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Abstract

Ketamine (KET) is an N-methyl-D-aspartate (NMDA) antagonist with rapid and long-lasting antidepressant effects, but how the
drug shows its sustained effects is still a matter of controversy. The objectives were to evaluate the mechanisms for KET rapid
(30 min) and long-lasting (15 and 30 days after) antidepressant effects in mice. A single dose of KET (2, 5, or 10 mg/kg, po) was
administered to male Swiss mice and the forced swim test (FST) was performed 30 min, 15, or 30 days later. Imipramine (IMI,
30 mg/kg, ip), a tricyclic antidepressant drug, was used as reference. The mice were euthanized, separated into two time-point
groups (D1, first day after KET injection; D30, 30 days later), and brain sections were processed for glycogen synthase kinase-3
(GSK-3), histone deacetylase (HDAC), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP)
immunohistochemical assays. KET (5 and 10 mg/kg) presented rapid and long-lasting antidepressant-like effects. As expected,
the immunoreactivities for brain GSK-3 and HDAC decreased compared to control groups in all areas (striatum, DG, CA1, CA3,
and mainly pre-frontal cortex, PFC) after KET injection. Increases in BDNF immunostaining were demonstrated in the PFC, DG,
CA1, and CA3 areas at D1 and D30 time-points. GFAP immunoreactivity was also increased in the PFC and striatum at both
time-points. In conclusion, KET changed brain BDNF and GFAP expressions 30 days after a single administration. Although
neuroplasticity could be involved in the observed effects of KET, more studies are needed to explain the mechanisms for the
drug’s sustained antidepressant-like effects.
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Introduction

Major depressive disorder (MDD) is a severe and
debilitating psychiatric disease, for which the available
antidepressant drugs do not always show a good re-
sponse in a large percentage of the depressive population
(1). In contrast to existing antidepressants, the fast-acting
effect of ketamine (KET) provides relief for patients with
MDD, including those at risk of suicide (2).

Although the inhibition of glycogen synthase kinase-3
(GSK-3 beta) modulates m-TOR signaling and may poten-
tially augment the effects of antidepressants, such as KET,
it is unclear whether GSK-3 directly mediates this drug
effect. GSK-3 is linked to some neuropsychiatric disorders,
including depression, where this enzyme is dysregulated
(3). Neurotransmitter systems, as the serotonergic, dopa-
minergic, cholinergic, and glutamatergic ones, also regulate
GSK-3 activity (4). In addition, GSK-3 is shown to be an

important target for KET rapid antidepressant effects,
mediated by enhanced a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), resulting from the drug
NMDA inhibition (5). Several classes of serotonin-modulat-
ing drugs, such as antidepressants, regulate GSK-3 by
inhibiting its brain activity. This inhibition reinforces the
importance of GSK-3 as a potential therapeutic target in
neuropsychiatric diseases associated with an abnormal
serotonin function (6).

A neural mechanism involved in the antidepressant
effects of KET is the AMPA receptor stimulation, which
has been shown to mediate an increase in the brain extra-
cellular levels of serotonin, as also shown by our group
(7). However, mechanisms other than NMDA receptor
inhibition play a key role in the antidepressant effect of
KET, suggesting that the KET antidepressant effect goes
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beyond the NMDA receptor inhibition and AMPA receptor
activation. Recent data (8) demonstrate that GluN2B-
NMDA receptors on GABA interneurons are the initial
cellular trigger for the rapid antidepressant actions of KET.

Another enzyme potentially important as a therapeutic
target for antidepressant drugs is histone deacetylase
(HDAC). Preclinical studies have demonstrated changes
in brain gene expression in animal models of depression,
and some of these models point to the antidepressant
efficacy of HDAC inhibitors. For instance, Lu et al. (9),
showed that HDAC inhibitors decrease the expression of
glial fibrillary acidic protein (GFAP) within damaged tissue,
following traumatic brain injury.

Chronic administration of antidepressant drugs is known
to increase neurotrophins, including brain-derived neuro-
trophic factor (BDNF) (10). This leads to enhanced neuronal
plasticity, such as neurogenesis, synaptogenesis, and neu-
ronal maturation. Thus, BDNF may be considered a useful
marker for clinical response or improvement of depressive
symptoms. The activation of the mammalian target of the
rapamycin (mTOR) pathway by KETenhances translation of
BDNF in the hippocampus (11,12). Astrocytes were demon-
strated to be the main recipient of neuronal-expressed
BDNF, which, when taken up by astrocytes, mediates
physiological effects on these cells. Furthermore, astrocyte
dysfunction can lead to alterations in neuronal functions and
to several brain disorders, including depression (13).

Evidence (14) indicates that direct AMPA receptor
activation may play an important role in both the rapid
and sustained antidepressant-like effects of ketamine in
animal models of depression, although other mechanisms
might be involved in the sustained action. We showed
that KET exhibits antinociceptive and anti-inflammatory
effects (15) and, in addition, we also observed that the
monoaminergic pathways and inhibition of monoamine
transporters are involved with the antidepressant-like
effect of KET. Furthermore, our present results indicated
the close involvement of GSK-3 and HDAC inhibitions and
the blockade of inflammatory processes with the drug’s
antidepressant-like action.

Thus, the objectives of this study were to determine
the acute and sustained KET antidepressant effects,
evaluated by the forced swimming test (FST), focusing
on KET relationships with brain enzymes, such as GSK-3
and HDAC. Considering the importance of BDNF and
astrocytes for depression and neural plasticity, we also
aimed at studying BDNF and GFAP, at two time-points
(day 1, D1; 30 days later, D30) after a single KET injection,
in order to have some insight on the rapid and, especially,
the long-lasting effects of KET.

Material and Methods

Drugs and reagents
Ketamine (racemic form) was from König (Brazil).

Antibodies for immunohistochemistry assays were from

Sigma-Aldrich (USA) or Abcam (UK). All other reagents
were of analytical grade.

Animals
Male Swiss mice (30 g) from the Animal House of

the Faculty of Medicine Estácio de Juazeiro do Norte
(Estácio/FMJ) were maintained at 24±2°C, in a 12-h dark/
light cycle, with standard food and water ad libitum. The
study was approved (#2014-004) by the Estácio/FMJ
Ethics Committee for Animal Experimentation. All experi-
ments followed the ethical principles established in the
Guide for the Care and Use of Laboratory Animals, USA
(2011).

Forced swim test (FST)
This rodent behavioral test is used for the evaluation of

antidepressant drugs and the antidepressant efficacy of
new compounds. The test is based on the observation
that, when the animals are subjected to a stressful situ-
ation with no possibility for escaping, they adopt a pos-
ture of immobility after an initial period of agitation. The
reduction of this immobility time is suggestive of an anti-
depressant action and is the parameter used for the
antidepressant-like effect (16). A glass cylinder (30 cm
height � 20 cm diameter) is filled with water (15 cm from
the bottom, at 25°C). Ketamine (KET: 2, 5, or 10 mg/kg,
po) or imipramine (IMI: 30 mg/kg, ip) as the test reference
drug was administered to mice. The control group was
administered 0.1 mL/100 g distilled water, po. Thirty minutes
after KET injections, each mouse was placed individually
into the cylinder. After 2 min, the immobilization time was
recorded for 5 min. In order to demonstrate the long-lasting
effect of KET, a single dose of the drug was also injected and
the FST performed 15 or 30 days later. IMI was always
administered 1 h before testing. At the end, the apparatus
and testing area were cleaned with 70% ethanol before
starting the next test. Figure 1 shows the timeline of experi-
mental procedures, including the FST and immunohisto-
chemical assays (performed at two time-points, 1 day and
30 days, after the FST, with no additional KET injection). The
animals remained untreated in this 30-day period.

Immunohistochemical (IHC) assays for brain GSK-3,
HDAC, BDNF, and GFAP

Sections (5-mm thickness) from brain areas (hippo-
campus, striatum, prefrontal cortex (PFC), and temporal
cortex) of three animals per group were fixed in 10%
buffered formaldehyde for 24 h followed by a 70% ethanol
solution. The brain sections were obtained (stainless steel
brain matrices, 1.0 mm) after 60 min, in the two time-point
protocols, named D1 and D30, following the administra-
tion of a single intraperitoneal dose of KET and after
performing the FST. Then, the sections were embedded in
paraffin wax for processing on appropriate glass slides.
These were placed in the oven at 58°C for 10 min followed
by deparaffinization in xylol, rehydration in alcohol at
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decreasing concentrations, and washing in distilled water
and PBS (0.1 M sodium phosphate buffer, pH 7.2) for
10 min. The endogenous peroxidase was blocked with a
3% hydrogen peroxide solution, followed by incubation
with the appropriate primary anti-antibody for GSK-3
(ab75745, rabbit polyclonal antibody), HDAC1 (ab53091,
rabbit polyclonal antibody), both from Abcam, BDNF
(rabbit polyclonal antibody), and GFAP (goat polyclonal
antibody), both from Sigma-Aldrich. After 2 h at room
temperature in a moist chamber, the slides were washed
with PBS (3 times, 5 min each) and incubated with the
biotinylated secondary antibody for 1 h at room tem-
perature. Then, they were washed again with PBS and
incubated with streptavidin-peroxidase for 30 min at
room temperature. After another wash in PBS, they were
incubated in a 0.1% DAB solution (in 3% hydrogen
peroxide). Finally, the slides were washed in distilled
water, dehydrated in alcohol (at increasing concentra-
tions), diaphanized in xylol and mounted on Entelans for
optic microscopy examination. The data (from 3 animals
per group) were quantified with the ImageJ software
(National Institutes of Health, USA).

Statistical analysis
The results are reported as means±SE. For statistical

analyses, one-way ANOVA followed by Tukey as the post-
hoc test for multiple comparisons were used (GraphPad
Prism, version 7.0, USA). The immunohistochemical data
(absorbance) were calculated with the ImageJ software
(NIH). Differences were considered significant at Po0.05.

Results

Forced swim test
We showed dose-dependent decreases of 34, 46,

and 63% in the immobility time (s) for 5 min, after 30 min
(7 to 12 animals per group) of a single KETadministration,
at the doses of 2, 5, and 10 mg/kg, respectively, in relation
to the control group. Imipramine showed a 58% decrease
of the immobility time. The F-statistic and its associated
degrees of freedom and P-value are F(4,42)=14.53,
Po0.0001 (Figure 2A). Similar results were observed at
15 days (9-13 animals per group) after a single adminis-
tration of KET (55 and 62% decreases, for the doses of
5 and 10 mg/kg, respectively). IMI (n=7) decreased the
immobility time by 53% in relation to controls (Figure 2B).
However, measurements of the immobility time, performed
at D30 (13 to 16 animals per group) after a single KET
injection showed no clear dose-dependent relationship,
with lower decreases (31 and 40%) after the doses of 5 and
10 mg/kg, respectively. IMI-30 (n=6 animals) decreased
the immobility time by 54% [F(3,44)=9.042, Po0.0001]
(Figure 2C). Similar results were observed 30 days after
a single KET administration, as evaluated by the tail
suspension test (data not shown).

Immunohistochemical results for GSK-3
Greater reductions in GSK-3 immunoreactivities were

demonstrated after acute intraperitoneal KET injection in
all brain areas studied. Thus, 64 and 92% decreases were
observed in the striata 60 min after the doses of 5 and 10
mg/kg, respectively, compared with the control group
[(F(2,9)=181.0, Po0.0001] (Figure 3A). Also, in the den-
tate gyrus (DG), the decreases were 56 and 92%, respec-
tively, [F(2,9)=176.9, Po0.0001] (Figure 3B). The decreases
in the hippocampus CA1 area were 63 and 84%, re-
spectively, for the same doses [F(2,6)=728.6, Po0.0001]
(Figure 3C). Interestingly, even greater decreases (73 and
99%) were seen in the PFC after the acute KET adminis-
trations of 5 and 10 mg/kg, respectively [F(2,9)=186.1,
Po0.0001] (Figure 3D).

Immunohistochemical results for brain HDAC
For HDAC, 45 and 61% decreases were observed in

the striata after single KET administration at the doses of
5 and 10 mg/kg, respectively, compared with the controls
[F(2,9)=155.9, Po0.0001] (Figure 4A). The CA1 hippo-
campal subfield presented 32 and 97% decreases, com-
pared with the control group [F(2,12)=119.6, Po0.0001]
(Figure 4B). The PFC showed 60 and 96% decreases,
respectively, at the KET doses of 5 and 10 mg/kg [F(2,
12)=563.1, Po0.0001] (Figure 4C).

Immunohistochemical results for BDNF
The neurotrophin BDNF is considered a link between

the antidepressant drug and the neuroplastic changes,
resulting in the improvement of depression (11). This led

Figure 1. Study timeline. KET: ketamine; FST: forced swim test;
IHC: immunohistochemistry; BDNF: brain derived neurotrophic
factor; GFAP: glial fibrillary acidic protein;GSK-3: glycogen
synthase kinase; HDAC: histone deacetylase.
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us to verify whether the increase of this neurotrophin in the
brain could, at least partly, explain the long-lasting effects
of KET. BDNF immunoreactivities increased almost
3-times in the DG at both time-points in relation to con-

trols [F(2,15)=7282, Po0.0001] (Figure 5A). In addition,
increases of around 2-times were observed in the CA1
subfield, at D1 and D30, respectively, compared with the
control group [F(2,15)=12.69, Po0.0006] (Figure 5B).

Figure 2. Antidepressant-like effects of single administrations of ketamine (KET, 5 and 10 mg/kg) evaluated by the forced swim test in
male mice (7 to 10 animals per group) 30 min (A), 15 days (B), and 30 days (C) later. Data are reported as means±SE. A, a,b,cPo0.05
vs Control; B and C, a,b,cPo0.001 vs Control (one-way ANOVA and Tukey as the post hoc test).

Figure 3. Single administrations of ketamine (KET, 5 and 10 mg/kg, ip) significantly reduced glycogen synthase kinase (GSK-3)
immunoreactivities in A) striatum, B) dentate gyrus (DG), C) CA1 hippocampal subfield, and D) prefrontal cortex (PFC), in a dose-
dependent manner compared with controls (3 animals per group). Representative photomicrographs, at � 400 magnification (scale bar:
20 mm), taken at day 1 (D1) protocol. The graphs show the relative absorbance determined by ImageJ software (NIH, USA). Data are
reported as means±SE. a,bPo0.01 vs Control; cPo0.01 vs KET 5 (one-way ANOVA and Tukey as the post hoc test).
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Figure 4. Single administrations of ketamine (KET, 5 and 10 mg/kg, ip) significantly reduced histone deacetylase (HDAC)
immunoreactivities in the A) striatum, B) CA1 hippocampal subfield, and C) prefrontal cortex (PFC) compared with controls (3 animals
per group). Representative photomicrographs, at �200 magnification (50 mm), taken at D1 protocol. The graphs show the relative
absorbance determined by the ImageJ software (NIH, USA). Data are reported as means±SE. a,bPo0.01 vs Control; cPo0.01 vs KET
5 (one-way ANOVA and Tukey as the post hoc test).

Figure 5. Single administrations of ketamine (KET, 10 mg/kg, ip) significantly increased brain-derived neurotrophic factor (BDNF)
expression in the A) dentate gyrus (DG), B) prefrontal cortex (PFC), C) CA1, and D) CA3 hippocampal subfields compared with controls
(3 animals per group). Representative photomicrographs, at �200 magnification (50 mm), taken at D1 and D30 protocols. The graphs
show the relative absorbance determined by the ImageJ software (NIH, USA). Data are reported as means±SE. DG: a,bPo0.05 vs
Control; PFC: a,bPo0.01 vs Control; CA1: a,bPo0.05 vs Control; CA3: a,bPo0.05 vs Control (one-way ANOVA and Tukey as the post
hoc test).
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Similar increases (1.6- and 1.4-times, respectively) were
demonstrated in the CA3 area, for both time-points [F
(2,14)=7.895, Po0.0051] (Figure 5C). More importantly,
2- and 4-times increases, in a time-dependent manner,
were observed in the PFC, at D1 and D30, respectively,
compared with the controls [F(2,12)=63.17, Po0.0001]
(Figure 5D). These results suggested that KET-induced
increases in brain BDNF are well maintained even after
30 days of a single KET injection and may explain the
long-lasting antidepressant effect of the drug.

Immunohistochemical results for brain GFAP
Astrocytes are the most abundant cells in the brain,

participating in most brain functions. Evidence from
preclinical studies has revealed morphological and func-
tional astrocyte alterations in animal models of depres-
sion, which has been confirmed in postmortem studies
(13). KET 10 (D1) significantly increased GFAP staining in
the PFC by 1.6-times, compared with the control group.
A similar increase (1.8-times) was observed at D30 [F(2,
12)=24.79, Po0.0001] (Figure 6A). Interestingly, higher
effects were observed at D30 in another cortical area
(CTX) and a dose-effect relationship was seen after the
injections of KET (5 and 10 mg/kg, at D30), compared with
the control group (data not shown). In addition, significant
increases (around 1.3-times) were also observed in the
striatum at D1 and D30 (Figure 6B).

Discussion

We previously showed a dose-dependent antidepres-
sant-like effect of KET in mice, at subanesthetic doses
(5 and 10 mg/kg, ip). In addition, the effect of a lower dose
(2 mg/kg) was significantly increased by KET combination
with lithium, evaluated by the FST (15). This synergistic

effect was probably the result of inhibitions of GSK-3 and
HDAC, important targets for both drugs. Recently, we also
demonstrated that the fast antidepressant effects of KET
are, at least partly, due to its action on striatal mono-
aminergic pathways (7).

In the present study, we showed that single injections
of subanesthetic doses of KET (5 and 10 mg/kg) signif-
icantly decreased the immobility time, evaluated by the
FST, even 30 days later, suggesting a sustained anti-
depressant-like effect. Similar effects, also evaluated by
the FST, were observed by others who showed the anti-
depressant-like effects of a single injection of KET (10 or
30 mg/kg), 1 and 7 days later (17).

Here, we focused mainly on KET long-lasting anti-
depressant-like effects and on GSK-3, HDAC, BDNF, and
GFAP expressions in the brain, after injections of single
low doses. GSK-3 is an important serine-threonine kinase,
abundant in the central nervous system. Its activity is
inhibited through phosphorylation of serine 21 in GSK-3
alpha and serine 9 in GSK-3 beta (18). This enzyme is
involved in cellular functions, such as metabolism, trans-
cription, cell survival, and synaptic plasticity. The dys-
regulation of GSK-3 could have multiple effects, leading
to impaired neural plasticity and gene expression, and the
ability of neurons to respond to stressful conditions.
Most importantly, inhibition of GSK-3 was demonstrated
to be required for the rapid antidepressant effect of KET
in mice, augmenting the signaling through AMPA recep-
tors (19).

Furthermore, GSK-3 beta seems to selectively reg-
ulate depression, memory, and hippocampal cell prolifera-
tion (20). In the present work, we demonstrated very high
GSK-3 inhibition (up to 99%) in all brain areas tested
(striatum, dentate gyrus, CA1, and, especially, PFC), after
single injections of KET in male mice. GSK-3 has been

Figure 6. Single administrations of ketamine (KET, 10 mg/kg, ip) significantly increased brain glial fibrillary acidic protein (GFAP)
expression in the A) prefrontal cortex (PFC) and B) striatum compared with controls (3 animals per group). Representative
photomicrographs at �200 magnification (50 mm), taken at D1 and D30 protocols. The graphs show the relative absorbance determined
by the ImageJ software (NIH, USA). Data are reported as means±SE. a,bPo0.05 vs Control (one-way ANOVA and Tukey as the post
hoc test).
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shown to be a key regulator for KET rapid antidepressant-
like effects (21). However, the mechanisms of KET action
go beyond the NMDA blockade, may act in a comple-
mentary way, and are not necessarily exclusive (22).

The modulation of gene expression is an important
process for the mammalian brain function and, thus, a
way for regulating gene expression is through chromatin
remodeling. The acetylation of histones by acetyl trans-
ferases (HATs) and HDACs are the most studied histone
post-translational modifications in cognition and neuro-
psychiatric diseases (23). Evidence indicates that brain
HDAC inhibition may provide an epigenetic-based target
for improved treatments of mood disorders (24).

Furthermore, MDD results from gene and environ-
mental interactions, mediated by epigenetic mechanisms,
such as chromatin and DNA modifications altering gene
expression (25). Importantly, these epigenetic mech-
anisms may be involved in the role of BDNF in depression
and response to antidepressants. Preclinical studies
demonstrated the antidepressant-like efficacy of HDAC
inhibitors. For instance, the systemic administration of a
HDAC inhibitor rescues, in part, the depressive-like be-
havior of the CREB-regulated transcription co-activator
1-deficient mice (26).

The stress-reduced hippocampal BDNF expression
has been already demonstrated, and this reduction is
prevented by antidepressants. Similar changes occur in
the brain of patients with MDD (27). BDNF is a key player
in the antidepressant action and considered a transducer,
acting as a link between the antidepressant and neuro-
plastic changes that result in the improvement of depres-
sive symptoms (28). In the present study, we showed that
increases in BDNF expression persisted up to 30 days
after KET administration in DG, CA1, and CA3 subfields.
However, and most importantly, these antidepressant-like
changes occurred mainly at the PFC and in a time-
dependent manner, at the 60 min (D1) and 30-day (D30)
time-points, after the single KET administration.

BDNF actions are regulated by neuronal activity and
these can lead to trophic effects, as formation, stabiliza-
tion, and potentiation of synapses, through the high affinity
of BDNF for the tropomyosin receptor kinase B (Trk-B)
receptors (29). Recent data (30) suggest that the pro-
longed antidepressant effects, observed after a single
KET infusion to depressed patients refractory to treatment,
can be related to a transient enhancement of neuroplas-
ticity, induced by a glutamate burst in some brain neurons,
which may, at least in part, explain the results of the
present study.

Astrocytes coordinate synaptic networks and are the
most abundant cell type in the brain, participating in the
majority of brain functions. Evidence supports the obser-
vation that depression is associated with a decreased
density and hypofunction of astrocytes observed in
MDD patients and in animal models of depression (31).
Thus, these events are expected to contribute to synaptic

dysfunction present in depressive-like conditions. Astro-
cytes are important in the information processing in the
brain, modulating synaptic activity and plasticity, and
their dysfunction may contribute to smaller hippocampal
volume in MDD (32).

In the present work, we showed that KET increased
GFAP immunoreactivity in the PFC and these changes
were observed at D1 and D30, after a single KET admin-
istration. A greater and time-dependent increase in GFAP
expression was also demonstrated in another brain
cortical area. The loss of glia cells in prefrontal and limbic
brain regions was observed in depressed patients and in
animal models, and the degeneration of astrocytes is
known to result in glutamate excess in the synaptic cleft
and glutamate/GABA imbalance in affected structures
(33). Furthermore, evidence from postmortem human
brain studies highlight changes in glial cell morphology,
astrocyte-related biomarkers, and genes, following mood
disorders, thus suggesting astrocytes as a promising
target for mood disorder interventions (34).

Moreover, neural plasticity plays a significant role in
the onset and development of depression, and evidence
indicates that the PFC is an extremely plastic brain area
(35). Lesions of the PFC in rats were shown to result
in depressant-like behavior and, in addition, the PFC is
considered a target for antidepressant drugs, including
KET. Furthermore, a single sub-anesthetic dose of KET
leads to fast antidepressant effects and, in rodent models,
is associated with higher dendritic spine density in the
prefrontal cortex (36).

Although the question on sustained KET effects is still
a matter of controversy, evidence has shown the long-
lasting effects of a subcutaneous dose of KET (0.2 mg/kg)
in a melancholic depression patient who remained in
remission for 5 months (37). Our study showed, for the
first time, not only the rapid but also the long-lasting KET
effects (up to 30 days), after the administration of single
doses to male mice. KET rapid effects are associated to
brain GSK-3 and HDAC inhibitions. However, not only the
rapid effects but also the long-lasting antidepressant
effects of KET show a close relationship to the increases
in brain BDNF levels and GFAP expression. These
increases were observed in the hippocampus and PFC.

Differences between short- and long-term responses
to KET were studied in a genetic model of depression
in rats (38). The authors showed that KET rapid re-
sponse entailed robust and strain-independent topological
modifications in cognitive, sensory, emotion, and reward-
related circuitry, including regions that exhibited correla-
tion of connectivity metrics with depressive behavior.
On the other hand, the strain-specific long-term effects of
KET included normalization of connectivity measures for
habenula and midline thalamus. In this cognitive model of
depression, the authors suggest that KET mediates its
pro-cognitive effects by normalizing the disrupted wiring
within the habenula-mid-thalamic-hippocampal cognitive
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circuitry, which might be a key imaging correlate of KET
long-term effects.

The identification of KET mechanisms of action,
responsible for its long-lasting effects, will certainly impact
the pharmacological strategies for treating major depres-
sive disorders in the future. Neuronal plasticity seems to
be a central mechanism in the action of antidepressant
drugs and may be responsible for KET long-lasting
effects. For this, KET ability to modulate neuroplasticity
through its action on BDNF expression could certainly be
a critical event. However, a limitation of the present study
is related to the use of naive mice and an acute stress
model as the FST, instead of models focusing on chronic
mild stress or chronic unpredictable stress.

In conclusion, antidepressant drugs rapidly activate
TrkB signaling and increase BDNF expression and neu-
ronal plasticity, indicating that this could be a mech-
anism responsible for the KET long-lasting antidepressant

action. In addition, evidence shows that astroglial atrophy
contributes to the pathophysiology of depression, thus a
morphological modification of astrocytes could also re-
spond to KET antidepressant actions (39). Indeed, anti-
depressants have been demonstrated to reactivate a state
of plasticity in the adult cortex, resembling the enhanced
plasticity observed during postnatal periods (40), which
could certainly explain, at least partly, the results of the
present study.
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