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Abstract

We examined the effect of several K* channel blockers such as
glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetra-
ethylammonium chloride (TEA), 4-aminopyridine (4-AP), and ce-
sium on the ability of fentanyl, a clinically used selective p-opioid
receptor agonist, to promote peripheral antinociception. Antinocicep-
tion was measured by the paw pressure test in male Wistar rats
weighing 180-250 g (N =5 animals per group). Carrageenan (250 pg/
paw) decreased the threshold of responsiveness to noxious pressure (A
= 188.1 £ 5.3 g). This mechanical hyperalgesia was reduced by
fentanyl (0.5, 1.5 and 3 pg/paw) in a peripherally mediated and dose-
dependent fashion (17.3, 45.3 and 62.6%, respectively). The selective
blockers of ATP-sensitive K* channels glibenclamide (40, 80 and 160
pg/paw) and tolbutamide (80, 160 and 240 pg/paw) dose dependently
antagonized the antinociception induced by fentanyl (1.5 pg/paw). In
contrast, the effect of fentanyl was unaffected by the large conduc-
tance Ca?-activated K* channel blocker ChTX (2 pug/paw), the small
conductance Ca**-activated K* channel blocker apamin (10 pug/paw),
or the non-specific K* channel blocker TEA (150 pg/paw), 4-AP (50
ug/paw), and cesium (250 pg/paw). These results extend previously
reported data on the peripheral analgesic effect of morphine and
fentanyl, suggesting for the first time that the peripheral p-opioid
receptor-mediated antinociceptive effect of fentanyl depends on acti-
vation of ATP-sensitive, but not other, K* channels.
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Introduction

Opioids can produce analgesia by inhib-
iting nociceptive input at supraspinal and
spinal sites (1,2). In the central nervous sys-
tem, the opening of K* channels seems to
play a role in opioid-mediated antinocicep-
tion, since the ATP-sensitive K* channel

blockers (sulfonylureas) antagonize the anti-
nociceptive effect of opioids (3-6). The anti-
nociceptive effect of opioid agonists was
also enhanced by ATP-sensitive K* channel
openers such as pinacidil (7) and cromakalin
(8). Evidence that some opioids induce open-
ing of calcium-activated K* channels has
also been obtained (9). In addition, the diver-
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sity of K* channels (10) with different elec-
trophysiological and pharmacological char-
acteristics in neurons suggests that other types
of K* channels may be involved in this ef-
fect.

Several studies have indicated that exog-
enous as well as endogenous opioids can act
on peripheral nociceptors to produce an anti-
nociceptive effect against the hyperalgesia
induced by local inflammation (11,12). Al-
though the presence of opioid receptors on
the peripheral terminals of primary afferents
has been demonstrated, the mechanism by
which opioid agonists induce peripheral an-
tinociception is unclear (13). It was previ-
ously shown that opioid receptors at periph-
eral sites are coupled with inhibitory G pro-
teins since pertussis toxin inhibits the pe-
ripheral antinociception induced by morphine
(14) and are also coupled to the L-arginine-
NO-cGMP pathway (15,16). Morphine has
been shown to exert its peripheral antinoci-
ceptive effect by also activating ATP-sensi-
tive K* channels (17).

The purpose of the present study was to
determine whether specific and non-specific
K* channel blockers have any effect on the
peripheral antinociception induced by fenta-
nyl, since this drug is very potent and is
extensively used in clinical practice (18).
Thus, we tested the effects of glibenclamide
and tolbutamide, sulfonylureas that specifi-
cally block ATP-sensitive K* channels (19),
apamin, a selective blocker of small conduc-
tance Ca”*-activated K* channels (20), cha-
rybdotoxin (ChTX), a blocker of large con-
ductance Ca’*-activated K* channels (21),
and the non-selective K* channel blockers 4-
aminopyridine (4-AP), tetraethylammonium
chloride (TEA) and cesium (22).

Material and Methods
Animals

The experiments were performed on male
Wistar rats weighing 180-250 g (from the
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Animal Facilities of the Federal University
of Minas Gerais, CEBIO-UFMG). The ani-
mals were housed in a temperature-controlled
room (23 £ 1°C) on an automatic 12-h light/
dark cycle (lights on at 6:00 am). All testing
was conducted during the light phase (12:00
to 17:00 h). Food and water were freely
available until the beginning of each experi-
ment. Naive animals were used throughout.

Measurement of hyperalgesia

Hyperalgesia was induced in the hind
paw by intraplantar administration of a car-
rageenan suspension (250 pg) and measured
according to paw pressure test (23). An anal-
gesia meter (Ugo-Basile, Varese, Italy) with
a cone-shaped paw-presser with a rounded
tip, which applies a linearly increasing force
to the plantar surface of the paw, was used.
The weight in grams required to elicit noci-
ceptive responses such as paw flexion was
taken to be the nociceptive threshold. A cut-
off value of 300 g was used to prevent dam-
age to the paw. The nociceptive threshold
was always measured in the right hind paw
(except when indicated) and reported as the
average of three consecutive trials recorded
before and 3 h after carrageenan injection.
The result was calculated as the difference
between these two averages (A of nocicep-
tive threshold) and is reported in grams.

Experimental protocol

Fentanyl was administered once subcu-
taneously into the right hind paw 135 min
after local injection of the carrageenan sus-
pension. All the K* channel blockers were
injected subcutaneously into the right hind
paw. The sulfonylureas (glibenclamide and
tolbutamide) were administered 5 min be-
fore fentanyl while all the other K* channel
blockers were injected 30 min after fentanyl
(5,24,25). In the protocol used to determine
whether fentanyl was acting at central sites,
carrageenan was injected into both hind paws
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while fentanyl was administered 2 h later
into the left or right paw and only the right
paw was measured.

Drugs

The drug used as the hyperalgesic agent
was lambda carrageenan (Sigma, St. Louis,
MO, USA) and the p-opioid receptor agonist
was fentanyl (Janssen, Titusville, NJ, USA).
The K* channel blockers and their suppliers
were: glibenclamide, ChTX, apamin, TEA,
4-AP, and cesium (Sigma) and tolbutamide
(ICN Biomedicals Inc., Aurora, OH, USA).
Fentanyl and carrageenan were dissolved in
isotonic saline and injected in a volume of
100 pl per paw. The K* channel blockers
were dissolved in demineralized water im-
mediately before use, with the exception of
sulfonylureas which were dissolved in sa-
line and 2% Tween, and injected in a volume
of 50 ul per paw. For acidic or alkaline
solutions of drops the pH was adjusted closer
to 7.

Statistical analysis

Data were analyzed statistically by one-
way analysis of variance (ANOVA) followed
by the Bonferroni test for multiple compari-
sons. Probabilities of less than 1% (P <0.01)
were considered to be statistically signifi-
cant.

Results
Antinociceptive effect of fentanyl

The administration of fentanyl (0.5 to 3.0
ng) into the right hind paw produced an
antinociceptive response against the hyper-
algesia induced by prior local ipsilateral in-
jection of carrageenan (Figure 1). Fentanyl
at the dose of 1.5 pg, when administered into
the left paw, did not produce an antinocicep-
tive effect in the right paw, whereas fentanyl
at the dose of 4.5 pg when injected into the

left paw induced a potent antinociceptive
effect in the contralateral paw (Figure 2).

Antagonism of fentanyl-induced
antinociception by glibenclamide and
tolbutamide

Glibenclamide (40, 80 and 160 pg/paw)
significantly reduced the magnitude of fen-
tanyl-induced antinociception (1.5 pg/paw)
in a dose-dependent manner (Figure 3). As
shown in Figure 4, the other sulfonylurea
tested, tolbutamide (80, 160 and 240 pg/
paw) also significantly inhibited the fenta-
nyl-induced antinociceptive effect. Neither
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Figure 1. Fentanyl inhibition of
the nociceptive threshold of car-
rageenan-induced hyperalgesia
in rats. Fentanyl (ug) was admin-
istered intraplantarly 135 min af-
ter the local administration of
100 pl of a carrageenan suspen-
sion (250 pg). Each column indi-
cates the mean + SEM (N = 5).
*P < 0.01 vs carrageenan + ve-
hicle-injected control (ANOVA/
Bonferroni test).

Figure 2. Exclusion of a central
antinociceptive response to fen-
tanyl. Fentanyl (ug) was admin-
istered into the right (RP) or left
(LP) paw 135 min after carra-
geenan (Cg) administration into
both hind paws. Each column
indicates the mean + SEM (N =
5). The symbols “-=" and “+"
indicate the absence and pres-
ence of treatment, respectively.
*P < 0.01 vs carrageenan + ve-
hicle-injected control (ANOVA/
Bonferroni test).
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Figure 3. Antagonism induced by
intraplantar administration of gli-
benclamide of the peripheral anti-
nociception produced by fentanyl
in hyperalgesic paws. Glibencla-
mide (Gli, pg/paw) was adminis-
tered 5 min before fentanyl (1.5
pg). Each column indicates the
mean + SEM (N = 5). The sym-
bols “=" and “+" indicate the ab-
sence and presence of treatment,
respectively. *P < 0.01 compared
to carrageenan (Cg) + vehicle-in-
jected controls and #P < 0.01
compared to Cg + fentanyl + ve-
hicle-injected controls (ANOVA/
Bonferroni's test).

Figure 4. Antagonism induced by
intraplantar administration of
tolbutamide of the peripheral anti-
nociception produced by fentanyl
in hyperalgesic paws. Tolbuta-
mide (Tol, pg/paw) was adminis-
tered 5 min before fentanyl (1.5
pg). Each column indicates the
mean + SEM (N = 5). The sym-
bols “=" and “+" indicate the ab-
sence and presence of treatment,
respectively. *P < 0.01 compared
to carrageenan (Cg) + vehicle-in-
jected controls and #P < 0.01
compared to Cg + fentanyl + ve-
hicle-injected controls (ANOVA/
Bonferroni's test).

Figure 5. Inhibition by intraplantar
administration of apamin (Apa, 10
ug), charybdotoxin (ChTX, 2 ug),
4-aminopyridine (4-AP, 50 ug), tet-
raethylammonium (TEA, 150 ug),
and cesium (250 pg) of the pe-
ripheral antinociception induced
by fentanyl in hyperalgesic paws.
Antagonists were administered
30 min after fentanyl (1.5 pg).
Each column indicates the mean
+ SEM (N = 5). No statistically
significant differences were de-
tected between the groups
treated with fentanyl + vehicle
and fentanyl + Apa, ChTX, 4-AP,
TEA, or cesium in any case. *P <
0.01 vs carrageenan + vehicle-in-
jected control (ANOVA/Bonfer-
roni's test).
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sulfonylurea tested significantly modified the
nociceptive threshold in control animals, or
induced any overt behavioral effect at the
doses used. Furthermore, the maximum dose
of glibenclamide administered by the same
route did not significantly alter the plasma
glucose level (data not shown).

Effect of apamin, ChTX, 4-AP, TEA, or cesium
on fentanyl-induced antinociception

Intraplantar injection of apamin (10 pg)
had no significant effect on fentanyl-induced
antinociception. ChTX (2.0 pg/paw) also
failed to significantly counteract the antino-
ciception induced by fentanyl (Figure 5). As
also shown in the same Figure, 4-AP (50 pg/
paw), TEA (150 pg/paw) and cesium (250
pg/paw) did not significantly modify the
antinociception induced by fentanyl.

Discussion

It has been suggested that the molecular
mechanism of peripheral (15) and central
(16) analgesia induced by morphine involves
activation of the L-arginine/nitric oxide/
c¢GMP pathway. Morphine has been shown
to exert its peripheral antinociceptive effect
by activating ATP-sensitive K* channels (17).
Recent studies carried out in our laboratory
demonstrated that the peripheral antinoci-
ceptive action of the nitric oxide donor so-
dium nitroprusside (26) and dibutyryl cGMP
(27) is associated with ATP-sensitive K*
channels, thus establishing a link between
the participation of the nitric oxide/cGMP
pathway in the analgesia induced by certain
drugs and the activation of ATP-sensitive K*
channels.

The present findings demonstrate that
the sulfonylureas glibenclamide and tolbuta-
mide can reverse the peripheral antinocicep-
tive effect induced by intraplantar adminis-
tration of fentanyl in rats. Other K* channel
blockers such as apamin, ChTX, 4-AP, TEA,
and cesium did not exhibit any inhibitory
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effect. The doses of the ineffective blockers
are compatible with those used to examine
the involvement of potassium channels in
the inhibitory prejunctional effect of a p-
opioid agonist on peripheral sensory nerves
in vivo (25), and in peripheral antinocicep-
tion by morphine (17).

A growing number of both experimental
and clinical studies have demonstrated that
locally administered opioids produce pro-
nounced analgesic effects by interacting with
peripheral opioid receptors (11-13,28). Ac-
cording to Stein (29), p-opioid agonists are
more potent than § or K agonists in inducing
peripheral antinociceptive effects. Thus, we
used fentanyl because it has been described
as an agonist of p-opioid receptors (30) and
has been extensively used as an analgesic
(18).

Many strategies can be used to exclude
the central effects of opioids (29). In the
present study, we used the strategy of evalu-
ating the efficacy of ipsi- versus contralat-
eral paw administration because the route
and site of administration would be the same.
Carrageenan was administered into both hind
paws, thus creating the same tissue condi-
tions and providing an equal possibility that
fentanyl would reach sites outside the in-
jected paw. Since the nociceptive threshold
was always measured in the right hind paw,
fentanyl at a dose of 1.5 pg was ineffective
when administered into the contralateral paw,
suggesting that at this dose fentanyl has a
peripheral site of action in inflamed tissue.
This effect seems to be specific and receptor
mediated, since 50 pg naloxone (when in-
jected into the right paw, but not into the
left), totally blocked the antinociceptive ef-
fect of fentanyl (data not shown).

Patch-clamp studies have shown that the
sulfonylureas are selective inhibitors of ATP-
sensitive K* channels in pancreatic 3-cells,
cardiac myocytes and skeletal muscle cells
(19). Indeed, the sensitivity to sulfonylureas,
especially the potent glibenclamide, is com-
monly used to characterize the K p channel

(31). However, glibenclamide also blocks an
ATP-independent K* current in a human
neuroblastoma cell line (32) and a delayed
rectifier K* current in neural and cardiac
cells (33). Blockade of these currents might
mimic the effects expected from K ,1p block-
ade, thus potentially confusing the interpre-
tation of the results. Delayed rectifying K*
channels are blocked by TEA, 4-AP and
cesium (34) and if fentanyl were acting
through the activation of these channels both
sulfonylureas and these other blockers should
reverse this effect.

It has been demonstrated that glibencla-
mide cannot bind directly to p-, 8- or x-
opioid receptors because this drug cannot
alter the binding of specific agonists of these
receptors (35). The effect of sulfonylureas
against fentanyl-induced antinociception
should not be interpreted as a counteraction
by a possible increased excitability induced
by the blockers, since these drugs do not
cause any hyperalgesic effect when adminis-
tered alone. Our results are consistent with
reports (36) describing glibenclamide as more
potent in blocking ATP-sensitive K* chan-
nels than tolbutamide in pancreatic B-cells
and in smooth and cardiac muscle. In the
present study, the maximum dose of gliben-
clamide (240 pg/paw) did not significantly
alter the plasma glucose levels (data not
shown). Furthermore, all sulfonylureas tested
to date, when administered by the intracere-
broventricular or intrathecal route, dose de-
pendently antagonized the antinociception
induced by systemic administration of fenta-
nyl (4,37), suggesting that opening of ATP-
sensitive K* channels in neurons of the cen-
tral nervous system underlies the antinoci-
ceptive effect of fentanyl. Interestingly, pe-
ripheral antinociception of bremazocine, a
K-opioid, is not due to K* channel activation
(38).

In the present study, apamin, a protein
extracted from bee venom and a selective
blocker of small conductance Ca?*-activated
K* channels (20), and ChTX, a toxin that

95

Braz ) Med Biol Res 38(1) 2005



96

References

blocks large conductance calcium-activated
K* channels (21), failed to antagonize the
peripheral antinociceptive effect induced by
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junctional modulation of sensory nerves in
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modulation of pain sensation by opiates. Our
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activated K* channels in the peripheral anti-
nociception induced by fentanyl. According
to others (39), ChTX is not specific for the
large conductance Ca**-activated K* chan-
nels, but blocks a number of other K* chan-
nels.

Our results show that 4-AP, TEA, and
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significant effect on the peripheral antinoci-
ception induced by fentanyl. These drugs
block different types of K* channels, includ-
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TEA (40).
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sulfonylureas, glibenclamide and tolbuta-
mide, antagonized the peripheral antinoci-
ceptive effect induced by the p-opioid recep-
tor agonist fentanyl in rats, suggesting that
ATP-sensitive K channels play an impor-
tant role in this effect. It is important to
consider that other potassium channels such
as G protein-coupled channels might be in-
volved. Since other K* channel blockers
failed to reverse this effect it may be inferred
that other types of K* channels such as large
conductance CaZ?™-activated, small conduc-
tance Ca*"-activated and voltage-dependent
K* channels appear not to be involved in the
peripheral antinociceptive effect of fenta-
nyl.
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