INTERFERÊNCIA DA PALHA DE CANA-DE-AÇÚCAR (Saccharum spp.) NA EMERGÊNCIA DE ESPÉCIES DE PLANTAS DANINHAS DA FAMÍLIA CONVOLVULACEAE¹

Sugar Cane (Saccharum spp.) Straw Interference in Emergence of Weed Species of the Convolvulaceae Family

AZANIA, A.A.P.M.², AZANIA, C.A.M.², GRAVENA, R.², PAVANI, M.C.M.D.³ e PITELLI, R.A.³

RESUMO - Este trabalho foi conduzido na Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal-UNESP, com o objetivo de estudar o efeito de diferentes quantidades de palha de cana-de-açúcar deixadas na superfície do solo sobre a emergência de algumas espécies de plantas daninhas pertencentes à família Convolvulaceae. Os tratamentos foram distribuídos no esquema de parcelas subsubdivididas, com a quantidade de palha nas parcelas de 0, 5, 10, 15 e 20 t ha⁻¹, as variedades SP 79 2233 e RB 83 5486 nas subparcelas e as espécies de plantas daninhas nas subsubparcelas. Aos 45 dias após semeadura (DAS), a presença de 15 t ha⁻¹ de palha reduziu em 46 e 62% o número de plantas de *I. quamoclit e M. cissoides*, respectivamente. Entretanto, a presença de 20 t ha⁻¹ reduziu em 82, 65, 62, 70, 60 e 88% o número de plantas de *I. quamoclit, I. purpurea, I. grandifolia, I. hederifolia, I. nil e M. cissoides*, respectivamente, quando comparadas à ausência de palha.

Palavras-chave: cobertura morta, Ipomoea spp., Merremia cissoides.

ABSTRACT - This research was conducted at FCAV of Jaboticabal-UNESP-Brazil, aiming to study the effect of different amounts of sugarcane straw placed on the soil surface on emergence of some weed species of the Convolvulaceae family. The experimental design was a split-split-plot with the straw amounts in the plots (0, 5, 10, 15 and 20 t ha⁻¹), sugarcane cultivars (SP 79 2233 e RB 83 5486) in the split-plots and weeds in the split-split-plots. The presence of 15 t ha⁻¹ of straw reduced in 46 and 62% the number of **I. quamoclit** and **M. cissoides** plants, 45 days after sowing (DAS), respectively. However, 20 t ha⁻¹ of straw reduced in 82, 65, 62, 70, 60 and 88% the number of **I. quamoclit**, **I. purpurea**, **I. grandifolia**, **I. hederifolia**, **I. nil**, **M. cissoides**, respectively, when compared to the absence of straw.

Key words: mulching, *Ipomoea* spp., *Merremia cissoides*.

INTRODUÇÃO

A colheita de cana-crua foi implantada no Brasil há menos de duas décadas, para minimizar os problemas que a colheita tradicional com queima causa ao homem e ao meio ambiente. Por se tratar de uma técnica relativamente nova, os produtores ainda não estão totalmente adaptados à nova realidade. Diante dos diversos problemas enfrentados nas áreas colhidas com cana-crua, foram destacados aqueles relacionados às plantas daninhas, que,

em algumas áreas, apresentaram mudanças na composição das espécies infestantes, devido à presença da palha da cana-crua.

A composição da flora infestante e a eficiência do controle de plantas daninhas pela cobertura morta devem ser determinadas pela quantidade, composição, periodicidade da produção e tempo de permanência da cobertura morta na área, que são características que dependem do cultivar, clima e manejo da área (Almeida & Rodrigues, 1985).

Pós-graduandos em Produção Vegetal, FCAV-UNESP, Via de Acesso Paulo D. Castelane, s/n, 14884-900 Jaboticabal-SP.
Profs. Drs. do Dep. de Biologia Aplicada à Agropecuária da FCAV-UNESP.

Recebido para publicação em 5/3/2002 e na forma revisada em 7/8/2002.

AZANIA, A.A.P.M. et al.

Teasdale et al. (1991) observaram redução de 78% de algumas espécies de plantas daninhas quando a densidade da cobertura morta foi superior a 300 g m⁻² e a porcentagem de recobrimento do solo foi superior a 90%. Os autores afirmaram que a cobertura morta pode ter interferido na qualidade da luz e reduzido a germinação das sementes, além de ter impedido fisicamente a emergência das plântulas.

De acordo com Taylorson & Borthwick (1969) e Fener (1980), a cobertura morta afetou a comunidade infestante não só alterando a quantidade de radiação solar incidente, mas também a qualidade do comprimento das ondas luminosas e a manutenção da temperatura com menores oscilações.

Egley & Duke (1985) mencionaram que a redução da amplitude térmica da superfície do solo pode interferir de modo decisivo na germinação de muitas espécies. A exigência de maior ou menor amplitude térmica do solo constituiuse no modo mais eficiente de controlar a germinação no solo.

Segundo Pitelli (1995), o efeito físico da cobertura morta também pode reduzir as chances de sobrevivência das plantas daninhas com pouca quantidade de reserva nas sementes, as quais podem não ser suficientes para garantir a sobrevivência da planta no espaço percorrido dentro da cobertura morta, até que tenha acesso à luz e inicie o processo de fotossíntese.

Medina Melendez (1990) observou que a palha de cana-de-açúcar inibiu parcialmente a germinação de sementes de *Amaranthus viridis, Galinsoga parviflora, Portulaca oleracea* e *Lepidium virginicum* e totalmente a germinação de sementes de *Brachiaria decumbens, Cenchrus echinatus, Ipomoea* spp. e *Bidens pilosa*.

Martins et al. (1999) estudaram os efeitos da cobertura do solo, com quantidades crescentes de palha de cana-de-açúcar até 15 t ha¹¹, sobre a germinação de algumas das principais plantas daninhas da cultura da cana-de-açúcar no Brasil. Dentre as espécies estudadas, constataram que *Ipomoea grandifolia* somente sofreu redução na germinação na presença de 15 t ha¹¹ de palha, havendo estímulos à germinação nas quantidades de 2 a 10 t ha¹¹ de palha.

As convolvuláceas, principalmente as pertencentes aos gêneros *Ipomoea* e *Merremia*, destacam-se dentre as plantas daninhas que podem causar sérios danos à cultura da canade-açúcar, especialmente em áreas de canacrua. Além de competirem com a planta cultivada, podem interferir nas práticas culturais, especialmente na colheita mecanizada, reduzindo sua eficiência. Dessa forma, devido ao crescente aumento das áreas destinadas à colheita mecanizada da cana-crua, foi conduzido o presente trabalho com o objetivo de estudar o efeito de quantidades crescentes de palha de cana-de-açúcar sobre a emergência de *Ipomoea* spp. e *Merremia cissoides*.

MATERIAL E MÉTODOS

O experimento foi conduzido na Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal-UNESP, em área experimental pertencente ao Departamento de Biologia Aplicada à Agropecuária, em molduras de alvenaria construídas sobre o solo, com área de 1,44 m²/parcela. O substrato utilizado no preenchimento das molduras foi preparado na proporção 2:1, sendo terra de textura argilosa e torta de filtro, respectivamente.

A partir dos dados obtidos nos testes de germinação (Tabela 1), semeou-se quantidade de sementes necessária para obter no mínimo 25 plantas de *Merremia cissoides, Ipomoea quamoclit, Ipomoea purpurea, Ipomoea grandifolia, Ipomoea hederifolia* e *Ipomoea nil,* aproximadamente a 3 cm de profundidade e cobertas com palha dos cultivares SP 792233 e RB 835486, nas densidades de 0, 5, 10, 15 e 20 t ha⁻¹. A partir do lote de sementes de cada espécie, foi conduzido teste de germinação, e as sementes não-germinadas foram cortadas ao meio e submetidas, durante 24 horas, ao teste topográfico de tetrazólio a 0,1%, para determinação do percentual de viabilidade do lote.

A temperatura do solo e a quantidade de água foram monitoradas do início ao final da instalação do experimento, sendo o monitoramento da temperatura em 5 e 10 cm de profundidade e a quantidade de água, através do controle de chuvas e irrigação.

O delineamento experimental utilizado foi em blocos, com cinco tratamentos casualizados

e cinco repetições, sendo os tratamentos distribuídos no esquema de parcelas subsubdivididas, com as densidades de palha nas parcelas, a palha dos cultivares nas subparcelas e as espécies de plantas daninhas nas subsubparcelas. As parcelas foram constituídas por 1,44 m², as subparcelas por 0,72 m² e as subsubparcelas por 0,12 m². A análise de variância pelo teste F foi utilizada para avaliar o efeito dos tratamentos sobre as variáveis analisadas; posteriormente, para comparação das médias dos tratamentos, utilizou-se o teste de Tukey a 5% de probabilidade.

Avaliaram-se a emergência das plantas de cada espécie, aos 15, 30 e 45 dias após semeadura (DAS), e a massa seca das plantas, coletadas aos 45 DAS.

RESULTADOS E DISCUSSÃO

Em laboratório, no teste de germinação realizado nos lotes de sementes, constatou-se que as *Ipomoea* spp. e *Merremia cissoides* estavam dormentes. Ocorreu que nenhuma espécie apresentou germinação maior que 30% e que a viabilidade das sementes não-germinadas foi de 93% para *I. nil,* 97% para *I. quamoclit* e *I. purpurea*, 98% para *M. cissoides* e 99% para *I. grandifolia* e *I. hederifolia*.

No campo, conforme se pode observar pela Tabela 2, os cultivares RB 835486 e SP 792233 não diferiram estatisticamente; portanto, as diferenças estatísticas observadas para as variáveis avaliadas devem-se principalmente ao aumento das densidades de palha ou a

fatores da própria espécie daninha.

Considerando apenas o fator densidade de palha, observa-se que a média do número de plantas daninhas de todas as espécies, para as três épocas avaliadas, diminuiu à medida que se aumentou a densidade de palha. Entretanto, as densidades de 15 e 20 t ha-1 de palha proporcionaram as maiores reduções no número médio de plantas daninhas de todas as espécies, especialmente a densidade de 20 t ha-1 de palha, que, unicamente, diferiu estatisticamente de todas as outras densidades quanto ao número médio de plantas daninhas nas três avaliações, e à massa seca aos 45 DAS (Tabela 2).

Portanto, de acordo com a Tabela 2, quando se considera o número médio de plantas daninhas para cada espécie, independentemente da densidade, observa-se que *I. hederifolia* foi a espécie que mais se desenvolveu, por apresentar o maior número de indivíduos e acúmulo de massa seca, enquanto *M. cissoides* foi a que menos se desenvolveu, devido ao menor número de indivíduos e acúmulo de massa seca. As plantas daninhas que mais emergiram a camada de palha foram *I. hederifolia*, *I. grandifolia*, *I. quamoclit*, *I. nil*, *M. cissoides* e *I. purpurea*, das quais *I. quamoclit*, *I. nil*, *M. cissoides* e *I. purpurea* não apresentaram diferenças estatísticas.

As espécies de *Ipomoea* spp. e *M. cissoides* nas subsubparcelas diferiram estatisticamente em razão das densidades de palha nas parcelas e não dos diferentes cultivares de cana-de-açúcar utilizados nas subparcelas.

Tabela 1 - Resultados do teste de germinação realizado para as espécies *Ipomoea quamoclit*, *Ipomoea purpurea*, *Ipomoea grandifolia*, *Ipomoea hederifolia*, *Ipomoea nil* e *Merremia cissoides*. Engenheiro Coelho, 1999

Nome científico	Código**	Nome comum**	Dias para início da germinação*	Gramas de sementes necessários para nascer 25 plantas*
Ipomoea quamoclit	IPOQU	Flor-de-cardeal	8	1,06
Ipomoea purpurea	PHBPU	Corda-de-viola	8	3,57
Ipomoea grandifolia	IAOGR	Corda-de-viola	8	2,03
Ipomoea hederifolia	IPOHF	Corda-de-viola	7	6,25
Ipomoea nil	IPONI	Campainha	8	2,42
Merremia cissoides	MRRCI	Campainha	8	5,00

^{*} Teste de germinação realizado pelo fornecedor das sementes.

^{**} Fonte: Lorenzi (2000).

AZANIA, A.A.P.M. et al.

Tabela 2 - Resultados da análise de variância para o efeito dos fatores principais sobre o número de plantas e a massa seca das espécies de IPOQU, PHBPU, IAOGR, IPOHF, IPONI e MRRCI em três épocas de avaliação. Jaboticabal, 2000

	Nú	Massa seca			
Variável	15	30	45	das plântulas aos 45 DAS (g)*	
Densidade (A) - (t ha ⁻¹)					
0	6,06 a	6,23 a	6,35 a	4,51 a	
5	5,81 ab	5,90 a	5,97 a	4,53 a	
10	5,12 bc	5,43 ab	5,61 ab	4,19 a	
15	4,68 c	5,03 b	5,14 b	4,09 a	
20	2,73 d	3,21 c	3,33 с	2,97 b	
Cultivares (B)					
RB	4,92 a	5,19 a	5,32 a	4,08 a	
SP	4,84 a	5,13 a	5,23 a	4,04 a	
Espécies (C)					
IPOQU	4,71 c	5,10 c	5,26 c	3,09 c	
PHBPU	3,65 d	3,79 d	3,86 d	4,53 ab	
IAOGR	5,49 b	5,78 b	5,90 b	4,16 b	
IPOHF	6,79 a	7,28 a	7,51 a	5,07 a	
IPONI	4,76 c	4,91 c	4,98 c	4,66 ab	
MRRCI	3,86 d	4,10 d	4,16 d	2,84 c	
	F				
Blocos	2,78 NS	3,11 *	2,00 NS	2,60NS	
Densidade (A)	60,10 **	40,10 **	39,28**	18,34**	
Cultivares (B)	0,14 NS	0,10 NS	0,17 NS	0,24NS	
Espécies (C)	83,83 **	85,37**	85,04 **	36,42**	
A x B	0,45 NS	0,75 NS	0,73 NS	0,91NS	
ΑxC	2,34 **	2,84 **	2,31**	0,91NS	
ВхС	1,71 NS	2,15 NS	1,09NS	0,71NS	
AxBxC	0,72 NS	0,96 NS	1,37 NS	0,92NS	
%CV parcela	27,10	28,11	27,60	28,44	
%CV subparcela	38,07	35,23	36,26	19,70	
%CV subsubparcela	18,23	18,70	19,15	25,94	

Dados transformados em raiz x + 1. DAS - dias após semeadura. ** significativo a 1% de probabilidade pelo teste F. * significativo a 5% de probabilidade pelo teste F. NS - não-significativo.

Observa-se pela Tabela 3 que, aos 45 DAS, a presença de 15 t ha¹ de palha reduziu em 46 e 62% o número de plantas de *I. quamoclit* e *M. cissoides*, respectivamente. No entanto, a presença de 20 t ha¹ reduziu em 82, 65, 62, 70, 60 e 88% o número de plantas de *I. quamoclit, I. purpurea, I. grandifolia, I. hederifolia, I. nil* e *M. cissoides*, respectivamente, quando comparadas à ausência de palha.

Observou-se também, pela Tabela 3, que a densidade de 10 t ha⁻¹ de palha reduziu o

número de plantas de *I. grandifolia* e *M. cissoides* somente até os 15 DAS, pois ambas as espécies recuperaram-se nas demais avaliações, apresentando somente redução no número de plantas na presença de 20 t ha⁻¹ de palha.

A tendência da camada de palha em reduzir o número de plantas daninhas também foi observada por Teasdale et al. (1991), que conseguiram reduzir em até 78% o número de plantas daninhas com cobertura de palha superior a 3 t ha⁻¹. Martins et al. (1999) também

constataram reduções significativas do número de plantas daninhas de *Ipomoea grandifolia, D. horizontalis, B. plantaginea* e *B. decumbens* ao utilizarem como densidade máxima 15 t ha⁻¹ de palha de cana-de-açúcar.

Os baixos números de plantas daninhas encontrados em áreas cobertas por palha podem estar relacionados com a qualidade do comprimento de luz e a temperatura (Taylorson & Borthwick, 1969; Fener, 1980) ou com o impedimento físico formado pela camada de palha sobre o desenvolvimento dos cotilédones, que não conseguem ultrapassar a barreira da palha e morrem antes de iniciar o processo

fotossintético (Pitelli, 1995).

Quanto às oscilações térmicas no solo (Tabela 4), observou-se que a temperatura diminuiu com o aumento das densidades de palha, sendo a máxima redução observada de 13,2 e 6,2%, comparando a ausência e presença de 20 t ha⁻¹ de palha nas profundidades de 5 e 10 cm, respectivamente. Nessa densidade, pode-se deduzir que os baixos números de plantas daninhas sejam também devido à temperatura, pois, segundo Egley & Duke (1985) e Velini & Negrissoli (2000), a amplitude térmica na superfície do solo pode interferir na germinação de muitas espécies.

Tabela 3 - Números de plantas de IPOQU, PHBPU, IAOGR, IPOHF, IPONI e MRRCI obtidos no desdobramento da interação entre as densidades de palha e as espécies. Jaboticabal, 2000

DAS	Densidade	Espécie					
DAS	(t ha ⁻¹)	IPOQU	PHBPU	IAOGR	IPOHF	IPONI	MRRCI
	0	5,92Abc	4,37Ad	6,67Ab	8,34Aa	5,56Abc	5,52Ac
	0	(35,5)	(18,4)	(46,0)	(69,9)	(30,2)	(31,3)
	5	5,90Abc	4,32Ad	6,53Ab	7,77ABa	5,54Abc	4,84ABcd
		(33,9)	(17,7)	(44,6)	(59,8)	(29,9)	(24,7)
15	10	5,29ABb	3,74Ac	5,25Bb	7,13ABa	5,12Ab	4,16BCbc
13		(27,3)	(13,1)	(28,5)	(50,2)	(25,6)	(17,3)
	15	4,52 Bb	3,40ABbc	5,70ABa	6,71Ba	4,40ABbc	3,31Cc
		(20,2)	(10,9)	(33,3)	(44,9)	(18,9)	(11,1)
ľ	20	1,92Cc	2,44Bbc	3,30Cab	4,03Ca	3,20Bab	1,50Dc
	20	(3,6)	(5,4)	(11,7)	(17,2)	(9,9)	(1,5)
	0	6,24Abc	4,36Ad	6,92Ab	8,80Aa	5,55Acd	5,53Acd
	0	(39,2)	(18,3)	(49,5)	(78,3)	(30,2)	(31,0)
	5	6,08Abc	4,34Ad	6,51ABb	8,04ABa	5,45Abcd	5,02Acd
		(36,1)	(18,0)	(44,3)	(64,2)	(29,1)	(26,7)
30	10	5,64Ab	3,75ABc	5,32ABb	8,00ABa	5,30Ab	4,55ABbc
30		(31,0)	(13,3)	(38,7)	(63,4)	(27,4)	(21,0)
	15	4,94Acd	3,53ABbcd	6,22Bab	7,21Ba	4,80Aabc	3,52Bd
		(24,2)	(12,5)	(29,7)	(52,2)	(22,7)	(12,9)
	20	2,61Ba	2,99Ba	3,96Ca	4,37Ca	3,42Ba	1,86Cb
	20	(6,6)	(9,4)	(16,7)	(20,8)	(11,7)	(3,2)
	0	6,55Ab	4,57Ac	6,78ABb	8,91Aa	5,59Abc	5,68Abc
	U	(44,0)	(30,3)	(47,0)	(80,7)	(30,5)	(32,5)
45	5	5,97ABbc	4,39Ad	6,88Aab	8,14Aa	5,43Acd	4,99Acd
		(35,5)	(18,4)	(49,3)	(66,0)	(28,8)	(26,2)
	10	6,08ABb	4,01ABd	5,50Bbc	8,10Aa	5,37Abc	4,62ABcd
		(36,4)	(15,2)	(31,7)	(65,0)	(28,2)	(21,8)
	15	4,85Bc	3,54ABd	6,26ABb	7,69Aa	5,04Abc	3,44Bd
		(23,9)	(11,9)	(39,5)	(59,7)	(25,1)	(12,3)
	20	2,86Cbc	2,81Bbc	4,05Cab	4,68Ba	3,50Bab	2,07Cc
	20	(8,1)	(7,4)	(18,3)	(24,2)	(12,1)	(4,2)

Dados transformados em raiz x + 1. Dados reais entre parênteses (%). DAS - dias após semeadura. Densidades x espécie - letras maiúsculas. Espécies x densidade - letras minúsculas.

AZANIA, A.A.P.M. et al.

Palha (t ha ⁻¹)		Temperatu	ra do solo	
	5	cm	10 cm	
	Média (°C)	Desvio-padrão	Média (°C)	Desvio-padrão
0	24,42	6,29	22,36	3,62
5	22,80	4,18	21,65	2,51
10	21,72	2,69	21,10	1,60
15	21,34	2,06	20,99	1,32
20	21.20	1.66	20.97	1.09

Tabela 4 - Valores médios e desvios-padrão da temperatura do solo aos cinco e dez centímetros de profundidade, entre oito e quinze dias após a semeadura das plantas daninhas

Portanto, seja por motivo de temperatura ou simplesmente impedimento físico, a densidade de 20 t ha¹¹ de palha de cana-de-açúcar, em relação à ausência de palha, reduziu em mais de 60% o número de plantas de *M. cissoides, Ipomoea quamoclit, I. purpurea, I. grandifolia, I. hederifolia* e *I. nil.*

AGRADECIMENTOS

Ao Prof. Dr. José Carlos Barbosa, da Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, pela colaboração na análise estatística.

LITERATURA CITADA

ALMEIDA, F. S.; RODRIGUES, B. N. **Guia de herbicidas** - contribuição para o uso adequado em plantio direto e convencional. Londrina: Fundação Instituto Agronômico do Paraná, 1985. 482 p.

EGLEY, G. H.; DUKE, S. Physiology of weed seed dormancy and germination. In: DUKE, S. O. **Weed physiology**. I- reproduction and ecophysiology. Florida: CRC Press, 1985. p. 27-64.

FENER, M. Germination tests of thirty-two East African weed species. **Weed Res.**, v. 20, p. 135-138, 1980.

MARTINS, D. et al. Emergência em campo de dicotiledôneas infestantes em solo coberto com palha de cana-de-açúcar. **Planta Daninha**, v. 17, n. 1, p. 151-161, 1999.

MEDINA MELENDEZ, J. A. Efeito da cobertura do solo no controle de plantas daninhas na cultura do pepino (*Cucumis sativus* L.). Piracicaba: Escola Superior de Agricultura "Luiz de Queiroz", 1990. 104 p. Dissertação (Mestrado em Agronomia) — Escola Superior de Agricultura "Luiz de Queiroz", 1990.

PITELLI, R. A. Dinâmica de plantas daninhas no sistema de plantio direto. In: CONGRESSO BRASILEIRO DA CIÊNCIA DAS PLANTAS DANINHAS, 1995, Florianópolis. **Palestras...** Florianópolis: Sociedade Brasileira da Ciência das Plantas Daninhas, 1995. p. 5-12.

TAYLORSON, R. B.; BORTHWICK, H. A. Light filtration by foliar canopies: significance for light-controlled weed seed germination. **Weed Sci.**, v. 17, n. 1, p. 48-51, 1969.

TEASDALE, J. R.; BESTE, C. E.; POTTS, W. E. Response of weeds to tillage and cover crop residue. **Weed Sci.**, v. 39, p. 195-99, 1991.

VELINI, E. D.; NEGRISSOLI, E. Controle de plantas daninhas em cana crua. In: CONGRESSO BRASILEIRO DA CIÊNCIA DAS PLANTAS DANINHAS, 22., 2000, Foz do Iguaçu. **Anais...** Foz do Iguaçu: 2000. p. 148-164.

^{*} As médias referem-se às temperaturas determinadas diariamente às 7h30, 13h30 e 16h30.