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Abstract

The central nervous system plays an important role in the control of
renal sodium excretion. We present here a brief review of physiologic
regulation of hydromineral balance and discuss recent results from our
laboratory that focus on the participation of nitrergic, vasopressiner-
gic, and oxytocinergic systems in the regulation of water and sodium
excretion under different salt intake and hypertonic blood volume
expansion (BVE) conditions. High sodium intake induced a signifi-
cant increase in nitric oxide synthase (NOS) activity in the medial
basal hypothalamus and neural lobe, while a low sodium diet de-
creased NOS activity in the neural lobe, suggesting that central NOS
is involved in the control of sodium balance. An increase in plasma
concentrations in vasopressin (AVP), oxytocin (OT), atrial natriuretic
peptide (ANP), and nitrate after hypertonic BVE was also demon-
strated. The central inhibition of NOS by L-NAME caused a decrease
in plasma AVP and no change in plasma OT or ANP levels after BVE.
These data indicate that the increase in AVP release after hypertonic
BVE depends on nitric oxide production. In contrast, the pattern of OT
secretion was similar to that of ANP secretion, supporting the view
that OT is a neuromodulator of ANP secretion during hypertonic BVE.
Thus, neurohypophyseal hormones and ANP are secreted under hy-
pertonic BVE in order to correct the changes induced in blood volume
and osmolality, and the secretion of AVP in this particular situation
depends on NOS activity.
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Central nervous system and
hydromineral balance

Precise regulation of body fluid osmola-
lity is essential. Osmolality is controlled by a
finely tuned, intricate homeostatic mechan-
ism that operates by adjusting both the rate
of water intake and excretion. The central
nervous system (CNS) plays an important
role in the control of renal sodium excretion
(1-7). Considerable evidence indicates that
the median preoptic area (MnPO), anterior
lateral hypothalamus, subfornical organ
(SFO), anterior portion of the third ventricle
(AV3V), supraoptic nucleus (SON), para-
ventricular nucleus (PVN), organum vascu-
losum laminae terminalis (OVLT), habenula,
stria medullaris, and medial septal area are
organized in a neural circuit involved in the
regulation of water and sodium intake and
excretion (1-3). Natriuresis accompanied by
kaliuresis is induced by cholinergic or adre-
nergic stimulation of the medial septal area,
MnPO, anterior lateral hypothalamus, SFO,
and AV3V (1,4). Stimulation of AV3V with
carbachol, a cholinergic drug, angiotensin II
or hypertonic saline enhances natriuresis,
which is blocked by the destruction of this
brain area (1,4-7).

Neurohypophyseal hormones and
the control of sodium and water
excretion

Although the neuroendocrine control of
sodium and water balance is not completely
understood, alterations in volume and osmo-
lality are responsible, at least in part, for
changes in plasma vasopressin (AVP) con-
centration. Verney (8) originally demon-
strated that AVP release into the blood is
stimulated by the activation of osmorecep-
tors, which detect small increases in osmola-
lity of extracellular fluid. These osmorecep-
tors are located in the AV3V, which is made
of a thin membrane, the lamina terminalis,
comprising the MnPO, SFO and OVLT.

These organs lie outside the blood-brain bar-
rier and therefore are in contact with plasma
ions and hormones such as atrial natriuretic
peptide (ANP) and angiotensin II (9,10).
Vasopressin is rapidly released in response
to as little as 1% change in plasma osmolal-
ity (11). Small changes in plasma osmolality
in the physiological range can rapidly stimu-
late AVP transcription in the SON and PVN,
suggesting that stored AVP released into the
blood circulation is replaced rapidly by in-
creased synthesis, processing, and transport
of AVP (12). The threshold for the activa-
tion of osmoreceptor neurons to stimulate
AVP release is approximately 275 mOsm/kg
(13). In addition, lesions of the AV3V cause
adipsia and hypernatremia (2), impaired
drinking responses and AVP secretion in
response to hypertonic saline and angiotensin
II (14), decrease of the number of Fos-like
immunoreactive neurons in the MnPO, PVN
and SON in response to iv infusion of hyper-
tonic saline (15), and interruption of neu-
ronal inputs that trigger AVP secretion from
the posterior pituitary as well as AVP release
into the extracellular compartment of the
SON (16).

Oxytocin (OT) is also involved in hydro-
mineral homeostasis and vascular and car-
diac relaxation (17-23). It has long been
recognized that OT increases renal electro-
lyte excretion in various species, and that the
natriuretic and kaliuretic effects are AVP
independent. OT and AVP are secreted si-
multaneously in response to hyperosmola-
lity and hypovolemia (19,24,25) and when
systemically administered (iv or ip) induce
natriuresis (26,27). OT is a more potent na-
triuretic hormone than AVP. These effects
can be explained by a direct action of both
peptides on specific receptors demonstrated
to be present in kidney tubular cells (28).
The different potencies of these hormones
can be attributed to a relative affinity of OT
for its own receptor or its lower affinity for
V2 and V1 AVP receptors. On the other
hand, studies have suggested a synergistic
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effect of AVP and OT actions on the inner
medullary collecting duct where both pep-
tides induce an increase in cAMP accumula-
tion and natriuresis (24,29). OT binds to the
V2 AVP receptor because of its structural
similarity to AVP. Vasopressin and OT in-
duce cAMP accumulation from a common
ATP pool in inner medullary collecting duct
cells, and the separate AVP V2 and OT
receptor systems may be coupled to a com-
mon adenylate cyclase system (30). In addi-
tion to their peripheral effects, these pep-
tides may also have other effects that could
complement their physiological actions. In-
deed, AVP when injected into the CNS in-
creases water intake, while the central
administration of OT decreases salt intake
(31).

Natriuretic peptides and
hydromineral balance

De Bold et al. (32) demonstrated the di-
uretic effect of atrial extracts and later deter-
mined the structure of ANP (33). The
myorelaxing action of the atrial extracts on
vascular muscle was demonstrated independ-
ently by different groups (34-36). These find-
ings permitted the identification and charac-
terization of hormones of the natriuretic pep-
tide family, which are involved in the control
of body fluid homeostasis (36,37). Atrial na-
triuretic peptide from the atria circulates to the
kidneys and evokes diuresis and natriuresis.

Since ANP is the major natriuretic hor-
mone, we determined the effect of central
administration of hypertonic saline on plasma
ANP levels. Microinjection of hypertonic sa-
line into the AV3V causes an increase in
plasma ANP levels (38). The effects of ANP
on electrical activity and cellular cGMP levels
in neurons of the SON of rat hypothalamic
slices demonstrate that the osmotic stimulus
induces ANP/BNP secretion in the hypothala-
mus which then inhibits AVP neurons (39).
Interestingly, applications of ANP over the
SON did not affect depolarizing responses to

local hypertonicity, but reversibly abolished
the synaptic excitation of magnocellular neu-
rons after hypertonic stimulation of the OVLT
(40). ANP and its receptors are present in the
magnocellular neurosecretory cells, which re-
lease AVP and OT. In addition, these cells
receive afferents from osmoreceptor neurons
located in the OVLT which appear to be gluta-
matergic. Richard and Bourque (40) obtained
results indicating that centrally released ANP
may inhibit osmotically evoked neurohypo-
physeal hormone release by presynaptic inhi-
bition of glutamate release from these osmo-
receptor efferents derived from the OVLT.

Both median eminence lesions and re-
moval of the neural lobe of the pituitary,
conditions that partially block or eliminate
neurohypophyseal hormone release, decrease
basal and blood volume expansion (BVE)-
induced ANP release (38,41). Several lines
of evidence indicate a possible physiologic
function of OT in the mediation of ANP
release since ip or iv injection of OT causes
a dose-dependent increase in plasma ANP,
urinary osmolality, natriuresis, kaliuresis, and
a delayed antidiuretic effect (19). Isotonic
BVE releases OT and ANP, but not AVP.
Therefore, OT would act directly on the right
atrium to stimulate ANP release. Indeed, we
found a dose-related release of ANP from in
vitro incubated right atrium in the presence
of OT (42). An OT antagonist blocked both
the basal and OT-induced ANP release. In
addition, the presence of OT in the right
atrium homogenates was demonstrated by
RIA (42) and more recently, OT and OT
receptor synthesis have been demonstrated
in the rat heart (20,22). In addition, using
polymerase chain reaction (PCR) am-
plification of cDNA obtained from mRNA
of both rat atria and ventricles, the presence
of specific transcripts was also demonstrated.
The OT and OT receptor transcripts were
also shown by in situ hybridization in atrial
and ventricular tissues using RT-PCR
(22,43). Consequently, OT released from
the neural lobe may reach the heart by the
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circulation to induce ANP release, but the
intracardiac OT might also play a paracrine
role in stimulating ANP release.

In addition to being affected by neurohy-
pophyseal hormones, ANP released from
the heart may reach the brain centers in
sufficient concentrations to regulate its own
secretion through a putative negative feed-
back mechanism. It has been reported that
ANP and central natriuretic peptide injected
into the AV3V region of BVE rats decreased
plasma ANP concentration with no change
in mean arterial pressure or heart rate. In
contrast, in rats with normal blood volume,
ANP injection into the AV3V did not affect
circulating ANP (44). Moreover, icv ANP
administration decreases natriuresis and also
blocks cholinergic-induced natriuresis (45).
The mechanism of these effects remains to
be determined. Since ANP poorly penetrates
the brain, it is unlikely that systemic levels of
the peptide would sufficiently increase brain
ANP to produce a feedback effect; however,
a local increase of ANP from ANPergic neu-
rons induced by volume expansion increases
baroreceptor input to the hypothalamus and
might inhibit ANP neuronal activity.

Participation of the nitrergic system
in hydromineral metabolism

The discovery of nitric oxide (NO) as a
neurotransmitter has radically altered the con-
cept of synaptic transmission. NO was first
recognized as a neuronal messenger mole-
cule by Garthwaite et al. (46), who showed
that glutamate, acting on the N-methyl-D-
aspartate receptor in cultures of cerebellar
granule cells, releases a factor with proper-
ties resembling those of NO. It is now clear
that NO has a physiological role in the regu-
lation of water balance (47). NO synthase
(NOS), an enzyme involved in the synthesis
of NO and constitutively expressed in neu-
rons and endothelial cells, utilizes the semi-
essential amino acid L-arginine, reducing
equivalents from NADPH and molecular O2

to catalyze the formation of NO and its co-
product citrulline via a Ca2+-calmodulin-de-
pendent mechanism. The enzyme protein
and its mRNA have been identified in sev-
eral structures within the neural circuitry
that regulates body fluid homeostasis, in-
cluding the hypothalamus-neurohypophyseal
system, SFO, MnPO, and OVLT (48). These
forebrain structures form a neural network
that participates in the regulation of drinking
behavior and secretion of AVP, OT and
ANP in response to osmotic stimulation
(1,9,49).

The presence of nNOS in the PVN and
SON vasopressinergic and oxytocinergic neu-
rons and its increase in these neurons by os-
motic stimulation or dehydration suggests a
role of NO in AVP and OT regulation
(50-52). It has been demonstrated that
during dehydration the central inhibition of
NOS preferentially augments OT release
(47,53). Interestingly, the increase in NO
production in the PVN and SON of hyper-
tensive rats was ineffective in inhibiting AVP
secretion (54). Moreover, infusion of L-ar-
ginine, the substrate of NOS, or sodium
nitroprusside, a spontaneous releaser of NO,
into the AV3V produced a dose-related in-
crease in plasma AVP levels (55). There still
is some controversy about the role of NO in
AVP and OT release, with some studies
showing an inhibitory effect on AVP release
in normovolemic rats (56-58), while others
have indicated an excitatory effect on AVP
release (59,60). Therefore, the role of NO in
the hormonal changes induced by osmotic
and blood volume changes remains unclear.
We have investigated the interaction be-
tween nitrergic and vasopressinergic sys-
tems in response to high and low sodium
diets and to hypertonic BVE (0.3 M NaCl).

Effect of high and low sodium diets
on NOS activity in the neural lobe
and medial basal hypothalamus

To evaluate the effect of different so-
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dium content in the diet on NOS activity in
the CNS regions, rats were treated with a
high sodium diet (1.8% NaCl) or a low so-
dium diet for 7 days before the experiments.
The high sodium diet induced a significant
increase in NOS activity in the medial basal
hypothalamus as well as in the neural lobe.
In contrast, the low sodium diet significantly
decreased NOS activity in the neural lobe
and did not induce changes in the medial
basal hypothalamus (Figure 1). These data
indicate that high sodium ingestion, and con-
sequent changes in plasma osmolality and
natremia, blood volume and pressure, in-
creased NOS activity. Since opposite effects
were observed with high and low sodium
diets, it is suggested that central NOS has a
role in the regulatory mechanisms involved
in sodium balance.

Blood volume expansion and
nitrergic system

Recent results from our laboratory have
demonstrated that hypertonic saline BVE
causes an increase in plasma nitrate after 5
min of expansion, followed by a return to
basal levels 15 min later (Figure 2). These
results indicate that an increase in blood
volume or plasma osmolality, or both, could
stimulate the production and release of NO.
However, there are no significant changes in
plasma nitrate following isotonic saline BVE
(Figure 2), suggesting that the plasma nitrate
increase is not due to changes in blood vol-
ume, but rather to osmotic load. The increase
in plasma nitrate after BVE could be in-
volved in the regulation of other hemody-
namic parameters, such as mean arterial blood
pressure and heart rate. Indeed, a short lived
(2 min) decrease in blood pressure was evi-
dent after hypertonic BVE, with a concomi-
tant bradycardia that lasted about 10 min
(Giusti-Paiva A, unpublished data).

The increase in nitrate content after hy-
pertonic BVE was also observed in brain
regions involved in the neuroendocrine con-
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trol of hydromineral homeostasis including
the medial basal hypothalamus, neural lobe,
and anterior lobe of the hypophysis. No
changes were observed in the median emi-
nence (Figure 3). In addition, hypertonic
BVE also increased the plasma levels of

A

B

Figure 1. Effect of a chronic (7
days) high or low NaCl diet on
nitric oxide synthase (NOS) ac-
tivity in the neural lobe (NL) (A)
and medial basal hypothalamus
(MBH) (B) of adult male rats.
Data are reported as means ±
SEM for 7-10 rats. *P<0.05,
**P<0.01 and ***P<0.001 com-
pared to control rats under regu-
lar NaCl diet (Student t-test).
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mals, the icv injection of L-NAME did not
cause significant changes in basal plasma
ANP, OT or AVP concentrations. However,
this pretreatment blocked the hypertonic
BVE-induced increase in plasma AVP and
nitrate levels, with no changes in plasma
ANP or OT levels (Figure 4).

Summary

This brief review presents studies from
our laboratory that focus on the participation
of nitrergic, vasopressinergic, and oxytocin-
ergic neuronal systems in the regulation of
hydromineral balance under basal or hyper-
tonic BVE-stimulated conditions. The con-
cept of NO as a neurotransmitter has evolved.
Several studies have demonstrated the par-
ticipation of NO in neurosecretory activities;
however, there still is controversy about the
nitrergic modulation of AVP, ANP and OT
secretion in response to hypertonic BVE.
The increase in plasma concentrations of
AVP, OT, and ANP and plasma nitrate el-
evation after hypertonic BVE suggest that
the nitrergic system is activated in response

Figure 5. Schematic representation of hormonal
changes, nitric oxide production and hemodynamic
modifications after hypertonic blood volume expan-
sion. NOS = nitric oxide synthase.

Figure 4. Effect of hypertonic (0.3 M NaCl) blood volume expansion
(BVE) in rats pretreated or not with a NOS inhibitor (L-NAME, 10 mg/
100 g body weight, 30 min before) on plasma levels of nitrate,
vasopressin (AVP), oxytocin (OT), and atrial natriuretic peptide (ANP).
Data are reported as means ± SEM for 7-10 rats, before (control) and
5 min after BVE. *P<0.001 compared to saline control group (one-
way ANOVA followed by Newman-Keuls test).

AVP, OT, and ANP (Figure 4). We also
studied in rats the effect of central inhibition
of NOS by icv injection of L-NAME on the
increase in plasma ANP, OT and AVP in-
duced by hypertonic BVE. In hydrated ani-

Figure 3. Effect of hypertonic (0.3 M NaCl) blood volume expansion
(BVE) on nitrate content of medial basal hypothalamus (A), neural lobe
(B), adenohypophysis (C) and median eminence (D). Data are reported
as means ± SEM for 7-10 rats, before (control) and 5 min after BVE.
*P<0.01 and **P<0.001 compared to control (Student t-test).
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to hypertonic BVE. However, the central
inhibition of NOS with L-NAME showed an
evident dissociation in the secretory pattern
of neurohypophyseal hormones, with a de-
crease in AVP and no changes in OT or ANP
plasma levels. These data indicate that the
increase in AVP release after hypertonic
BVE is dependent on NO production. On the
other hand, the pattern of OT secretion was
similar to that of ANP, suggesting that when-
ever blood concentration of OT changes, a
parallel modification in ANP levels occurs.
Taken together with published data from our

laboratory, these data support the hypothesis
that OT acts as a neuromodulator of ANP
secretion. In Figure 5 we present a diagram
summarizing the interaction of NO neurons
and the regulation of AVP, ANP and OT
secretion during hypertonic BVE.
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