Hertz, 1881),  
and the tangential force model is based on the research work 
of Middlin‒Deresiewicz (Mindlin, 1949; Mindlin & 
Deresiewicz, 1953). Both normal force and tangential force 
have damping components, as described in the literature 
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(Tsuji et al., 1992) stating that the damping coefficient is 
related to the restitution coefficient. Tangential friction 
complies with Coulomb's law of friction; see (Cundall & 

Strack, 1979). The rolling friction force is realized by the 
contact independent directional constant torque model; see 
(Sakaguchi et al., 1993).

 

 

FIGURE 3. Hertz‒Mindlin (no-slip) contact model in EDEM. 

 
To accurately reflect the interaction between fertilizer 

particles, the funnel shown in Figure 2 was used to perform 
the AoR test on the particles. Firstly, 2500 g and 1000 g of 
fertilizer particles are generated in the bottom cylinder and 
funnel, respectively, and the bottom of the funnel is blocked 
with a plate to prevent particles from falling. After the 
particles are completely stationary, the simulation file is 
saved as time 0. Finally, the flat plate at the bottom of the 
funnel is removed, letting the fertilizer particles fall from a 
height of 200 mm, and waiting for the particles to be 
completely discharged and the piled particles to become 
static. The total simulation time is 4 s, and the time step is 
5×10-6 s. The data is saved every 0.01 s. 

After the simulation has been completed, the AoR 

post-processing program based on Python 3.6 is run to 
connect the EDEMpy library, and the calculation theory is as 
shown in Figure 4. Firstly, the particle pile is evenly divided 
into n parts every θ degree, and n particle slices are obtained; 
secondly, each slice is divided into two parts, low domain 
and high domain, then the low domain is divided into 
multiple bins, the surface particles in each bin are found and 
their position information is read; lastly, the AoR can be 
obtained by linear fitting of the surface particles in multiple 
bins, and the AoR of multiple slices is counted to obtain the 
mean value and standard deviation. In this research, 18 
sampling surfaces were set up on the fertilizer particle pile 
surface, the bin diameter was 10 mm, and the calculation 
process is as shown in Figure 5. 

 

 

FIGURE 4. Determination of the AoR test using a lifting cylinder (a. front view, b. top view) and measurement on the 

simulated granular pile (c). 
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FIGURE 5. Calculation process of AoR. 
 
GA-BP neural network optimization method 

The Back Propagation (BP) neural network algorithm 
is a kind of neural network of a feedforward learning 
algorithm and back propagation algorithm, which can 
effectively solve the problem of the connection weight of the 
hidden layer in multi-layer neural networks and improve the 
self-learning and organization ability of the neural network. 
The Genetic Algorithm (GA) is a random and parallel search 
optimization method that simulates the natural genetic 
mechanism and biological evolution theory. This method 
introduces the biological evolution theory of “survival of  
the fittest” and has the advantages of high efficiency,  
parallel, and global search. The GA-BP integrated optimization  

algorithm has two main steps, training and simulation of the 
BP neural network and extreme value optimization of the 
genetic algorithm. Training and fitting of the neural network 
mainly includes establishing the BP neural network, which is 
trained by inputting and outputting data with a nonlinear 
function, and prediction of the function output. The extreme 
value optimization process of the genetic algorithm is mainly 
the prediction result of the neural network as the individual 
fitness value, and the global optimal value and the 
corresponding input value are found through selection 
operation, cross-operation and mutation operation (Qi et al., 
2019). The flowchart of the algorithm based on Matlab2016a 
is shown in Figure 6.

 

 

Start

Read simulation data and 
find key timestep

Divide domain into bins 
and get particle centre

Set up figure

Find the bin centre and 
surface particles

Calculate AoR and 
statistics

Linear fit to surface 
particles

Export figure

End
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FIGURE 6. Algorithm flow. 

 

In this paper, a 3-layer BP neural network (input layer, 
hidden layer, and output layer) was used to create an 
optimization model of the inter-particle contact parameters 
and AoR, and a total of 3 variables were selected: 
inter-particle CoR x1, CoSF x2, and CoRF x3, i.e., the number 
of neurons in the input layer is 3, and the number of 
objective function AoR y1 is 1, i.e., the number of neurons in 
the output layer is 1. The number of neurons j in the hidden 
layer is calculated (Equation 3). 

j i k z                              (3) 

Where:  

j is the number of neurons in the hidden layer;  

i is the number of neurons in the input layer;  

k is the number of neurons in the output layer, and  

z is the empirical value (1 ≤ z ≤ 10). 
 

The number of neurons in the hidden layer was 
calculated to be 3~13, and the best number of neurons in the 
hidden layer was finally determined to be 10 by the analysis 
and comparison of the results of previous program running. 
The structure of the BP neural network is shown in Figure 7.
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FIGURE 7. BP neural network structure. 
 

The transfer functions of the hidden layer and output 
layer were a tansig function and Purelin function, 
respectively, and the objective function between the AoR 
and the inter-particle contact parameters can be expressed as 

   1 2F X f f         Y V W X   (4) 

Where:  

f() is the single-level Sigmoid function of the transfer 
function from the input layer to the hidden layer and 
from the hidden layer to the output layer of the BP 
neural network;  

X is the input vector, X=[ x1, x2, x3, x4]T;  

Y is the output vector, Y=[ y1];  

F(X) is the relationship between the input and the 
output;  

W is the weight matrix of the input layer and the 
hidden layer;  

θ1 is the threshold of the hidden layer;  

V is the weight matrix of the hidden layer and the 
output layer, 

θ2 is the threshold of the output layer. 
 

To eliminate the quantitative relationship between the 
input and output vectors, satisfy the value domain interval of 
the transfer function, and set the input signal too large to 
cause network output saturation, the training samples are 
normalized. Let the normalization process interval be [a, b], 
then the input and output data normalization process is 
calculated as 

  min

max min

i i
i

i i

T T
T a b a

T T
 
   


             (5) 

Where:  

Ti is the No. i input of the training sample data;  

T′ 
i is the normalized data of Ti, T

′ 
i ∈[a, b];  

Timax is the maximum value of the No. i input in the 
training sample, 

Timin is the minimum value of the No. i input in the 
training sample. 

 
The inverse normalization formula of [eq. (5)] is 

  max min
min

i i
i i i

T T
T T T a

b a
 

   


          (6) 

 
In this paper, the normalization interval [0.1, 0.9] is 

selected, and the BP neural network model with the 
inter-particle contact parameters and AoR adopts a 3-10-1 
network structure with an initial learning rate of 0.8, and the 
mean square error between the actual and desired outputs of 
the network is less than 1×10-7 when the weight matrix and 
threshold values of the input and hidden layers are saved. 

The predicted output of the trained BP neural 
network was taken as the individual fitness value for genetic 
algorithm optimization calculation, and the optimal values 
and corresponding input values of the function were found 
through selection, interlace operation, and mutation 
operations. The genetic algorithm parameters were set as 
follows: the population size, the number of evolutions, the 
crossover probability and the variation probability are 20, 50, 
0.4 and 0.2, respectively, the floating point number is encoded, 
and the individual length is 3. The individual parameters 
mainly include the individual fitness function trained by the 
BP neural network, the population size evolution algebra, the 
variable function, the optimal fitness value, and the optimal 
individual of each generation of the population. 

RESULTS AND DISCUSSION 

Coefficient of restitution 

The relationship between the CoR and the AoR of the 
fertilizer particles is shown in Figure 8, when the coefficient 
of static friction (CoSF) and coefficient of rolling friction 
(CoRF) are 0.18 and 0.035, respectively, and the CoR is 
0.3~0.7.      
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FIGURE 8. Effect of coefficient of restitution factor on AoR. 
 

One-way Analysis of Variance (ANOVA) showed 
that the homogeneity of the variance test result was 
significant at 0.694>0.05, and the ANOVA result (TABLE 2) 
showed P<0.0001, indicating that there was a significant 
difference in the effect of the CoR on the AoR. The AoR 

decreased with the increase of CoR, and the bigger the CoR, 
the more quickly the AoR decreased and the more 
significant the difference between groups. When the CoR is 
0.5 and 0.6, the AoR is closer to the actual value (red line), 
and the degree of fluctuation is correspondingly smaller. 

 
TABLE 2. The ANOVA table. 

CoR 

 Sum of squares df Mean square F Sig. 

Between-group 17.361 4 4.340 9.175 <0.0001  

Within-group 40.209 85 0.473     

Total 57.570 89       

CoSF 

 Sum of squares df Mean square F Sig. 

Between-group 396.570 4 99.142 252.281 <0.0001  

Within-group 33.404 85 0.393     

Total 429.974 89       

CoRF 

 Sum of squares df Mean square F Sig. 

Between-group 101.818 4 25.455 48.907 <0.0001  

Within-group 44.240 85 0.520     

Total 146.059 89       

 
Coefficient of static friction 

The relationship between the CoSF and the AoR of the fertilizer particles is shown in Figure 9, when the CoR and 
CoRF are 0.5 and 0.035, respectively, and the CoSF is 0.12~0.24. 
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FIGURE 9. Effect of static friction coefficient on AoR. 
 

One-way ANOVA showed that the homogeneity of 
the variance test result was significant at 0.265>0.05, and 
the ANOVA result (TABLE 2) showed P<0.0001, indicating 
that there was a significant difference in the effect of the 
CoSF on the AoR. The AoR increases with the increase of 
the CoSF, and the larger the CoSF, the smaller the degree of 
increase of the AoR. When the CoSF is 0.15 and 0.18, the 
AoR is closer to the actual value (red line), and the degree of  

fluctuation is correspondingly smaller. 

Coefficient of rolling friction 

The relationship between the CoRF and the AoR of the 
fertilizer particles is shown in Figure 10, when the CoR and 
CoSF are 0.5 and 0.18, respectively, and the CoRF is 
0.025~0.045.
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FIGURE 10. Effect of coefficient of rolling friction on AoR. 
 

The one-way ANOVA showed that the homogeneity 
of the variance test result was significant at 0.875>0.05 and 
the ANOVA result (TABLE 2) showed P<0.0001, indicating 
that there was a significant difference in the effect of the 
CoRF on the AoR. The AoR increased with the increase of 
the CoRF between the particles, and the larger the CoRF, the 
smaller the increase of the AoR. When the CoRF is 
0.30~0.35, the AoR is closer to the actual value (red line), 
and the degree of fluctuation is the least. 

Triple spline interpolation 

The single-factor test samples obtained in the above 
can reflect the effect of the fertilizer particle contact 
parameters on the AoR, but the number of samples is not 
sufficient for training the GA-BP network. To solve this 
problem, an interpolation method is used in this paper. 
Interpolation is a mathematical method with the following 
mathematical definition (Bramble & Hilbert, 1970; Mackay, 
1992): 
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The function y=f(x) has different values (y0, y1, … , yn) 
at different points (x0, x1, … , xn) obtained by an 
experimental or measured method. Then, a function Φ(x) is 
constructed for an approximate expression of y= f(x), i.e.: 

   =y f x x                          (7) 

Where:  

Φ(x0)=  y0,  Φ(x1)=  y1,  … , Φ(xn)=  yn.  y=f(x) 
represents the interpolated function.  

Φ(x) represents the interpolation function, 
and  
x0,  x1,  … , xn represent interpolation points.  

 

Spline interpolation establishes a cubic polynomial 
function between adjacent data points to determine the 
function value of the interpolated data points. The 
interpolation curve and derivative of spline interpolation are 
continuous, which results in better smoothness. Therefore, 
for a better interpolation effect, the spline interpolation 
method was chosen to interpolate the original data in this 
paper (Dong et al., 2020).  

The CoR, CoSF and CoRF were segmented by triple 
spline interpolation (Figure 11), and seven interpolation 
points were selected between two adjacent original points on 
the interpolation curve; 33 sets of data could be obtained 
after interpolation analysis, and a total of 99 sets of data 
were obtained for the three factors.

 

FIGURE 11. Segmented cubic spline interpolation curve. 
 

The results show that the relative errors between the interpolated data and the simulated original values are 
0.193%~1.035%, which are very small, and the interpolated data can be considered as the simulated values. 

GA-BP neural network optimization 

Since the effect of interaction between factors was not considered in the previous paper, a CCD experiment was 
designed to refine the network information, and the experimental design and results are shown in TABLE 3.  

 
TABLE 3. CCD test program and results. 

No. CoR CoSF CoRF AoR /° 

1 0.40  0.15  0.0300  22.8850  

2 0.70  0.15  0.0300  21.9785  

3 0.40  0.21  0.0300  25.2489  

4 0.70  0.21  0.0300  23.8707  

5 0.40  0.15  0.0400  23.5763  

6 0.70  0.15  0.0400  23.4178  

7 0.40  0.21  0.0400  27.0148  

8 0.70  0.21  0.0400  25.6742  

9 0.30  0.18  0.0350  24.8131  

10 0.80  0.18  0.0350  22.9109  

11 0.55  0.13  0.0350  21.7858  

12 0.55  0.23  0.0350  26.5836  

13 0.55  0.18  0.0266  23.1235  

14 0.55  0.18  0.0434  25.6804  

15 0.55  0.18  0.0350  24.6826  
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Combining the data obtained by the three times segmented spline interpolation, there is a total of 99+15=114 sets of 
data, of which 80 sets of data are selected as the training network and 34 as the validation and testing data. To eliminate the 
chance factor and obtain a better prediction model, the GA-BP network was trained 20 times, and the correlation coefficients of 
the training process, validation process, testing process, and overall performance were obtained as shown in Figure 12, 
respectively. 

 

0 5 10 15 20

0.960

0.975

0.990

1.005

0.960

0.975

0.990

1.005

0.960

0.975

0.990

1.005

0 5 10 15 20

0.960

0.975

0.990

1.005

 

C
or

re
la

tio
n 

co
ef

fi
ci

en
t

Sample number

 Training
 

 Validation

 

 Test

 

 

 All

 
FIGURE 12. Correlation coefficient of the prediction model. 

 
From Figure 12, it can be seen that the correlation coefficients of the training process, validation process, testing 

process and overall performance are all greater than 0.975. Usually, when the correlation coefficient is greater than 0.9, the 
fitting performance of the network is considered acceptable, indicating that the GA-BP neural network optimization algorithm 
has better generalization performance and stability. 

As shown in Figure 13, the correlation coefficients of the training process, validation process, testing process and 
overall performance of the GA-BP neural network are approximately 0.99980, 0.99992, 0.99871 and 0.99967, respectively. 

 



Xin Du & Cailing Liu 
 

 
Engenharia Agrícola, Jaboticabal, v.43, special issue, e20210099, 2023 

 
FIGURE 13. Correlation coefficients of GA-BP neural network. 

 
A comparison of the predicted and expected values of the GA-BP neural network model training is shown in Figure 14. 

As the figure shows, the predicted output values and the expected values match, indicating that the GA-BP neural network can 
accurately predict the nonlinear function output, and the network predicted output can be approximated as the actual output of 
the function.  

 

 

FIGURE 14. BP neural network model fitted values versus experimental values. 
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With the above trained BP neural network model as the objective function, the inter-particle contact parameters and the 
AoR were optimized using the optimization method proposed in this paper, and a series of parameter combinations were 
obtained by solving the network input so that the network output was 24.474° (the actual stacking angle), and the parameters 
were inverted to verify the rationality of the parameter combinations in EDEM (as shown in TABLE 4).  

 
TABLE 4. Parameter combination verification results. 

No. CoR CoSF CoRF Predicted value /° Simulation value /° Relative error /% 

1 0.502 0.175 0.0336 

24.474 

24.128 1.415 

2 0.511 0.175 0.0332 24.155 1.303 

3 0.504 0.176 0.0339 24.346 0.524 

4 0.509 0.176 0.0332 24.457 0.068 

5 0.502 0.177 0.0336 24.604 0.532 
 

As can be seen from TABLE 4, the relative errors 
between the simulated and predicted values of the AoR (i.e., 
the actual value of the AoR) under various parameter 
combinations are different, but they are all less than 1.5%, 
indicating that the GA-BP neural network model obtained 
from the training is highly accurate. When the CoR, CoSF 
and CoRF are 0.509, 0.176 and 0.0332, respectively, the 
simulation value of the AoR is obtained as 24.457°, and the 
relative error with the actual value is very small, only 
0.068%, and this parameter combination can be used as the 
DEM simulation parameters of the coated fertilizer particles. 

 
CONCLUSIONS 

The AoR value in the simulation is batch-processed 
based on Python to improve the accuracy.  

Sufficient training samples are obtained by data 
interpolation to avoid the drawback that BP networks tend to 
fall into the minimum value point during training. The 
correlation coefficients fitted by the GA-BP neural network 
after 20 training sessions were all greater than 0.975, 
indicating that the algorithm has strong generalization 
performance and good stability. 

The predicted and expected output values match, 
indicating that the GA-BP neural network can accurately 
predict the nonlinear function output, and the network 
predicted output can be approximated as the actual output of 
the function. 

Taking the actual AoR as the output value, the 
simulation value of the stacking angle is 24.457° when the 
CoR, CoSF and CoRF are 0.509, 0.176 and 0.0332, 
respectively, and the relative error with the actual value is 
0.068%. 
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