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Abstract

The thalamus is an important modulator of seizures and is severely
affected in cholinergic models of epilepsy. In the present study,
chronically epileptic rats had their brains processed for neo-Timm and
acetylcholinesterase two months after the induction of status epilepti-
cus with pilocarpine. Both controls and pilocarpine-treated animals
presented neo-Timm staining in the anterodorsal nucleus, laterodorsal
nucleus, reticular nucleus, most intralaminar nuclei, nucleus reuniens,
and rhomboid nucleus of the thalamus, as well as in the zona incerta.
The intensity of neo-Timm staining was similar in control and pilo-
carpine-treated rats, except for the nucleus reuniens and the rhomboid
nucleus, which had a lower intensity of staining in the epileptic group.
In animal models of temporal lobe epilepsy, zinc seems to modulate
glutamate release and to decrease seizure activity. In this context, a
reduction of neo-Timm-stained terminals in the midline thalamus
could ultimately result in an increased excitatory activity, not only
within its related nuclei, but also in anatomical structures that receive
their efferent connections. This might contribute to the pathological
substrate observed in chronic pilocarpine-treated epileptic animals.
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Introduction

Despite the role played by the thalamus
in the circuitry of seizure activity, reorgani-
zation of epileptic pathways has mostly been
studied in the hippocampus (1-3). After an
epileptogenic insult, granule cell axons
(mossy fibers) reorganize and establish an
abnormal recurrent circuit that ultimately
reinnervates the granule cell layer (1-3). Since
mossy fibers are rich in zinc, the sprouting of
this pathway has been recognized by the
Timm technique (1-3). The Timm staining
method and its variants detect mostly the

chelatable pool of zinc that is concentrated in
synaptic vesicles of terminal boutons (4-8).
Even though hippocampal regions that re-
ceive mossy fiber terminals are the most
robustly stained areas in the brain, Timm-
stained terminals have also been recognized
in the amygdala, cortex, basal forebrain, and
thalamus (7,9-11).

Anatomical and physiological studies
suggest that several thalamic nuclei are in-
volved in the mechanisms of epileptogenesis
and seizure modulation in both animal mod-
els and human epilepsy (12-23). Yet, there is
a lack of studies assessing circuitry reorgani-
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zation in the thalamus of epileptic animals.
Since the pattern of neo-Timm staining has
been recently detailed in the thalamus of
normal rats (11), our objective here was to
investigate whether thalamic zinc-rich ter-
minals also present sprouting or reorganiza-
tion in epileptic animals. Thus, we com-
pared the pattern of neo-Timm staining in
the thalamus of chronically epileptic rats
treated with pilocarpine and controls.

Material and Methods

Pilocarpine administration and status
epilepticus

All protocols were carried out in accor-
dance with the Declaration of Helsinki and
the Guide for the Care and Use of Labora-
tory Animals adopted and promulgated by
the National Institutes of Health. The proto-
col used for induction of status epilepticus
(SE) and spontaneous recurrent seizures af-
ter pilocarpine treatment has been previ-
ously described in detail (3). Briefly, adult
male Wistar rats (150-250 g) were injected
with methylscopolamine (1 mg/kg, ip) fol-
lowed 30 min later by pilocarpine (320 mg/
kg, ip). Approximately 20-30 min after pilo-
carpine administration the animals devel-
oped SE, characterized by the occurrence of
continuous behavioral seizures. Ninety min-
utes after SE onset, the animals were in-
jected with thionembutal (25 mg/kg, ip) to
reduce the otherwise high mortality rate ob-
served during this period. For the 2-3 subse-
quent days, the animals received oral saline
and sucrose as well as subcutaneous 10%
glucose in 0.9% saline supplements. Three
to four weeks after SE, they developed spon-
taneous recurrent seizures and were charac-
terized as chronically epileptic animals.

Histologic procedures

One hundred and twenty days after SE,
epileptic animals (N = 5) were injected with

sodium selenite (15 mg/kg, ip) in order to
enhance neo-Timm staining (7). Two hours
later, they were deeply anesthetized with
thionembutal (50 mg/kg, ip) and transcardi-
ally perfused with i) 25 ml Millonig’s buffer,
ii) 50 ml 0.1% Na2S in Millonig’ s buffer, iii)
100 ml 3% glutaraldehyde, and iv) 200 ml
0.1% Na2S in Millonig’s buffer. Next, 40-
µm thick coronal sections were cut with a
cryostat and developed according to stand-
ard neo-Timm protocols in a solution con-
taining arabic gum, citrate buffer, hydro-
quinone, and silver nitrate, for 60-70 min in
the dark at 26ºC (3). Adjacent sections were
processed for acetylcholinesterase (AChE)
activity. Age-matched naive male Wistar
rats (N = 5) had their brains processed ac-
cording to the same protocols and were used
as the control group.

Intensity of neo-Timm staining

All neo-Timm-stained thalamic nuclei
were evaluated. The epithalamus was not
assessed. neo-Timm staining was scored as
follows: 0, no staining; +, very lightly stained;
++, lightly stained; +++, moderately stained;
++++, densely stained. Adjacent AchE-
stained sections were used to visualize the
internuclear thalamic boundaries in epilep-
tic and control animals (11). Cresyl violet
was not used for this purpose due to its
limited precision in delineating the borders
of thalamic nuclei in gliotic tissue.

Results

Neo-Timm-stained thalamic nuclei and zona
incerta

The following nuclei showed neo-Timm
staining in both control and epileptic ani-
mals: anterodorsal (AD), laterodorsal (LD),
reticular (Rt), central medial (CM), paracen-
tral (PC), central lateral (CL), reuniens (Re),
and rhomboid (Rh). In addition, we also
observed neo-Timm staining in the zona
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incerta. Even though this structure comprises
part of the subthalamic region and is not a
formal thalamic nucleus, we decided to in-
clude it in our analysis.

Intensity and pattern of neo-Timm staining

The intensity of neo-Timm staining in
almost all the thalamic nuclei and in the zona
incerta was similar in pilocarpine-treated
and control animals (Table 1).

The AD nucleus was densely stained,
particularly in its dorsolateral region. The
LD nucleus presented a variable degree of
injury in different epileptic animals. In gen-
eral, the portions of the LD that were not
gliotic showed dense neo-Timm staining
(Figure 1). In epileptic animals with intense
tissue damage, the internuclear boundary
between LD and the latero-posterior nucleus
presented pathologic abnormalities similar
to the calcifications previously reported for
chronically epileptic rats treated with pilo-
carpine and picrotoxin (Figure 1E,F) (14).
The Rt nucleus was densely stained in its
most rostral and dorsal portions. Caudal and
ventral regions of the Rt were either very
lightly stained or not stained at all. Intralami-
nar nuclei, such as the CM, PC and CL
nuclei, showed moderate neo-Timm stain-
ing. Neo-Timm staining was more promi-
nent in the rostral levels of CM and PC and
in the caudal levels of CL nuclei. The zona
incerta presented a moderate staining pat-
tern, most prominent in the rostral levels of
its ventral region.

Contrasting with the previously described
nuclei, the Re and Rh nuclei showed a lower
intensity of neo-Timm staining in the epilep-
tic group compared to control. While the Re
was lightly to moderately stained and the Rh
was lightly stained in control animals (Fig-
ure 2B), both nuclei were only very lightly
stained in pilocarpine-treated rats (Figure
2D). Even though the cytoarchitecture of
these structures was compromised in the
epileptic animals, both Re and Rh could still

Table 1. Intensity of neo-Timm staining in the zona incerta and thalamus of controls
and chronically epileptic animals treated with pilocarpine.

Control Pilocarpine

Anterodorsal nucleus ++++ ++++
Laterodorsal nucleus +++/++++ +++/++++
Reticular nucleus (rostrodorsal region) ++++ ++++
Reticular nucleus (caudal-ventral region) 0/+ 0/+
Central medial nucleus +++ +++
Paracentral nucleus +++ +++
Central lateral nucleus +++ +++
Zona incerta +++ +++
Nucleus reuniens ++/+++ +
Rhomboid nucleus ++ +

N = five animals per group. 0, no staining; +, very lightly stained; ++, lightly stained;
+++, moderately stained; ++++, densely stained. See Material and Methods for treat-
ment with pilocarpine.

Figure 1. Acetylcholinesterase (AChE) and neo-Timm staining of the laterodorsal nucleus of the
thalamus in a control (A,B) and two chronically epileptic rats treated with pilocarpine as described in
Material and Methods (C,D,E,F). Pathology was not homogeneous within this nucleus. While some
of the animals had a relatively preserved cytoarchitecture (C,D), others had more severe alter-
ations, including pathologic calcifications in the boundary region between the laterodorsal nucleus
and the lateroposterior nucleus (arrowheads; E,F). Scale bar = 500 µm.
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be delineated in AChE sections (Figure
2A,C). This indicates that the decrease in
neo-Timm staining seen in these nuclei was
probably related to specific pathologic events
and not merely a consequence of the volu-
metric changes seen in the epileptic group.

We did not find evidence of sprouting in
any of the thalamic nuclei assessed.

Discussion

We have shown here that 1) several tha-
lamic nuclei and the zona incerta stained for
zinc in both control and pilocarpine-treated
rats, and 2) the intensity of neo-Timm stain-
ing was decreased in the Re and Rh nuclei in
chronically epileptic animals.

Almost all thalamic nuclei that stained
for neo-Timm in our study, as well as the
zona incerta, have been previously implied
in mechanisms of epileptogenesis or seizure
modulation. Lesions, high frequency stimu-
lation, or the pharmacological blockage of
the anterior nucleus reduce the propensity
for seizures in animal models and in patients
with epilepsy (15-17,20). In contrast, phar-

macological studies have suggested that the
zona incerta might be involved in inhibitory
circuits of epileptogenesis in the pilocarpine
model of epilepsy (24). The reticular nucleus
of the thalamus and the rostral intralaminar
group have been involved in the mechan-
isms of thalamo-cortical recruiting rhythms,
spike and wave discharge, and the patho-
physiology of absence seizures (21,23,25).
The topical administration of GABAergic
and cholinergic agents to the region of the
CM nucleus influenced seizure activity in
the pentylenetetrazole model of epilepsy
(18,19).

The Re and Rh nuclei comprise part of
the so-called midline thalamus and have been
involved in mechanisms of seizure activity
in animal models of limbic epilepsy (12).
Midline thalamic activity was noticed at early
stages of seizure evolution during hippo-
campal kindling and in chronically epileptic
rats (12). Moreover, chronically epileptic
animals develop changes in electrophysi-
ological properties, such as synaptically
mediated and voltage-gated responses (12),
as well as neuronal loss and gliosis in both
Re and Rh (12,14). These pathological sub-
strates and the important anatomical con-
nections between the Re and the hippocam-
pus may be responsible in part for the en-
hanced excitability of thalamo-limbic path-
ways in epileptic circuits (12,26,27). Reuni-
ens axons form asymmetrical synapses on
spines and dendrites of pyramidal cells and
interneurons and Re stimulation depolarizes
pyramidal cells and evokes spiking activity
in the oriens-alveus and radiatum strata
(12,26-30). Excitatory amino acids seem to
be the putative neurotransmitters of Re-hip-
pocampal pathways (31).

The role of zinc as a neuromodulator in
epilepsy is controversial. Depending on the
animal model, the receptor type and subunit
configuration, zinc can act as a pro- or anti-
convulsant agent (32-35). In animal models
of temporal lobe epilepsy, however, zinc
seems to decrease seizure activity (34-36).

Figure 2. Acetylcholinesterase (AChE) and neo-Timm staining of the thalamus in a control (A,B) and
a chronically epileptic rat treated with pilocarpine as described in Material and Methods (C,D). Note
the decreased intensity of neo-Timm staining in the region of the rhomboid nucleus and nucleus
reuniens in the pilocarpine-treated animal (arrowheads). Scale bar = 2 mm.
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Mice lacking vesicular zinc and dietary zinc-
deficient rats are not only more susceptible
to kainic acid-induced seizures, but also have
a higher degree of neuronal injury in the
hippocampus (34,35). Whether the neuro-
protective effects of zinc derive from a re-
duced release of glutamate or an increase in
the concentration of GABA remains elusive,
since both mechanisms have been demon-

strated in microdialysis studies (37-39). Yet,
regardless of the mechanism involved, the
reduction of Timm-stained terminals ob-
served in the midline thalamus in our study
could ultimately result in an increased exci-
tatory activity within the Re and Rh, damag-
ing not only their own cytoarchitecture but
also that of anatomical structures that re-
ceive their efferent connections (40).
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