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Abstract

Protein coding sequences represent only 2% of the human genome. Recent advances have demonstrated that a significant
portion of the genome is actively transcribed as non-coding RNA molecules. These non-coding RNAs are emerging as key
players in the regulation of biological processes, and act as "fine-tuners" of gene expression. Neurological disorders are caused
by a wide range of genetic mutations, epigenetic and environmental factors, and the exact pathophysiology of many of these
conditions is still unknown. It is currently recognized that dysregulations in the expression of non-coding RNAs are present in
many neurological disorders and may be relevant in the mechanisms leading to disease. In addition, circulating non-coding
RNAs are emerging as potential biomarkers with great potential impact in clinical practice. In this review, we discuss mainly the
role of microRNAs and long non-coding RNAs in several neurological disorders, such as epilepsy, Huntington disease, fragile
X-associated ataxia, spinocerebellar ataxias, amyotrophic lateral sclerosis (ALS), and pain. In addition, we give information
about the conditions where microRNAs have demonstrated to be potential biomarkers such as in epilepsy, pain, and ALS.
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Introduction

Recent developments have indicated that numerous
non-coding sequences present in the human genome are
actively transcribed as non-coding RNA (ncRNA) mole-
cules (1). These ncRNAs may be grouped into different
classes and classified according to size and function.
They have emerged as key players in the regulation of
many biological processes and the fine-tune control of
gene expression (2).

It is not surprising that the complexity of neurological
disorders is determined by different molecular mecha-
nisms, including genetic mutations and epigenetic factors.
In this context, changes in ncRNA gene expression regula-
tion have emerged as a putative mechanism in a variety of
neurological disorders such as epilepsy, neurodegenera-
tive disorders, and autoimmune conditions (3,4). Specific
processes by which ncRNAs may influence disease vary
widely and include quantitative changes in coding and
ncRNA expression, induction of abnormal RNA species,
and others (2,5). Furthermore, circulating ncRNAs may
act as disease biomarkers, contributing to early disease
diagnosis and treatment follow-up (6).

In this review, we discuss the classification, biogenesis,
and mechanisms of action of ncRNAs. We also review
key studies that show associations between microRNA
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(miRNA) and long non-coding RNA (IncRNA) dysregula-
tion and different early and adult onset neurological
disorders, as well as the use of circulating miRNAs as
biomarkers and potential therapeutic strategies based
on manipulating ncRNAs. The role of ncRNAs in aging-
related neurological disorders, such as Alzheimer’s or
Parkinson’s disease, are thoroughly reviewed elsewhere
and are not the focus of the present review (7-9).

Structure, function, and classification of
non-coding RNAs

ncRNAs are defined as RNA molecules transcribed
from genomic DNA that are not translated into proteins
(10). The earliest recognized members of this category of
RNA molecules were transfer RNAs (tRNAs) and riboso-
mal RNAs (rRNAs) (10). More recently, an increasing
number of other ncRNAs have been detected and char-
acterized, leading to the discovery that at least two thirds
of the mammalian genome is actively transcribed (1).

ncRNAs are, in a broader sense, classified as long
or small RNAs. IncRNAs are molecules ranging from
~200 nucleotides (nt) to more than 20 kilobases. The
major components of this category are rRNAs, tRNAs,
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X-chromosome inactivation RNAs (XIST RNAs) and
regulatory IncRNAs (2). However, IncRNAs are an ever-
increasing category, with more components than the four
mentioned above (2). Small ncRNAs have lengths ranging
from 20 to 200 nt, including small regulatory miRNAs,
small nucleolar RNAs (snoRNAs), and piwi interacting
RNAs (piRNAs) (11,12).

The molecular machinery responsible for miRNA bio-
genesis and interaction with mRNAs (Figure 1) is better
elucidated than that underlying the activity of other ncRNAs.
miRNA genes are transcribed by RNA polymerase Il or Ill.
This process generates a molecule, the pri-miR, that folds
itself into a hairpin conformation and is 5 capped and 3’
polyadenylated (13,14). The pri-miR molecule is recog-
nized by the DROSHA RNAse Ill enzyme and cleaved,
forming a 60- to 100-nt hairpin molecule, the pre-miR, that
is exported from the nucleus to the cytoplasm (14,15). In the
cytoplasm, the pre-miR is cleaved by the DICER enzyme,
yielding a double-stranded ~22nt RNA molecule (16). One
of the strands of the formed 22-nt miRNA molecule is loaded
into an RNA-induced silencing complex (RISC) protein to
serve as the template for target mMRNA recognition (17).

2110

Mature miRNA molecules loaded into RISCs have
two mechanisms of action. Perfect or near-perfect base
pairing of the entire miRNA molecule to a complementary
region within an mRNA leads to mRNA degradation by
RISC (18). Perfect base pairing of almost all 22 nt is an
uncommon scenario in animals. The more common
scenario involves imperfect pairing, or pairing of a 5-8 nt
‘seed’ region of the miRNA, which leads to reduced
translation or destabilization of the target mRNA (19).
A single miRNA molecule may regulate multiple genes
that contain a sequence complementary to the miRNA
seed, and a given mRNA may be regulated by different
miRNAs (20). Notably, the administration of exogenous
nucleic acid sequences can mimic miRNA action (mimic-
miRs), and employ the endogenous cellular machinery for
miRNA-mediated gene silencing (21). Another possibility
is the administration of stabilized exogenous nucleic acid
sequences that are complementary to endogenous miRNAs,
such as antagomirs, resulting in the inhibition of target
cellular miRNAs (22).

miRNAs are also present and enriched in the plasma
and serum. Furthermore, these RNAs are especially

Figure 1. Main processes involved in the biogen-
esis and mechanism of action of microRNAs.
DROSHA: Drosha ribonuclease Ill; DICER: Dicer 1;
Ago1-4: Argonaute 1-4.
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resistant to degradation (23). Blood circulating miRNAs
are contained in microvesicles known as exosomes or
are associated with Argonaute 2 complexes and, as a
consequence, are protected from degradation (6,24).
Because circulating miRNAs may originate from many
different tissues throughout the body and may reflect
normal function, changes in the circulating levels of these
miRNAs may constitute a useful and easily accessible
biomarker of many different pathological conditions. More-
over, it is feasible to quantify the levels of such circulating
miRNAs by RT-PCR or even high throughput techniques
such as micro-arrays or RNA-sequencing. The dysregula-
tion of miRNA expression is well established in some
tumors, and circulating miRNAs are indeed emerging as
promising biomarkers in this field (23,25). The search for
circulating miRNAs as biomarkers is also being applied to
neurological disorders.

IncRNAs boast distinct and diverse molecular machinery
involved in the regulation of gene expression (Figure 2).
Most of these ncRNAs are RNA polymerase |l products
that lack open reading frames but are generally 5' capped
and 3’ polyadenylated (26,27). IncRNAs are numerous,
with estimates in the range of thousands of IncRNA coding
genes (28). Briefly, IncRNAs may act in cis, silencing or
enhancing the expression of proximal genes on the same
chromosome. For example, the IncRNA HOTTIP gene is
present in the HOXA gene cluster, and its expression
enhances the expression of other component genes in the
same cluster (20). IncRNAs may also act in trans, silenc-
ing or enhancing the expression of genes on different
chromosomes. One example of an IncRNA acting in trans
is Six30S. This IncRNA was shown to activate the targets
of the retinal development involving the Six3 transcription
factor (29). Another mechanism of action for IncRNAs
is the regulation of other ncRNAs. IncRNA can act as a
‘sponge’ or decoy target. The INcRNA lincRNA-RoR mech-
anism of action illustrates this mechanism: this IncRNA has
a binding site for miR-145, and the presence of lincRNA-
RoR inhibits miR-145 action by interacting directly with
IncRNA miRNA (30). The mechanisms of IncRNA-mediated
regulation of protein-coding gene transcription are explored
in more detail in the current literature (26,27).

Role of non-coding RNAs in disease

Table 1 presents a list of ncRNAs associated with
mechanisms underlying selected neurological disorders.

Epilepsy. Epilepsy is a neurological condition with a
high prevalence in the population (1.5-2%). A common
feature of different epileptic conditions is the occurrence of
seizures (31,32). The mechanism responsible for epilep-
togenesis (the process by which normal nervous tissue
becomes epileptic) is complex and multifactorial (33).
Evidence in the literature, as reviewed below, indicates
that ncRNAs may have critical roles in the molecular
mechanisms associated with epilepsy (34).
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Hippocampal tissue from patients with mesial temporal
lobe epilepsy (MTLE) who underwent temporal lobe
resection for the control of seizures has been shown to
have a reduction in the overall expression of miRNAs
when compared with normal hippocampus from autopsy
controls (35). Moreover, MTLE is associated with inflam-
mation, and changes in the expression of miRNAs involved
in the regulation of inflammation have been demonstrated
in samples from MTLE patients (36,37). For example,
miR-146-a, a miRNA involved in inflammation, is upregu-
lated in resected hippocampus from MTLE patients (37).

In animal models of epilepsy, the dysregulation of
miRNAs has been explored more extensively. miRNA
expression studies were performed, using high-throughput
platforms, in the animal model induced by lithium-
pilocarpine, systemic kainic acid, and by intra-amygdalar
kainic acid injection (38—40). Based on such studies,
an extensive list of candidate miRNAs was found, but
relatively few miRNAs were consistent among different
studies. One example of replicable findings is mir-34a,
which was found to be differentially expressed in two
independent studies (38,41). mir-134 is another promising
miRNA that may be involved in the molecular mechanisms
of epilepsy. mir-134 was found to be differentially
expressed in an epilepsy animal model, and the reduction
in its expression by antagomir administration was shown
to reduce cell death and seizure severity (42). In addition,
downregulation of mir-132 in an animal model reduced
seizure-induced neuronal death (40).

More recently, Jimenez-Mateos et al. (3) demonstrated
that miR-22 downregulates the purinergic P2X7 receptor,
a key component of the inflammatory response, in a
mouse model of focal onset status-epilepticus. Further-
more, an increase in miR-22 activity by the administration
of a Mir-22 mimic molecule reduced spontaneous seizures
in these mice (3).

The role of IncRNAs has also been explored in the
context of experimental animal models of epilepsy. Lee
et al. (43) explored the expression of IncRNAs in two animal
epilepsy models, pilocarpine- and kainic acid-induced
seizures (43). These authors found hundreds of INnRNAs
that were differentially expressed when comparing nervous
tissue from controls with that of treated mice. Of these
differentially expressed IncRNAs, 54 (for pilocarpine) and
14 (for kainic acid) were close to protein-coding genes and
appear to induce significant changes in gene expression,
thus indicating a possible cis effect of these INCRNAs (43).

The first evidence for the potential use of miRNAs
as biomarkers in epilepsy also came from studies in
experimental animal models. Liu et al. (44) demonstrated
the differential regulation of several miRNAs isolated
from the blood of rats that received the chemoconvulsant
kainic acid. More recently, Roncon et al. (45) found
27 miRNAs to be differentially expressed in the plasma of
rats treated with pilocarpine. In humans, Wang et al. (46),
using RNA-sequencing and subsequent RT-PCR validation,
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Figure 2. Mechanisms by which long non-coding RNAs (IncRNAs) can regulate gene expression.

found four upregulated and two downregulated blood
circulating miRNAs when comparing epilepsy patients
to healthy controls. Among the differentially expressed
miRNAs, miR-106b-5p had the highest sensitivity and
specificity (46). Furthermore, in a subsequent study, there
were five circulating miRNAs identified as potential bio-
markers of drug-resistant epilepsy, and miR-301a-3p had
the highest sensitivity and specificity (47). We have identified
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that miR-134 is a circulating biomarker for patients with
mesial temporal lobe epilepsy regardless of their response
to treatment, which may help in the diagnosis of this type
of epilepsy (48).

In focal cortical dysplasia, a cortical malformation
frequently associated with refractory seizures, miR-4521
has been shown to be upregulated in the plasma of
patients compared to control subjects (49).
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Table 1. List of ncRNAs associated with different mechanisms underlying selected neurological disorders.

Disorder Gene Affected Proposed mechanisms associated with References
Noncoding RNAs
FXTAS FMR1; FMR4 Sequestration of RNA binding protein; Tassone et al. 2004 (58)
antisense transcript
DM1 DMPK Sequestration of RNA binding protein; Rau et al. 2011 (66)
antisense transcript
SCA1 ATXN1 Altered miRNA pathway Galka-Marciniak et al. 2012 (56)
SCA3 ATXN3 An auxiliary toxic long CAG repeat RNA; Galka-Marciniak et al. 2012 (56)
altered miRNA pathway
SCA7 ATXN7 Antisense transcript repress sense ataxin-7 Tan et al. 2014 (63)
SCA8 ATXNB8OS; ATXN8 Sequestration of RNA binding protein; Daughters et al. 2009 (61);
antisense transcript Moseley et al. 2006 (62)
HDL2 JPH3 Antisense transcript; polyQ toxicity Wojciechowska and
Krzyzosiak, 2011 (5)
MTLE P2X7 Down-regulation by miR-22 Jimenez-Mateos et al. 2015 (3)
HD HTT An auxiliary toxic long CAG repeat RNA; Wojciechowska and
altered miRNA pathway Krzyzosiak, 2011 (5)
MTLE Genes involved with Up-regulation of miR-146a expression Aronica et al. 2010 (37)
inflammation
ALS SOD1 and others An artificial microRNA may extend survival and Stoica et al. 2016 (79);

delays paralysis; Up regulation of miR-206.
Dysregulation of miR-139-5p
Dysregulation of miR-1, -16, and -206

Cortical dysplasia Lis1
Pain Inflammation,
neural processing

Takahashi et al. 2015 (81)
Huang et al. 2014 (90)
Kusuda et al. 2011 (86)

Neurodegenerative and neuromuscular disorders.
Neurodegenerative disorders are associated with a wide
range of genetic mutations and epigenetic and environ-
mental factors. Among genetic mutations, trinucleotide
repeat expansion is increasingly recognized as the cause
of a large subset of these conditions. Trinucleotide repeat
expansions account for more than 30 neurological and
neuromuscular diseases that are categorized into coding
and non-coding repeat expansion disorders, depending on
the genetic location of their causative mutations (50-52).
Disorders such as Huntington’s disease (HD), spinocer-
ebellar ataxia (SCA) types 1, 2, 3, 6, 7, 8, and 17,
dentatorubral-pallidoluysian atrophy, and spinal and bulbar
muscular atrophy are typically associated with a protein
gain-of-function mechanism (53). In contrast, diseases
such as myotonic dystrophy type 1 (DM1) (54,55), fragile
X-associated tremor ataxia syndrome (FXTAS), myotonic
dystrophy type 2 (DM2), SCA31, SCA10, SCAS8, and, more
recently, amyotrophic lateral sclerosis and frontotemporal
sclerosis have been associated with an RNA gain-of-
function mechanism in which the trinucleotide expansion
leads to the formation of nuclear RNA foci that sequester
specific RNA-binding proteins (5,56,57).

Studies of FXTAS have established that the seques-
tration of RNA-binding proteins due to the expression of
pathogenic RNA with expanded repeats is involved in
disease pathogenesis (58) (Figure 3). A recent study
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identified that the double-stranded RNA-binding protein
DGCRS binds to expanded CGG repeats, resulting in the
partial sequestration of DGCR8 and its partner, DROSHA,
within CGG RNA aggregates. Consequently, the process-
ing of miRNAs is reduced, resulting in decreased levels of
mature miRNAs in neuronal cells expressing expanded
CGG repeats such as in brain tissue from patients with
FXTAS (59).

SCAS8 is a dominantly inherited, slowly progressive
neurodegenerative disorder caused by a CTG CAG repeat
expansion (60). In pathological samples from SCAS8
patients, bidirectional (sense and antisense) expression
of the SCA8 CTG-CAG expansion produces toxic non-
coding CUG expansion in RNAs from the Ataxin 8 opposite
strand (ATXN8OS) and a nearly pure polyglutamine expan-
sion protein encoded by ATXN8 (61,62). In SCA7, the
tissue-specific alterations caused by CAG repeat expres-
sion in the ATXN7 gene seems to be related to cross-talk
between the IncRNA Inc-SCA7, the ATXN7 mRNA, and
mir-124. Mutant ATXN7 disrupts this crosstalk and is itself
upregulated, since it is not repressed by ncRNAs (63).

Recent studies have suggested that alterations in small
regulatory ncRNAs, such as miRNAs, could contribute to
the pathogenesis of several neurodevelopmental disor-
ders. Some studies have found a relationship between
miRNAs and DM1 (64). Alterations in the miRNA expres-
sion patterns have been observed in muscle-specific
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Figure 3. Mechanism involved in microRNA machinery sequestration by aberrant RNA species produced in a triplet repeat disease,
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miRNAs (myomiRs). Given the small distance between
the seed binding sites of miR-206 and 148a in the DMPK
3’ UTR, Koscianska et al. (65) analyzed the binding mech-
anism of both miRNAs. They discovered cooperative binding;
the joint binding of miRs 206 and 148a increased the
negative regulation of DMPK mRNA. These findings provide
mechanistic insights into the miRNA-mediated regulation
of the DMPK transcript. In this regard, the dysregulation of
DM1-associated miRNAs has also been linked to altera-
tions in their predictive target expression, showing that
miRNA dysregulation in DM1 is functionally relevant and
may contribute to disease pathology (66,67). Furthermore,
RNA toxicity has been confirmed in transgenic mice har-
boring long triplet repeats in the dmpk gene. Seznec et al.
(68) showed that mice develop multi-system abnormalities
mimicking the human DM phenotype, with predominant
involvement of muscles and the central nervous system
(CNS). Pathway and function analysis highlighted the
involvement of the miRNA-dysregulated mRNAs in multi-
ple aspects of DM2 pathophysiology as well (4,69).
Huntington’s disease is characterized by wide-
spread mRNA dysregulation, especially in the striatum
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and cortical regions and alterations in miRNA-mediated
post-transcriptional regulation could be an important mech-
anism contributing to mRNA dysregulation in HD (70).
In addition, there is evidence that abnormal neurodevel-
opment might also have a critical role in HD (71). These
emerged from studies using mouse embryonic stem cells
and patient-derived induced pluripotent stem cells (The HD
iPSC Consortium, 2012) showing that chromatin modifica-
tions and DNA methylation status support the hypothesis
that wild-type and mutant Huntingtin might affect key
chromatin regulators such as DNA and histone methyl-
transferases, and demethylases (72-74). In fact, a growing
body of evidence suggests that alterations of epigenetic
modifications constitute a basic molecular mechanism
caused by the HD mutation and are responsible for early
features of the pathological process (75). Furthermore,
a recent genome-wide screen of miRNAs in post mortem
brains highlighted miRNAs that were differentially expressed
in HD patients, especially miRNAs in the HOX family, which
have been associated with early brain development (76).
Indeed, there are several classes of IncRNAs that are
potentially involved in developmental processes and that
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were found to be dysregulated in brain tissue from patients
with HD such as TUG1, NEAT1, MEG3, and DGCRS5 (77).

Amyotrophic lateral sclerosis (ALS) is a widespread
motor neuron disorder causing injury and death of lower
and upper motor neurons. Familial ALS (~ 10% of all ALS
cases) is inherited as a dominant trait, and 20% of these
cases have mutations in the gene encoding Cu/Zn cyto-
solic superoxide dismutase 1 (SOD1) (78). A recent study
demonstrated that an AAV9-delivered SOD1-specific arti-
ficial miRNA is an effective and translatable therapeutic
approach to ALS (79). Another promising miRNA with
a possible therapeutic use in ALS is mir-155. It was
demonstrated that this inflammation-associated miRNA
is upregulated in the mutant SOD1 mouse model and
that reduction in the expression of mir-155 significantly
extended the life span of this mouse (80).

In addition, expression levels of certain miRNAs, such
as miR-4649-5p and hsa-miR-4299, were significantly
correlated with disease progression and might be useful
as prognostic biomarkers (81). Another potential bio-
marker was mir-206, found to be upregulated in the
plasma of SOD1-G93A mice, an experimental ALS model,
and in patients with confirmed ALS (82). In addition, there
is evidence of dysregulation of miRNAs extracted from
leukocytes from sporadic ALS patients (83). More recently,
we have demonstrated that among 11 miRNAs identified
as differently expressed in muscle of patients with ALS,
only two, miR-214 and miR-424, correlated with clinical
deterioration over time in these patients (84).

Pain. Conditions leading to chronic pain are related
to multiple etiologic factors, ranging from maladaptive
neuronal plasticity to diverse inflammatory pathways (85).
Due to the complexity of chronic pain, some studies have
explored the possible role of ncRNAs in different experi-
mental pain models. Kusuda et al. (86) observed a change
in the expression of three miRNAs, miRs 1, 16, and 206, in
different pain conditions such as peripheral inflammation,
nerve ligation, or axotomy. Other studies have employed
low-density TagMan arrays to profile the expression pattern
of miRNAs after spinal nerve ligation in rats and found
63 altered miRNAs (87).

A possible role for INcRNAs has been explored in
experimental models of neuropathic pain. A microarray
analysis demonstrated hundreds of differentially expressed
IncRNAs and mRNAs in the spinal cords of mice sub-
jected to spinal nerve ligation. As demonstrated in other
experiments, 35 differentially regulated IncRNAs were in
genomic regions proximal to differentially regulated genes
from the same dataset (88).
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