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Prion protein folding landscape

Volume and energy folding landscape
of prion protein revealed by pressure
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Abstract

The main hypothesis for prion diseases proposes that the cellular
protein (PrPC) can be altered into a misfolded, ß-sheet-rich isoform,
the PrPSc (from scrapie). The formation of this abnormal isoform then
triggers the transmissible spongiform encephalopathies. Here, we
discuss the use of high pressure as a tool to investigate this structural
transition and to populate possible intermediates in the folding/un-
folding pathway of the prion protein. The latest findings on the
application of high pressure to the cellular prion protein and to the
scrapie PrP forms will be summarized in this review, which focuses on
the energetic and volumetric properties of prion folding and conversion.
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Introduction

Since its discovery by Stanley Prusiner in
1982, the prion protein (PrP) has received
much attention in the field of medical sci-
ence (1). This protein is implicated in the
neurodegenerative diseases called transmis-
sible spongiform encephalopathies and thus
far is believed to be the major agent (or only
agent) that causes these affections (2). The
onset of a transmissible spongiform encepha-
lopathy is triggered by the conversion of an
α-helical isoform, which is the cellular PrP,
denoted PrPC, into a ß-sheet-rich form, the
prion scrapie, denoted PrPSc or PrP-res (from
protease-resistant) (2-5). The PrPC is found
anchored to the cell membrane mainly in
cells of the central nervous system by a
glycosylphosphatidylinositol bridge and is
rich in α-helical structure and highly soluble
(6). In contrast, PrPSc is mostly insoluble,
presents partial resistance to proteolysis and

has a greater ß-sheet content than PrPC (6,7).
Although PrPSc may exist in variable trun-
cated forms in vivo, due to its partial resis-
tance to proteolysis (8), both forms are gen-
erally derived from the same primary se-
quence of the prion protein.

The mechanism of conversion from PrPC

to PrPSc is still under study, and although
most research groups suggest that only the
presence of the scrapie form is necessary to
induce PrPC to acquire the misfolded confor-
mation, some researchers have shown that
other macromolecular candidate accessory
factors, such as heparan sulfate (9-12), pro-
teins (13,14) and nucleic acids (15-19), may
be involved in this conversion.

In the last two decades, several groups
have published studies on the thermody-
namic and structural properties of this un-
usual protein (20-27). These investigators
have described common peculiar solution
conditions that favor in vitro formation of
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the polymerized, ß-rich and proteinase K-
resistant PrP structure, which involve incu-
bation of recombinant PrP under acidic con-
ditions (pH 4 to 6) and at denaturing or sub-
denaturing concentrations of urea or guani-
dinium salt.

Another approach to the understanding
of prion conversion is the use of physical
variables - heat, cold and high pressure - to
assess the energetic and volumetric values
involved in conformation changes (28-32).
Another goal of the knowledge of such vari-
ables was to reduce or even to abolish infec-
tivity of brain samples containing prion
scrapie using these combined treatments, by
high temperature autoclaving (33,34).

An important relatively new tool for in-
vestigating the conformational transitions of
PrP is high pressure, which has an advantage
over other methods because its perturbation
of macromolecules in solution depends solely
on the volume change of the process under
study (35). High pressure favors the forma-
tion of structures with smaller volumes, and
the application of pressure generally hy-
drates the hydrophobic interior of proteins
(35,36). Therefore, proteins with a large vol-
ume fraction of solvent-excluded cavities
are highly sensitive to pressure (35,37,38), a
fact that makes this variable unique for ex-
ploring hydration, packing and volumetric
properties of proteins. Moreover, pressur-
ization of a particular protein may allow one
to populate intermediate species in the fold-
ing pathway and to study these conforma-
tions, which otherwise would be difficult to
isolate by other approaches (39). Since the
1980’s, high pressure has been used suc-
cessfully to explore protein folding (40),
assembly (41), dynamics (42), and structure
(43). More recently, high pressure has also
been applied to misfolded proteins that form
aggregates and amyloids (32,38,44-46).

In this review we will focus on the use of
high pressure to dissect in more detail the
prion conversion from the α-helical to the ß-
sheet-rich isoform and folding/unfolding of

this protein, which presents one of the major
challenges in the neuroscience, biochemical
and biophysical fields.

Use of high pressure to abolish prion
infectivity

Although high temperature autoclaving
has been used in the last decade to try to
reduce or abolish prion infectivity from in-
fected brain-tissue (33,34), high pressure
has only been applied for this purpose a few
years ago. At first inspection, the application
of pressure to infected material seems to be
promising, but it only produces significant
results when combined with very high tem-
perature (47,48). When several pulses of
pressures - pressure pulse technology - above
~700 MPa were applied to the 263K scrapie
strain adapted to hamsters, a high reduction
of infectivity levels was obtained, but al-
ways coupled with high temperature incuba-
tion of the material (47). A similar result was
obtained recently with the same prion strain
(48,49). Crude brain homogenates of termi-
nally diseased hamsters infected with the
263K scrapie strain were treated at 60ºC
with pressures above 500 MPa (48) or at 800
MPa (49), and the titers of prion infectivity
were significantly reduced when treated
samples were inoculated into healthy ham-
sters. Interestingly, when this group applied
high pressure (800 MPa) at 60ºC to purified
prion fibrils, resistance to proteinase K di-
gestion and infectivity were retained, sug-
gesting the existence of distinct ß-structures in
the PrP, sensitive or highly resistant to pres-
sure (49). Besides, even for the assays in
which prion titers were significantly reduced,
abolition of total prion infectivity could not be
achieved in any reported study.

Use of high pressure to search for
alternative prion conformations

Several studies have been performed on
the thermodynamics and stability of the PrP,
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describing interesting features of this protein
(21,50-52). Thus, the main characteristics of
the PrP behavior can be clearly determined,
but normally the results are quite variable
and it is important to carefully analyze the
type of prion construction studied in con-
junction with the unfolding treatment utilized
(see summary of the data in Table 1).

Application of pressure to proteins can

reveal different conformations during the
unfolding transition, which cannot be ob-
tained by other methods. Soluble native Syr-
ian hamster PrP (ShaPrP90-231) could be res-
cued by pressure (200 MPa and returning to
atmospheric pressure, at 70ºC) from temper-
ature-induced ß-sheet-rich aggregates (45).
Interestingly, when pressure was raised over
400 MPa at 40ºC, a conformational interme-

Table 1. Overview of prion isoforms characterized by high pressure.

Pressure/ Prion pH conditions Initial and final Thermodynamic Ref.
temperature construct structural properties properties

3 to 200 MPa Native, soluble pH 5.2 Cold denaturation ∆G0 values were 29
30ºC to -20ºC SharPrP90-231 of ShaPrP achieved calculated for individual

 residues and ranged
 from 3.0 to 5.3 kcal/mol

1 to 350 MPa mrPrP121-231 pH 7.0 No complete unfolding ∆V = -39 ml mol-1 59
25ºC 4 M urea  achieved; stabilization a∆Gint = 2.2 kcal mol-1

 of a partially  folded
intermediate

350 MPa mrPrP121-231 pH 7.0 Cold denaturation b∆GU = 1.1 kcal mol-1 59
25ºC to -9ºC 4 M Urea  achieved under

pressure with 4 M urea

50 to 275 MPa Temperature- pH 7.0 Pressurization allowed Not calculated 45
70ºC induced aggregates recovery of native,

of SharPrP90-231 non-aggregated ShaPrP

50 to 600 MPa Native, soluble pH 7.0 Pressure-induced ∆GU = 3.93 kJ mol-1 45
40ºC SharPrP90-231 unfolding obtained ∆VU = -31.9 ml mol-1

1 to 1000 MPa Native, α-helical pH 7.5 Pressure-induced ∆G0
U= 5.4 kcal mol-1 30

25ºC mrPrP23-231 unfolding achieved ∆V = -29.2 ml mol-1

p1/2 = 540 MPa

1 to 1100 MPa Aggregated, pH 7.5 Pressure-induced ∆G0
U = 2.8 kcal mol-1 30

25ºC ß-sheet-rich unfolding achieved ∆V = -43.6 ml mol-1

mrPrP23-231 p1/2 = 280 MPa

1 to 600 MPa SharPrP90-231 pH 8.5 rPrP aggregates Not calculated 32
40ºC above 450 MPa

Transient SharPrP90-231 pH 8.5 Formation of Not calculated 32
treatment at amorphous aggregates
600 MPa, 40ºC after pressure release

Overnight SharPrP90-231 pH 8.5 Formation of amyloid Not calculated 32
incubation at aggregates after pressure
600 MPa, 40ºC release

aFree energy change corresponding to the transition from the rPrP state at 4 M urea, atmospheric pressure to
the partially folded pressure-denatured state. bFree energy change of the transition from the pressure-
denatured intermediate state to the fully unfolded state. p1/2 = pressure value corresponding to 50% of the
transition; SharPrP = Syrian hamster recombinant prion protein; mrPrP = murine recombinant PrP.
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We have also used high pressure to try to
reach the rPrP unfolded state. Recently, we
confirmed that pressures above 500 MPa
promoted denaturation of recombinant mouse
PrP (rPrP23-231) (30). The effects of high
pressure on ß-sheet-rich rPrP aggregates (ß-
rPrP), which were obtained by thermal treat-
ment, were also investigated (30). The use of
high-pressure Fourier-transform infrared
spectroscopy (53-56) allowed us to probe
the secondary structure of the protein during
pressurization. We found that, whereas α-
helical rPrP undergoes aggregation at high
temperature into a ß-sheet-rich structure, it
is markedly resistant to pressure, displaying
almost no change in secondary structure up
to 400 MPa, as reported previously (29).
However, the ß-rPrP aggregates were highly
susceptible to pressure and dissociated at
pressures below 400 MPa (Figure 1). We
showed for the first time denaturation of
recombinant full-length PrP by high pres-
sure without the use of temperature or dena-
turants and also reported that newly formed
aggregates are less hydrated and have more
cavities than native PrP and late aggregates.
We calculated the thermodynamic param-
eters of the α-rPrP and ß-rPrP denaturation
processes (Figure 2) and observed that the
transitions lead to different denatured states
(U and U’), which appear to arise from dif-
ferent folding routes: α-rPrP denatures into
U with smaller changes in volume whereas
ß-rPrP denatures into U’ with a larger vol-
ume change. There is a clear kinetic barrier,
both in the volume (activation volume) and
in the Gibbs free energy (activation energy)
between U and U’ (Figure 2). This unusual
property is probably related to both the slow
in vivo conversion and to the infectious na-
ture of prion diseases. It may also explain the
inability to show that any ß-sheet-rich form
obtained from recombinant PrP is an effi-
cient infectious agent. Nevertheless, in vitro
ß-sheet isoforms have physical properties
similar to PrPSc, and amyloid-like aggre-
gates exhibit epitopes equivalent to those of
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Figure 1. α-rPrP and ß-rPrP dis-
play different stabilities against
pressure. The transition values
as a function of pressure were
obtained from the native α-rPrP
α-helical secondary structure
and from ß-sheet changes for ß-
rPrP (obtained from Ref. 30).
The extent of denaturation (f )
was calculated as follows: f  =
(IRobs - IRinitial/IRfinal - IRinitial),
where IRobs is the observed IR
intensity value at pressure p,
IRinitial is the IR value at 0.1
MPa, and IRfinal is the final IR
intensity value of the pressure-
induced unfolding curve (from
Ref. 30).
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Figure 2. Volume (A) and Gibbs
free-energy (B) diagrams of α-
rPrP and ß-rPrP. α-rPrP (circle)
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(A) and Gibbs free-energy of un-
folding (kcal/mol) (B) determined
for α-rPrP and ß-rPrP pressure-
induced unfolding (from Ref. 30).

diate was populated, revealing other advan-
tages for the use of this approach.

Kuwata and co-workers (29) have taken
advantage of high-pressure nuclear magnetic
resonance to monitor in real time the effect
of pressure on the three-dimensional recom-
binant ShaPrP90-231 structure. They could only
reach the rPrP denatured state by cooling the
sample to -20ºC at 200 MPa, but at 30ºC and
200 MPa a locally disordered rPrP interme-
diate was revealed (29) and more informa-
tion was published recently (31). The yeast
PrP Ure2 also underwent cold denaturation
induced by pressure (200 MPa) (28).

Conformation coordinate
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scrapie PrP (26). Indeed, it is quite intri-
guing why infectious PrPSc cannot be re-
folded in vitro, without a PrPSc template, as
demonstrated by Kocisko et al. (57).

The greater pressure stability of α-rPrP,
as determined by its higher standard Gibbs
free energy change of unfolding (∆G0 = 5.37
± 0.15 kcal/mol) in contrast to that of ß-rPrP
(∆G0 = 2.81 ± 0.10 kcal/mol), seems para-
doxical at first glance since the chemical
potential of these two forms shows the oppo-
site. For the free-energy diagram, we as-
sumed a metastability model for the conver-
sion of α-rPrP into ß-rPrP (25). The appar-
ent contradiction is resolved by the finding
that their N ↔ U transitions are not con-
nected at equilibrium, and by the fact that α-
rPrP is converted into ß-rPrP by increasing
the temperature and no further unfolding is
caused by temperatures as high as 95ºC. The
volume and free-energy diagrams revealed
by pressure agree with recent thermody-
namic and kinetic data showing that par-
tially structured intermediates are essential
in the folding pathway (52,58,59).

Another interesting finding was that pres-
sure could distinguish between early and
late prion aggregates obtained by incubation
at high temperatures for short or long time.
The rPrP aggregate obtained by incubation
at 50ºC for 2 days was completely pressure
resistant, in contrast with the aggregate incu-
bated for 2 h at the same temperature. This
was rather surprising because, generally, oli-
gomeric proteins (37,60) and amyloid ag-
gregates (38,44) dissociate in the pressure
range from 100 to 300 MPa. And, according
to the principle of Le Châtelier, pressure
shifts the equilibrium to conformational states
that occupy smaller volumes (37,60), nor-

mally leading to dissociation of oligomeric
proteins (35) or to protein unfolding (60).
However, since this mature aggregate did
not unfold up to 1,200 MPa, we assumed
that it no longer contained internal cavities
susceptible to pressurization, and hence could
be considered rather densely packed.

Another interesting application of pres-
sure in the PrP studies is to try to obtain PrP
aggregates, which could be used as models
for the prion scrapie. The rPrP from hamster
was converted to a novel misfolded con-
former that aggregated in amyloid fibrils by
overnight incubation at 600 MPa, 40ºC (32).
And these pressure-induced aggregates were
also resistant to proteinase K.

In conclusion, we believe that high pres-
sure is a valuable tool for investigating prion
transition even without the concomitant use
of temperature or chemical denaturants, and
recombinant prion aggregates display dif-
ferent susceptibilities to high pressure de-
pending on time of exposure to high temper-
ature during aggregation. We show that dif-
ferent folded conformations as well as dif-
ferent denatured states of rPrP can be distin-
guished on the basis of hydration, surface
exposure and cavities. These dissimilarities
result in the paradox that ß-rPrP is highly
resistant to temperature whereas it is very
sensitive to pressure; the opposite occurs
with the native α-rPrP.
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