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Insight into aroma attributes change during the hot-air-drying process of white shrimp

using GC-MS, E-Nose and sensory analysis

Di ZHANG' 2, Hong-Wu JI"*****, Gui-Xin LUO', Hao CHEN!', Shu-Cheng LIU"***>, Wei-Jie MAQ">**3

Abstract

Aroma attributes are one of the most important criteria that affect the flavor quality of dried shrimp, but the dynamic changes
of aroma attributes remain largely unknown during the drying process. The present study investigated aroma attributes change
during the hot-air-drying process of shrimp using gas chromatography-mass spectrometry (GC-MS), electronic nose (E-nose)
and sensory analysis. The potential correlations among volatile compounds, sensory attributes and E-nose data were analyzed
by partial-least-squares regression (PLSR). Results showed that the aroma characteristic of shrimps changed significantly during
processing. The odor in the fresh shrimp was very light, and the key aroma compounds mainly consisted of trimethylamine
and three aldehydes. The aroma characteristics mainly consisted of roasted and meat-like odors had come into being gradually
with the decrease of water activity (A ), and the aroma attributes were the most acceptable at about A 0.274 (hot-air drying
for 7 h). Four kinds of aroma-active compounds (pyrazines, amines, aldehydes and heterocyclic compounds) made important
contributions to the formation of aroma characteristics. The PLSR result showed a good correlation between most variables of
volatile compounds, E-nose data and sensory attributes.

Keywords: white shrimp; hot-air-drying; aroma attributes; sensory analysis; electronic nose; gas chromatography-mass
spectrometry.

Practical Application: The current research about aroma attributes during the hot-air-drying process of shrimps provides a

theoretical basis for the control of flavor and quality of dried shrimp.

1 Introduction

Over the past decades, white shrimp (Penaeus vannamei), a
high yield economic fishery resource, is widely consumed because
of its nutritional values and attractive flavor (Cheok et al., 2017;
Kleekayai et al., 2016). Dried shrimp is highly appreciated by
consumers for their distinctive aroma, which develops upon the
heating process (Cheok et al., 2017; Chung et al., 2019; Mall &
Schieberle, 2016, 2017; Zhang et al., 2020a). The drying process is
the main step in the production of dried shrimp and also considered
as an important step in the formation of the characteristic aroma
(Souza & Bragagnolo, 2014; Tachihara et al., 2004; Zhang et al.,
2020a). Shrimp aroma determines the individuality of dried
shrimp products and is one of the most important criteria to
evaluate the quality (Lu et al., 2011; Souza & Bragagnolo, 2014;
Zhang et al., 2020a). It is well-known that fresh shrimp have little
odor, generally showing a faint grassy, seawater-like odor. After
the drying process, dried shrimp produce a characteristic shrimp
aroma. N-containing heterocycles, trimethylamine, S-containing
compounds and common carbonyl compounds were reported
to make contributions to the formation of shrimp-like aroma
(Mall & Schieberle, 2016, 2017; Okabe et al., 2019; Rochat et al.,
2009; Zhang et al., 2020b). Up to now, most of the studies
mainly focused on the composition of volatile compounds in

dried shrimp products, whereas the dynamic changes of aroma
attributes during the drying process in dried shrimp products
are still not well understood.

Currently, the sensory evaluation of shrimp aroma is still
the main method in the shrimp industry. The methodology
can be applied to describe various attributes of food samples by
recording word descriptions and sensory intensities of trained
assessors. Nevertheless, there are some deficiencies in sensory
evaluation, e.g., human preference, time-consuming and variability
(Calanche etal., 2019; Chen et al., 2019). Aroma components of
shrimp products have also been traditionally analyzed using gas
chromatography-mass spectrometry (GC-MS). Volatile compounds
can be effectively identified to confirm the source of aroma
attributes using GC-MS. However, analysis and interpretation
of complex data are very time consuming and do not always lead
in the correct direction due to the univariate methods and the
inherent low selectivity of GC-MS (Gallegos et al., 2017). As a
potential alternative to traditional techniques, electronic-nose
(E-nose) technology is gaining popularity in the analysis of
volatiles. In the last few decades, E-nose has experienced rapid
development and played a tremendous role in many fields. The
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instrument is equipped with an array of metal oxide microbalance
sensors, where each element responds to the sensed chemical
(Chungetal., 2019; Fengetal., 2011; Chen et al., 2018). In recent
years, combined applications of GC-MS, sensory evaluation and
E-nose technology in shrimp products were widely reported
by several studies (Kleekayai et al., 2016; Zhang et al., 2020b).
However, it is still a challenge to match valuable information
on the volatiles with sensory attributes.

Multivariate statistical tools, including partial-least-squares
regression (PLSR) and principal component analysis (PCA),
have been specifically designed for the visualization and analysis
of complex sets in different samples (Granato et al., 2018;
Zielinski et al., 2020). In many papers, multivariate statistical
analysis was widely used to reveal the relationship between the
chemical data and sensory attributes, and to identify those chemical
components that have an important effect on the overall flavor
(Miyazaki et al., 2012; Qin et al., 2013; Viljanen et al., 2014).
Previous studies have reported the aroma characterization of
shrimp products using sensory analysis, E-nose and GC-MS;
however, only limited comprehensive studies have dealt with
the correlation between sensory analysis and GC-MS analysis
or E-nose data (Rochat et al., 2009; Zhang et al., 2020b). There
is no report about the correlation of sensory attributes, GC-MS
and E-nose data analysis regarding aroma attributes of dried
shrimp products.

This study aimed to analyze aroma attributes change of
white shrimp during the hot-air-drying process using sensory
analysis, E-nose and GC-MS. The key active-aroma compounds
were identified by odor activity value (OAV), and the potential
correlations between volatile components, E-nose data and
sensory attributes were analyzed by analysis of PLSR. These may
provide information in-depth to enhance our understanding of
the mechanisms on aroma formation during the hot-air drying
process of shrimp.

2 Materials and methods
2.1 Materials

Raw fresh shrimp (Penaeus vannamei, 8-10 cm average
length) were purchased at a local supermarket (Zhanjiang,
China). Shrimp were covered with ice water to keep them alive,
and transported to the laboratory within 1 h. The component
of the raw shrimp was protein (17.56 *+ 0.47)%, moisture
(74.82 £ 1.59)%, fat (2.75 + 0.23)%, sugar (0.87 + 0.06)% and
ash (3.52 £ 0.47)%.

2.2 Preparation of shrimp samples

Fresh shrimp were killed using crushed ice. Raw shrimp
(not peeling) were drained and placed in a hollow metal plate.
Shrimp were dried using an Eyela NDO-710 electrothermostatic
blast oven (Tokyo Rikakikai Co. Ltd., Tokyo, Japan). The samples
were hot-air dried for 0, 1, 2, 3,4, 5, 6, 7, 8 and 9 h at a constant
relative humidity of ca. 20% and an air temperature of 85 °C.
Shrimps were uniformly distributed in in hollow metal plates
(15 kg/m?). Each shrimp was flipped every 30 min during the
hot-air drying, to ensure both sides heat evenly. Each shrimp
sample was frozen with liquid nitrogen and minced to a fine

powder. Water activity (A ) in shrimps at different drying time
was determined at 25 °C using a Decagon Aqua Lab meter
(Pullman, WA, USA) according to the method of Okpala (2015).

2.3 Sensory analysis

The sensory analysis was performed by the quantitative
description analysis method. The sensory panel consisted of
11 experienced panelists from Guangdong Ocean University
(Guangdong, China), who were well trained according to
the ISO standard 8556:2012 (International Organization for
Standardization, 2012). These panels showed accumulated
sufficient experience and score accuracy for each aroma
descriptor after training. A common description vocabulary was
generated to characterize aroma attributes, and the characteristic
descriptors of shrimp samples were quantified using six sensory
descriptors (fishy, smoky/burnt, sweet, caramel, roasted/nutty
and cooked-meat-like). The intensity scale was ranked on a scale
from 0 (not perceivable) to 5 (strongly perceivable) in steps of
0.1 (Zhang et al., 2020a). The descriptors were compared with
aqueous solutions of the following reference odorants (Zhang et al.,
2018): fishy ((Z)-4-heptenal), smoky/burnt (2-methoxyphenol),
cooked-meat-like (3-(methylthio)propionaldehyde), sweet
(maltol), roasted/nutty (2,5-dimethylpyrazine) and caramel
(4-hydroxy-2,5-dimethyl-3(2H)-furanone). For aroma profile
analyses, five grams of each sample was weighed into a sealed
bottle coded with three digit codes in a random order to prevent
bias and equilibrated for 30 min in a water bath at 60 °C. The
evaluation was carried out at room temperature and one at a
time, with a 5 min wait between samples.

2.4 Electronic-nose analysis

The E-nose analysis was performed according to the procedure
described by Chen et al. (2018) with some modifications. A
commercial PEN3 E-nose system (WinMuster Airsense Analytics
Inc., Schwerin, Germany) was used to acquire data on the volatiles.
Sensors of PEN3 E-nose respond to representative sensitive
compounds (Melucci et al., 2016). Briefly, before detection, 4 g
of each sample that came from the same specimen of GC-MS
analysis was placed in a 25 mL glass bottle, then capped with a
PTFE silicone stopper. After that, the headspace of the sample
was equilibrated at room temperature (25 °C) for 20 min, which
could avoid sensor drift caused by environmental changes. The
measurement phase lasted for 60 s, and the interval for data
collection was 1 s. In this work, only the stable values of sensors
were used for further data analysis. Each test was performed for
three samples and every sample was replicated at least five times
until relatively stable results were obtained.

The measured data were analyzed using PCA with the
WinMuster software of the E-nose system. Sensor response
values obtained from the E-nose were preconditioned with the
standard normal variate to eliminate signal drift (Zhu et al., 2019).

2.5 Volatile compounds extracted using solid-phase
microextraction (SPME)

Extraction of volatile compounds was performed according to
Zhang et al. (2020a). The SPME fiber coated with divinylbenzene/
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carboxen/polydimethylsiloxane (DVB/CAR/PDMS, 50/30 pm)
(Supelco, Bellefonte, PA, USA) was employed to extract volatile
compounds in shrimp samples. The fiber was inserted into the
headspace of a 25 mL glass vial that contained 2 g of sample and
2 uL of methyl nonanoate (1.632 g/L in n-pentane). Samples
were exposed to an SPME fiber with equilibration in a water
bath at 65 °C for 40 min. After extraction, the fiber was desorbed
at 240 °C for 4 min in the GC-MS injector in splitless mode.

2.6 GC-MS analysis

The GC-MS analysis was performed on a QP2010-Plus
GC-MS instrument (Shimadzu, Tokyo, Japan). A DB-WAX
capillary column (30 m x 0.25 mm x 0.25 pm; Agilent, Santa
Clara, CA, USA) was employed. The initial oven temperature
was 40 °C maintained for 3 min, then 40-100 °C at a rate of
5°C/min, then 100-180 °C at 2 °C/min, then raised to 250 °C at
10 °C/min and held there for 5 min. The carrier gas was helium
(99.999% purity) at a constant flow of 1.2 mL/min. The mass
spectrometer had a mass range of m/z 30 to 500 at a scanning
rate of 1.8 s™. The electron ionization mode was used with an
electron impact energy of 70 eV. Ion source temperature and
interface temperature were set at 230 °C and 250 °C, respectively.

2.7 Identification and quantitative analysis of volatile
compounds

The identification of volatile compounds was carried out
by comparing the recorded mass spectra with the Wiley version
6.0 database (Wiley, Chichester, UK) and the NIST 2.0 MS
libraries, retention index (RI) and comparing previous literature
and published index data. The RIs were calculated from all of
the volatile compounds using a C5-C25 n-alkanes series (Sigma-
Aldrich Trading Co., Ltd., Shanghai, China), and the values were
compared, when available, with values reported in the literature
for similar chromatographic columns.

The internal standard (IS) method was used to quantify
the volatile compounds. The mean value of triplicates was
calculated using the following formula, odorant concentration =
(compound peak area x IS concentration)/IS peak area (Pu et al.,
2019; Zhang et al.,, 2020b). The contribution of each odor to
the overall fruit aroma was evaluated by the OAV, which was
measured as the ratio of the concentration of each compound
to its detection threshold in water. The threshold values were
taken from information available according to Gemert (2011).

2.8 Statistical analysis

Data analysis was performed using SPSS, version 19 software
(SPSS Inc., Chicago, IL, USA). All experiments were performed
three times, and mean values were reported. Differences between
groups were declared significant at p < 0.05 by ANOVA with
Duncan’s test.

The correlations between volatile compounds, E-nose data
and aroma attributes during the hot-air-drying process of shrimp
were analyzed using PLSR through the Unscrambler version
9.7 (CAMO ASA, Oslo, Norway). All variables, such as volatile
compounds, E-nose data and sensory scores were centered and
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standardized (1/Sdev) before applying PLS analyses and PLSR
models were validated using full cross-validation.

3 Results and discussion
3.1 Sensory evaluation

Sensory evaluation is a reliable technology to directly reflect
the characteristics and quality of food, and can translate color,
odor, taste and texture into visual data (Calanche et al., 2019;
Castilhos et al., 2019). A spider plot was created to observe the
dynamic changes of aroma profile during the hot-air-drying
process of shrimp (Figure 1).

Fresh shrimp had little odor. The score of fishy in SO was the
highest (1.1), followed by sweet (0.6), and scores of other aroma
attributes were low. During the early period (0-2 h), there was no
obvious change in sweet, fishy, caramel and smoky/burnt odors
while scores of roast/nutty and cooked-meat-like odors increased
slightly, which indicated that the overall aroma of shrimp changed
little at the inception stage. During the hot-air drying for 2-7 h,
scores of six aroma attributes increased significantly (p < 0.05)
compared with S0. In particular, scores of roast/nutty and cooked-
meat-like odors were much stronger than other aroma attributes,
which indicated that they were the main aroma characteristics
of shrimp in the middle time of hot-air drying. During the late
period (7-9 h), scores of most aroma attributes changed little. It
was worth noting that the score of smoky/burnt odor in S8 and
S9 increased significantly (p < 0.05) compared with that of S7.
The overall aromas of S8 and S9 due to the addition of smoky/
burnt odor were unacceptable. The aroma attributes as a whole
showed S7 were much better than the others.

3.2 Water activity

Water is an important medium for various chemical reactions,
and most of the flavor precursors are water-soluble, so A played
an important role in the formation of aroma compounds. Previous
research had reported that the meat-like flavor components
were mainly derived from Maillard reaction, and the water
activity could qualitatively affect the kind and amount of major
volatiles produced during heating, which made contributions to
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Figure 1. Radar map of aroma profiles during the hot-air-drying process
of shrimp. S0, S1, S2, S3, $4, S5, S6, S7, S8 and S9 represent hot-air-dried
shrimp for0h, 1 h,2h,3h,4h,5h,6h,7h,8hand 9 h, respectively.
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the formation of aroma characteristics (Hartman et al., 1984).
Figure 2 showed that the A change in shrimps with the drying
time. At the early process (0-2 h), the A of shrimps decreased
slowly from 0.971 to 0.916. At the middle process (2-7 h), the
A decreased rapidly from 0.916 to 0.274. At the late process
(7-9 h), the A changed little (0.274-0.255). According to the
result of sensory evaluation, the aroma attributes of shrimps
at 7 h were considered as the most acceptable during drying
process, meanwhile, the A 0.274 at 7 h was appropriate for long
time storage of dried shrimp. Therefore, the stage could be used
as the optimal condition for the aroma formation.

3.3 E-nose analysis

E-nose response to shrimp samples’ aroma during the hot-air-
drying process

The aroma characteristics of shrimps during at different drying
time were analyzed using E-nose equipped with ten sensors,
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Figure 2. The A  change in shrimps with the drying time.
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which depended on not only the concentration of molecules
in odors, but also what odor molecules consist of Chen et al.
(2018). Figure 3a shows polar graphs of the responses of the
sensors to the 10 shrimp samples during the hot-air-drying
process. Fresh shrimp samples (S0) represented a low response
on all sensors, which indicated that fresh shrimp had little odor.
During the early process (0-2 h), most of the sensors in SI and
S2 changed little while sensor W1W and sensor W3C increased
a bit compared with SO. Radar chart shapes changed as the hot-
air drying proceeded (2-7 h), it was observed that responses of
all sensors increased to different extents in S2 to S7, especially
sensor W1W, sensor W2W, sensor W1S and sensor W2S. This
indicated that an abundance of aroma compounds was produced
in shrimp during the late stage of the hot-air-drying process. In
addition, the radar chart shapes of S7, S8 and S9 were quite close,
which suggested that these three samples might have similar
aroma attributes during the late period (7-9 h).

Classification of aroma attributes of shrimp during the hot-air-
drying process using PCA

Principal component analysis is a statistical technique for
the reduction of input data dimension and is largely used for
feature extraction. It captures the relevant information in a set
of input data providing a lower dimension (Fernandes et al.,
2019; Nascimento et al., 2020). For improved visualization of
the data, PCA was performed to distinguish aroma attributes
of 10 shrimp during the hot-air-drying process (Figure 3b).
The contribution of the first two PCs (PCI and PC2) reflects
the completeness of the variable information based on PC1 and
PC2. Most data points of shrimp samples (S0, S1 and S2) were
distributed in the third quadrants, which indicated that aroma
attributes of shrimp have not substantially changed at an early
stage of hot-air drying. During the middle period (2-7 h), data
points of shrimp samples were distributed in the first and second
quadrants, which suggested that aroma attributes of shrimp were
obviously different from fresh shrimp at this stage. In particular,
data points of shrimp samples (S7, S8 and S9) were distributed in
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Figure 3. Radar map (a) and PCA analysis (b) of the E-nose during the hot-air-drying process of shrimp. S0, S1, S2, S3, $4, S5, S6, S7, S8 and S9
represent hot-air-dried shrimp for 0h, 1h,2h,3h,4h,5h,6h,7h, 8 h and 9 h, respectively.
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a fairly small band, and these three samples might have similar
aroma attributes. According to the GC-MS results, an abundance
of aroma compounds was produced during the hot-air-drying
process for 2-7 h, which may dramatically change the overall
aroma of shrimp. E-nose analysis was consistent with the result
of sensory evaluation.

3.4 GC-MS analysis

Shrimp collected during the hot-air-drying process were
analyzed using GC-MS to illuminate the dynamic changes of
volatile compounds. A total of 79 volatile compounds were
identified and quantified, including two S-containing compounds,
15 pyrazines, 16 ketones, 17 hydrocarbons, three amines,
10 alcohols, three heterocyclic compounds, nine aldehydes and
four esters (Table 1). Asa whole, species and contents of volatile
compounds varied greatly during the process. During the hot-
air drying for 0-9 h, pyrazines, hydrocarbons and heterocyclic
compounds were the three most variable compounds. In the
fresh shrimp, hydrocarbons, ketones and aldehydes were the
most abundant compounds, which accounted for 94.06%.
During the hot-air drying for 0-2 h, most of the compounds
in S1 and S2 were comparatively close to fresh shrimp while a
few pyrazines were produced (lower than 10 ng/g), the content
of ketones decreased significantly (p < 0.05), and the content
of amines increased significantly (p < 0.05). During the hot-air
drying for 2-7 h, the kind and number of volatile compounds
in shrimp samples increased drastically from 1667.73 ng/g
(S2) to 17891.31 ng/g (S9). At this stage, pyrazines, ketones,
amines, aldehydes, S-containing compound and heterocyclic
compounds increased rapidly. Most of these compounds have
low thresholds, and they contributed to the aroma characteristics
in hot-air-dried shrimp. At the late period (7-9 h), large amounts
of S-containing compounds and heterocyclic compounds were
detected, but the number of volatile compounds changed little.

OAV:s of volatile compounds in the hot-air-dried shrimp
were calculated to identify the contributors to the aroma profile.
Volatile compounds with OAV > 1 (based on the published odor
thresholds determined in water) are identified as aroma-active
compounds (AACs), and AACs in shrimps at different drying
time were shown in Table 2. About 4, 4,2,5,7,11, 16, 16,17 and
15 kinds of AACs were identified at 0 h-, 1 h-,2 h-, 3 h-, 4 h-,
5h-,6h-,7h-, 8 h- and 9 h-dried samples, respectively. Drying
process of shrimps was divided into three periods according to
the AACs changes, early period: 0-2 h, middle period: 2-7 h,
and late period: 7-9 h.

Early period (0-2 h)

In fresh shrimp (S0), OAV summation was only 21.41, and
trimethylamine, benzaldehyde, caproicaldehyde and amylaldehyde
were the main AACs (accounting for 95.07%). Trimethylamine
comprised 60.04% of the total OAVs in fresh shrimp, and the
main source of the odors. During the hot-air drying for 0-2 h,
OAV summation increased slightly, and the OAV summations of
AACsin S1and S2 were 43.31 and 93.45, respectively. However,
the composition of AACs in the two samples changed little
compared with S0, the main sources in AACs were mainly of
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rapidly increasing trimethylamine (accounted for 74.31-92.61%
of the total), with a few pyrazines (accounted for 7.45-20.24%).

Middle period (2-7 h)

The content and amount of AACs changed significantly during
this period, and the OAV summation increased rapidly from
93.45(S82) t0 752.91 (S7). These changes were mainly attributed
to the increase of pyrazines, amines, aldehydes, and heterocyclic
compounds by more than 85% in the OAV increment.

Itis reported that pyrazines are important aroma compounds
in shrimp products subjected to drying or heating treatment
(Neethling et al., 2016; Tachihara et al., 2004; Zhang et al.,
2020a). Pyrazines are derived from the Maillard reaction, which
commonly have popcorn, peanut, roasted, and meat-like odors.
Pyrazines’ OAV showed the fastest increase, and reached to
(549.79) at hot-air drying for 7 h (§7), which were increased by
86.15 times compared with S2. 3-Ethyl-2,5-dimethylpyrazine,
2,5-dimethylpyrazine, 2,3,5-trimethylpyrazine and 2-methyl-3,5-
diethylpyrazine were the highest OAV AACs in S7, which made
important contributions to the formation of aroma attributes.

Amines are mainly produced from degradation of
N-containing organic compounds (Gu et al., 2013; Fan et al,,
2017). Trimethylamine was the only amine in AACs, which could
be found in all samples. It is very common in seafood products
and usually regarded as a reduction product of trimethylamine
oxide. Trimethylamine contributes to fishy and seawater-like
odors according to previous papers (Mall & Schieberle, 2016;
Zhang et al., 2020b). Though OAVs of trimethylamine represented
a substantial increase as the hot-air drying proceeded (2-7 h), the
proportion in total constantly decreased from 74.30% to 22.26%.

Aldehydes are important volatile flavor compounds in aquatic
products, and produced from the deamination of amino acids.
OAVs of benzaldehyde and 3-(methylthio)propionaldehyde
obviously increased as the hot-air drying proceeded, and OAV
summation of the two compounds accounted for 6.44% of the
total in S7. 3-(methylthio)propionaldehyde contributed to
cooked-meat-like and onion odors, and benzaldehyde has an
unpleasant almond odor.

Heterocyclic compounds are well-known as the common
flavor components in the thermal treatment of meats and
aquatic products. Furan compounds are important heterocyclic
compounds and generally contribute to milk, cooked-meat-like,
fat and roasted potato flavors (Shahidi, 1998; Zhang et al., 2019,
2020a). During the middle period, two heterocyclic compounds
in AACs were identified as 2-pentylfuran and pyridine. Pyridine
contributed to an unpleasant odor and had a negative effect on
the aroma attributes. In general, the hydrocarbons, phenols,
alcohols, acids and esters are generally considered to make little
contribution because of their high odor thresholds.

Late period (7-9 h)

Itis observed that compositions and contents of AACs during this
period were close, OAV summations were 752.91 (57), 844.59 (S8) and
896.95 (89), and they had 12 AACs in common. Four volatile
compounds (3-(methylthio)propionaldehyde, trimethylamine,
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2,5-dimethylpyrazine and 3-ethyl-2,5-dimethylpyrazine) were
the highest AACs of the three samples, and they accounted for
more than 85% of the total. This indicated that S7, S8 and S9
had similar aroma attributes. It is worth noting that OAVs of
benzaldehyde in S8 and S9 increased by 2.25 and 2.84 times
that of S7, respectively. Benzaldehyde has an unpleasant almond
and smoky odors, and too high concentration would lead to
the deterioration of the overall aroma (Cai et al., 2016). This
phenomenon explained the reason for the increase of smoky
odor during the late period. GC-MS results were consistent
with results of sensory evaluation and E-nose.

In conclusion, aroma compounds of shrimps apparently
changed during the hot-air drying process. The middle period
(2-7 h) was the crucial period for the development of aroma
characteristic of dried shrimps, which gradually converted
trimethylamine and aldehydes of fresh shrimps to pyrazines,
amines, aldehydes and heterocyclic compounds of dried shrimps.

1, (a) I I

3.5 Correlation between GC-MS results, E-nose data and
sensory attributes

In an attempt to study the relationships between sensory
attributes, E-nose data and volatile compounds, PLSR models were
performed. As shown in Figure 4a, the X-matrix was projected as
volatile compounds with thresholds; the Y-matrix was projected
as six sensory properties (roasted/nutty, smoky/burnt, sweet,
cooked-meat-like, fishy and caramel). The derived PLSR model
explained 82% of the variance in X and 86% of the variance in
Y. The inner ellipse showed that 50% of the explained variance
and the outer ellipse showed 100% of the explained variance
(Kovacs et al., 2010). Most of the sensory attributes and volatile
compounds were located between the small and big ellipses, except
methylpyrazine, tridecane, dodecane, 3-hydroxy-2-butanone,
acetic ether and 2-methylpropionaldehyde. 3-Ethyl-2,5-dimethyl-
pyrazine, 2,5-dimethylpyrazine, 2,3,5-trimethylpyrazine, 2-methyl-
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Figure 4. PLSR correlation loadings plot of indicator variables of volatile compounds, E-nose data and sensory evaluation (1-30 denote the 30
compounds defined in Table 2) during the hot-air-drying process of shrimp. (a) The model was derived from volatile compounds as the X-matrix
(red point) and sensory attributes as the Y-matrix (blue point); (b) The model was derived from the signals of the E-nose as the X-matrix (purple
point) and sensory attributes as the Y-matrix (blue point). The small and big ellipses represent R* = 50 and 100%, respectively.
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3,5-diethylpyrazine, 2,3-dimethylpyrazine, 2,6-dimethylpyrazine,
2-ethyl-6-methylpyrazine, 3-(methylthio)propionaldehyde
and 2-pentylfuran had correlations with cooked-meat-like
and roasted/nutty odors. Trimethylamine, ethyl butyrate and
3-methylbutyraldehyde have correlations with fishy odor.
2-Heptanone, ethyl 2-methylbutyrate and caproicaldehyde
showed positive correlations with sweet odors. Amylaldehyde
and 2-methylhexanal have correlations with caramel odor.
Benzaldehyde, pyridine and dimethyl disulfide have correlations
with smoky/burnt odor. PLSR were consistent with results of
sensory evaluation and AACs.

In Figure 4b, the X-matrix was designed as the signal values
from the E-nose and designated as independent variables, six sensory
properties were designated as dependent variables. The derived
PLSR model included two significant PCs explaining most of the
E-nose data and sensory attributes, except sweet odor. Variables
of WIW, W2W and W3S from the X-matrix have correlations
with roasted/nutty and cooked-meat-like odors from the Y-matrix.
Variables of W5S and W3C showed positive correlations with a
fishy odor. Variables of W6S, W2W and W2S showed positive
correlations with caramel odor. Variables of W1C and W1S showed
a good correlation with smoky/burnt odor. PLSR were consistent
with results of E-nose, sensory evaluation and AACs.

4 Conclusions

The aroma characteristics of shrimps changed significantly
during the hot-air-drying process. Along with hot-air drying,
the aroma intensity in shrimp increased while the aroma
characteristics including mainly roasted and meat-like odors
had come into being gradually. In shrimp with A 0.274 (hot-air
drying for 7 h), the number of AACs increased to 16, and the
aroma attributes as a whole were much better than the others.
Four kinds of AACs made important contributions, namely,
pyrazines, amines, aldehydes and heterocyclic compounds. The
results will provide a theoretical basis for the control of flavor
and quality of hot-air-dried shrimp during the drying process.
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