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1 Introduction
Gums are complex polysaccharides with high molecular 

weight and lots of hydrophilic groups that dissolve in water 
providing viscosity to aqueous systems (Dabestani et al., 2018). 
Starch  and its derivatives, galactomannans, carrageenans, 
pectin, gum arabic, and cellulose are mostly preferable gums 
that are used as a thickening and gelling agent, texture modifier, 
emulsifiers, and stabilizers in the food industry (Wang et al., 2019). 
Besides, new plant-based gum obtained from different seeds 
such as flaxseed, white mustard seed, yellow mustard seed, 
fenugreek seed, sage seed, and cress seed has been introduced 
by researchers in the last years (Balke  &  Diosady,  2000; 
Brummer  et  al.,  2003; Cui  et  al.,  1993; Cui  et  al.,  1994; 
Karazhiyan et al., 2009). Knowledge of the physicochemical, 
functional, and rheological properties of a new gum source is 
useful for the evaluation of gum’s behavior in a large number 
of food products and their processing (Koocheki  &  Razavi, 
2009). Many studies have been conducted on the rheological 
properties of seed gum solutions such as fenugreek seed gum, 
basil seed gum, and locust bean seed gum (Dakia et al., 2008; 
Farahmandfar et al., 2019; Gadkari et al., 2018). Polysaccharides, 
the main components of natural gums, consist of more than 
one type of monosaccharide (Dickinson, 2003). The difference 
in the monosaccharide compositions of gums affects the 
rheological properties and solubility of gums. Therefore, the 
monosaccharide compositions should be determined in the 
evaluation of rheological properties and solubility.

Eruca sativa (‘rocket’ in English) is a lifelong herb of the 
family Brassicaceae grown in Southern Europe and India. 
For  many years, rocket plants have been used as a food 
ingredient, especially in a salad. Rocket plants contain a wide 
range of health-promoting phytochemical compounds such as 
polyphenols, fibers, and glucosinolates (Koubaa et al., 2016; 
Miyazawa  et  al.,  2002; Perry  &  Metzger, 1980). The seeds 
of rocket plants have been used for oil production in the 
industry because of their high oil contents (20.0%) and 
Erucic acid contents, one of the most sought-after fatty acids 
(Koubaa et al., 2016). Also, the rocket seed has a significant 
amount of total carbohydrate (23.1%), crude fibers (20.4%), 
and crude protein (31.0%)-rich (Nail et al., 2017). Thanks to 
their chemical composition, rocket seeds may have reasonable 
gum content with functional properties. The effect of extraction 
parameters on some technological properties and extraction yield 
of Eruca sativa seed mucilage was studied (Koocheki et al., 2011). 
However, there is no published study on the comprehensive 
rheological characterization of RSG.

In this study, the extraction procedure of RSG extracted 
from Eruca sativa seed and the physicochemical and rheological 
properties of RSG were investigated. This characterization gives 
potential applications of RSG in the food industry as a natural 
food gum. Also, the rheological properties of RSG are important 
to improve the functional properties of food.
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2 Material and method
Rocket seeds (Eruca Sativa Mill.) were obtained from the local 

producers. All chemicals used for extraction and purification were 
analytical grade obtained from Merck (Darmstadt, Germany).

The study consist of two parts which were the extraction 
of RSG and the characterization of RSG’s physicochemical 
(moisture, ash, and protein content, sugar composition) and 
rheological properties (the steady shear, dynamic rheological 
properties, 3-ITT, and creep recovery test) of RSG dispersions 
(0.2-1.0%). This study was investigated to get information about 
gum characteristics and stability.

2.1 RSG Extraction

The Rocket seed gum was extracted with distilled water 
(water:seed of 20:1) in a magnetic heating stirrer at 80±1.0 °C 
for 2 hours. Rocket seeds swell by taking the water, and the gel 
structures are out of the granules. The solution obtained as a result 
of the extraction was added to water to 5000 mL. The solution 
was diluted. Rocket seeds, which settle towards the bottom with 
dilution, were taken from the solution by filtration. For  the 
removal of water from the structure, the separated solution 
was concentrated by evaporating in the evaporator at 80 °C for 
3 hours, and dilution was made by adding ethyl alcohol (96%) 
in the ratio of 1: 2 (h: h) to the solution. With the addition of 
alcohol, the gum in the solution increased upwards due to the 
density difference and was collected on the surface. The collected 
gums were taken from the surface in a container and then left 
in the oven at 50 °C for 1 day to dry. After the drying process, 
RSG was milled and sieved using a mesh 18 sifter.

2.2 Physicochemical properties of RSG

Moisture, ash, and protein content of the RSG were analyzed 
according to AOAC Official Methods (Baur  &  Ensminger, 
1977). Determination of sugar composition of the samples 
was performed using the HPLC system (Shimadzu, Japan), 
equipped with a refractive index detector (RID-10A) and 
CARBOSep CHO-682 Pb column. The column temperature 
was thermostatted at 80 °C. The chromatographic separation 
was obtained using the isocratic flow of ultrapure water at a 
flow rate of 0.4 ml/min. For each analysis, 10 grams of sample 
was extracted with the addition of 100 mL of distilled water for 
4 hours using a mechanic shaker at room temperature. After 
that, the extract was filtered through a 0.45 µm membrane filter, 
and 20 µL filtrate was injected into the column. The number of 
sugars was calculated using an external calibration curve, and 
the results were expressed as a g/100 g sample.

A Bruker Tensor 27 spectrometer (Bremen-Germany) equipped 
with an ATR accessory with a diamond crystal module was used 
for obtaining the resistance mechanism by Fourier transform 
infrared (FT-IR) spectra of RSG. OPUS program Version 7.2 for 
Windows from Bruker Gmbh was used for instrument control 
and data acquisition. Wavelength ranged from 3800 to 600 cm−1 
at 4 cm−1 resolution accumulating 16 scans per spectra was used 
for the FT-IR spectra. The background air spectrum subtracted 
all sample spectra (Singthong et al., 2005).

2.3 Rheological Analyzes of RSG

Gum solutions were prepared by dissolving RSG and its 
different concentrations (0.2-1.0% w/v) in distilled water at 
25 °C and keeping overnight on a mixer to complete hydration.

Stress or strain-controlled and temperature-controlled 
oscillatory rheometer (Anton Paar, MCR 302, Australia) was 
used to determine rheological properties of the RSG solutions. 
The steady shear properties and time-dependent flow behavior, 
dynamic shear properties, 3-ITT rheological properties, and 
creep recovery test were performed.

2.4 Steady shear properties and hysteresis area

Steady shear properties of RSG solutions were determined in 
the shear rate range of 0-100 (1/s) at 25 °C by using a parallel plate 
configuration (diameter 50 mm, gap 0.5 mm). The RSG solutions 
(approximately 2 g) were placed in the rheometer plate, and the 
analysis was carried out after reaching the desired temperature. 
Each concentration of RSG samples was repeated three times. 
The shear stress values of RSG solutions were determined as a 
function of the shear rate. The relation between the shear rate 
and shear stress was calculated using the Ostwald de Waale 
model and non-linear regression.

nKτ γ=  (1)

In Equation 1, τ shows shear stress (Pa), Κ consistency index, 
γ shear rate (1/s), and n the flow behavior index.

The thixotropic properties of RSG were determined by 
using hysteresis, which was composed of two steps (upward 
curve and downward curve). Hysteresis area was characterized 
by increasing shear rate range from 0.01 s-1 to 100 s-1 in 5 min 
and then to measure the downward curve by reversing shear 
rate range from 100 s-1 to 0.01 s-1 in 5 min at 25 °C.

2.5 Three-Time Interval Thixotropic Test (3-ITT)

3-ITT three interval thixotropic test is composed of three 
stages. In the first time interval, RSG is analyzed at low shear 
rates (0.5 1/s). In the second time interval, RSG is deformed 
by a high shear rate (150 1/s) to characterize the deformation 
of RSG. In the third time interval, which is the same condition 
first time interval, analyses were performed in low shear rates. 
Thus, the time of recovery and quantity can be determined 
(Toker et al., 2015).

Gі (at the initial state of the product) G0 (after deformation 
applied G’ value) and Ge (after recovery of sample G’ value) 
values are characterized by deformation equation (Equation 2) 
(Toker et al., 2015):

( )% ³ 0

³
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=   (2)

The recovery degree of RSG was determined by the following 
equation (Equation 3),
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Firstly the linear viscoelastic region was determined with 
the amplitude sweep test. Then, the constant and variable shear 
rate was selected for the 3-ITT. 3-ITT rheological properties of 
RSG were determined by constant shear rate and variable shear 
rate. In the first interval, the constant shear rate was applied to 
the RSG. Then in the second time interval, the variable shear 
rate was applied on RSG. In the third time interval, which is the 
same first time interval, the constant shear rate applied on the 
RSG to determined dynamic rheological properties of RSG in 
the second time interval. For this reason, the 3-ITT test gives 
information about changing the solid structure of RSG with 
time. For the interpretation of the data which is obtained as a 
result of the 3-ITT test, the terms related to recovery should be 
obtained. For this purpose, the second-order structural kinetic 
model was used and G0, Ge, and k values were calculated. G0 
(the initial values of the storage and loss modulus), Ge (the 
equilibrium storage modulus), k (the rate constant of recovery 
of the sample) and also in this model n=2, are specified by the 
following Equation 4:
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Dynamic Shear Properties

Dynamic shear properties were determined by parallel plate 
configuration. Firstly, the amplitude sweep test was applied in 
the 0.1-100% strain range to determine the linear viscoelastic 
region. Then, the frequency sweep test was performed in the 
linear viscoelastic region at a frequency of 0.1-10 Hz and in the 
angular velocity range of 0.1-64 (w) to record storage (Gʹ), loss 
modulus(Gʹʹ) and complex viscosity (n*) values. Dynamic shear 
properties parameters were determined by using the Power 
Law model and non-linear regression (Equation 5 & Equation 
6) (Yoo & Rao, 1996):

'' ' ( )nG K ω=  (5)

'''' ' '( )nG K ω=  (6)

where G’ (Pa) is the storage modulus, G” (Pa) is the loss modulus, 
ω is the angular velocity value (1/s), and Κ’, Κ” consistency index 
values and n’, n” represent the flow behavior index values.

2.6 Statistical analysis

The statistical analysis was carried out using the Statistica 
software program (StatSoft, Inc., Tulsa, OK). All the rheological 
analyses were conducted in triplicate. The standard deviation and 
mean value were shown. ANOVA was conducted to determine 
the differences in rheological parameters of gum solutions. 
Duncan, multiple comparison tests at 95% significance level 
was used to determine the effect of gum concentration on 
rheological parameters.

3 Results and discussion

3.1 Physicochemical Properties

The chemical compositions of RSG were presented in Table 1. 
Carbohydrate, protein, moisture, and ash content of RSG were 
80.38%, 5.81%, 10.26%, and 3.55%, respectively. Koocheki et al. 
(2012) reported that rocket seed mucilage contains 67.97% 
carbohydrate, 9.75% protein, 12.28% moisture, 10% ash, and 
no fat content. The pH value of RSG was determined as 5.71. 
Table 1 also indicates the sugar composition of the RSG.

RSG has high carbohydrate (80.38%) and low protein (5.81%) 
contents so that the purification method used when obtaining 
gum could be appropriate. While the carbohydrate content 
of RSG (80.38%) was higher than that of guar gum (71.1%), 
it was close to that of Descurainia sophia seed gum (78.23%) 
and less than that of Soymida febrifuga exudate gum (88.77%) 
(Bhushette & Annapure, 2018; Busch et al., 2015; Hamidabadi 
Sherahi et al., 2017). The protein content of gum is a crucial 
parameter determining its emulsion, foaming, and film-
forming capacity. RSG has higher protein content, some other 
natural gums reported from previously published studies by 
Bhushette & Annapure (2018) and Hamidabadi Sherahi et al. 
(2017). When comparing commercial gums, the protein content 
of RSG was higher than that of xanthan gum (2.125%), lower 
than that of guar gum (8.19%), and close to that of locust bean 
gum (5.2-7.4%) (Hamidabadi Sherahi et al., 2017).

When considering the monosaccharide composition, 
RSG has a high level of mannose and galactose. The RSG 
mannose/galactose ratio was found as 1.52, indicating that 
galactose’s substitution level in gum polymers was very high. 
In comparison, the mannose/galactose ratio of RSG is less than 
that of Descurainia sophia seed gum (1.62) and higher than that 
of fenugreek seed gum (1.1) (Brummer et al., 2003; Hamidabadi 
Sherahi et al., 2017). The higher level of galactose substitution 
means higher solubility in water.

The FTIR spectrum is generally used to identify organic 
functional groups in the polysaccharide structure. FTIR spectra of 
1% RSG solution was shown in Figure 1. Figure 1 demonstrated 
all typical bonds and peaks characteristic of the polysaccharide. 
The peaks between 800 cm-1 and 1200 cm-1 showed the highly 
entangled C-C-O, C-OH, C-O-C stretching modes of polymers 
structure, and this area was called the “fingerprint” area for 
carbohydrates (Kačuráková et al., 1998; Razavi et al., 2014). As it 
can be seen in Figure 1, the band in this range was 1018 cm-1 
which represented alkene C-H bend from polysaccharides for 

Table 1. The chemical composition of the RSG.

Seed Composition (w/w %) Sugar composition (w/w %)
Carbohydrate 80.38±1.13 Galactose 24.49±0.74

Protein 5.81±0.26 Mannose 37.29±0.32
Moisture 10.26±0.19 Glucose 9.89±0.05

Ash 3.55±0.04 Fructose 11.59±0.11
Arabinose 13.28±0.23

*Values are means ± SD of triplicate determination.
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the gums (Daoub et al., 2018). The range between 1200 cm-1 and 
1500 cm-1 attributed to the coupling of the deformation vibrations 
of groups consisting of hydrogen atoms, namely CCH, HCH, COH, 
and HCO (Hamidabadi Sherahi et al., 2017). These bands in this 
range were 1315 cm-1, 1369 cm-1, and 1415 cm-1. The absorptions 
at wavenumber 1622 cm-1 and 1740 cm-1 resulted from C-OO 
groups and valence vibration. The peaks which were shown in 
the 2800-3000 cm-1 wavenumber range was represented the C-H 
stretching vibration of CH2 groups, symmetric and asymmetric 
of the free sugar. These bands in this range were 2855  cm-1 
and 2922 cm-1 indicate the presence of sugars, galactose and 
arabinose. The area of FT-IR spectra between 3000 cm-1 and 
3500 cm-1 indicated O-H stretching modes due to the present 
combination of water and polymers, which involved hydrogen 
bonds (Kačuráková et al., 1998).

3.2 Steady Shear Rheological Properties of the RSG

Figure 2 shows the flow properties and viscosity of RSG 
solutions with different concentrations (0.2–1.0% w/v) over the 
range of shear rate from 0.01 to 100 s-1. According to Figure 2a, 
the samples’ viscosity of RSG decreased with an increase in the 
shear rate at all concentrations. The increase in shear rate led 
to a breakdown of molecular bonds, and therefore molecules 
became regular and internal friction decreased. As a result, 
the viscosity of RSG solutions decreased (Wang et al., 2019). 
The decrease in viscosity by an increase in shear rate indicated a 
non-Newtonian shear-thinning flow behavior for RSG solutions 
at all concentrations (Figure 2b). The most used hydrocolloids in 

the food industry like locust bean gum (Dakia et al., 2008) and 
xanthan gum (Zhong et al., 2013) showed that shear-thinning 
rheological behavior.

Seed gums such as Chinese quince seed gum (Wang et al., 2019), 
Acacia nilotica exudate gum (Bhushette & Annapure, 2017), Albizia 
zygia gum (Eddy et al., 2013), Brea plant gum (Bertuzzi et al., 2012), 
Acanthophyllum bracteatum root gum (Jahanbin et al., 2012), 
and gum Kondagogu (Vinod et al., 2008) showed shear-thinning 
behavior. Hydrogen bonds between molecular and atomic 
groups and high molecular weight are responsible for the shear-
thinning behavior of RSG (Fijan et al., 2007). Shear-thinning 
hydrocolloids are used to improve and modify food texture 
during high shear processing conditions like pumping and filling 
(Vardhanabhuti  &  Ikeda, 2006). Shear-thinning rheological 
behavior is desired for typical gum solutions due to the polymeric 
matrix. High molecular weight and these properties might be one 
of the best factors for using gum as a food additive. RSG solutions 
can improve or modify the food industry’s texture as a novel 
natural food hydrocolloid due to having shear thinning behavior 
(Tada et al., 1998).

Ostwald de Waale model was successfully applied for the 
flow behavior of RSG solutions (R2>0.96). Consistency index 
(K) and the flow behavior index (n) value of RSG solutions were 
calculated by the Power Law model and presented in Table 2. 
The K values and n values were found, respectively 0.24-6.31 
Pa.sn and 0.35 - 0.13. The increase of RSG solution (from 0.2%, 
(w/v) to, 1.0%, (w/v) caused increasing K values and decreased 

Figure 1. FT-IR spectra 1% RSG solution.
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n value. The n values at all concentrations of RSG solutions were 
less than 1, indicating that showed a non-Newtonian shear-
thinning behavior of the nature of RSG solutions. These results 
demonstrated that different concentrations of RSG solutions 
affected the steady shear properties of RSG solutions.

The strong shear thinning character of higher RSG concentrations 
was explained by occurring more hydrogen bonds than the other 
concentration of RSG solutions (Wang et al., 2019). This result was 
compatible with other studies reported for natural and synthetic 
gums like locust bean gum (Dakia et al., 2008), xanthan gum, 
asafoetida gum (Saeidy et al., 2019), Chinese quince seed gum 

(Wang et al., 2019) and fenugreek gum (Gadkari et al., 2018). 
As we can see in Table 2, a 1% concentration of RSG showed a 
higher K value than the other concentrations of RSG solutions 
due to higher solid contents, leading to increased viscosity. 
Higher  solid contents have properties like forming film and 
molecular bonds (Maskan & Göğüş, 2000). 0.2% concentration 
of gum solutions showed a lower K value due to having weak 
molecular interactions and low solid contents. The results 
indicated that the RSG solution’s pseudo-plastic character 
was more clearly related to increasing gum concentrations. 
This characteristic provides important applications in the food 
industry, as the RSG solutions can display high viscosity and 
light mouthfeel in a product.

3.3 Thixotropic behavior of RSG solution

Hysteresis area

The thixotropic behavior of RSG solutions was shown 
in Figure 3, which was explained by applied increasing and 
decreasing the shear rate at different concentrations.

The thixotropic behavior of RSG solutions is related to the 
breakdown of molecular entanglements, which causes decrease 
shear stress and viscosity with time (Farahmandfar et al., 2019). 
The up curve did not overlap with the down curve. The area 
between the up and down curve is called the hysteresis loop, 
and it symbolized time-dependent fluid behavior and a wide 
of thixotropy (Lee et al., 2009). Hysteresis area indicated the 
energy needed to break down the bond at all concentrations of 
gum solutions (Koocheki et al., 2013). As can be seen in Table 2, 
hysteresis area (%) of RSG solutions were found 10.67%, 13.51%, 
15.05%, 17.20%, 18.61%, and hysteresis area (A1-A2) of the RSG 
found 11.53, 33.23, 62.11, 121.42, 183.23 respectively for 0.2-1%. 
1% concentration of RSG solutions showed the larger hysteresis 
area and the stronger thixotropic properties. Besides, these 
concentrations showed higher structural strength due to higher 
occurred inter and intramolecular interactions; therefore, recovery 
of the RSG solutions takes a longer time (Wang et al., 2016). 
A similar trend was reported by (Wang et al., 2019). This result 
also indicated that the increase in concentrations of the sample 
might lead to thixotropic behavior. The lowest RSG solutions 
(0.2%) displayed the weakest thixotropic behavior due to low 
viscosity and rheological instability. Whereas it also showed 
that the highest recovery of the RSG solutions, which means 
that after deformation, returned to its original structure quickly 
than the other concentrations. Similar results were obtained 
by (Razmkhah et al., 2016; Wang et al., 2019). When the RSG’s 

Figure 2. Flow behavior properties and viscosity versus the shear 
rate at different concentrations of RSG solutions. a. shear rate versus 
appearance viscosity, b. shear rate versus shear stress.

Table 2. Ostwald de Waele parameters and hysteresis area of RSG at a different concentration

Concentration 
(%w/v)

Ostwald de Waele Parameters Time-dependent Flow
K (Pa.sn) n R2 Hysteresis Area (A1-A2) Hysteresis Area (%)

0.2 0.24±0.01e 0.35±0.005a 0.99 11.53e 10.67e

0.4 1.16±0.09d 0.21±0.006b 0.99 33.23d 13.51d

0.6 2.42±0.02c 0.17±0.001c 0.98 62.11c 15.05c

0.8 4.20±0.12b 0.14±0.001d 0.97 121.42b 17.20b

1.0 6.31±0.00a 0.13±0.002e 0.96 183.23a 18.61a

*Different letters in the same column indicate significant differences among samples (P < 0.05).
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attention exceeded 0.4%, the up and down curve much prominent 
and did not overlap, which indicated that the structure of 
RSG solutions changed by mechanical stress and energy loss. 
A similar result was obtained by other studies (Fathi et al., 2016; 
Wang et al., 2019). According to thixotropic properties of the RSG 
solutions, the RSG solutions can be used in the food industry 
due to having structural recovery properties.

Three Interval Thixotropic Time Test (3-ITT)

3-ITT is another method to describe the thixotropic 
properties of food emulsions and dispersions subjected to very 
high sudden deformation. In the first time interval, lower shear 
rates were applied to the RSG solutions at rest. A higher shear 
rate is applied to samples in the second time interval and caused 
structural decomposition of the RSG solutions. In the third time 
interval, the recovery of samples starts (Toker et al., 2015). In the 
food industry, applied deformations are not always within the 
linear viscoelastic region. The 3-ITT simulates sudden and non-
linear deformation of RSG solutions. Therefore, this test gives 
information about the structural recovery of RSG solutions.

As shown in Figure 4, the RSG solutions structural recovery 
tendency decreased with increasing concentrations of the RSG 
solutions. As we mentioned in the thixotropic properties of the 
RSG solutions, the lowest concentrations (0.2%) demonstrated 
the lowest structural recovery. The highest concentrations (1%) 
showed that the lowest structural recovery means that after 
deformation, it could not be returned to the original structure 
fast due to high viscosity and strength structural molecular 
interactions (Razmkhah et al., 2016; Wang et al., 2019).

Rheological data of the 3-ITT were fitted by the second-
order structural model to determine structural deformation and 
recovery ratio by using Equation 4 and Equation 5 and given 
in Table 3. R2 value higher than 0.94, meaning that this model 
was successfully fitted to rheological data. The percentage of 
deformation for storage and loss modulus respectively ranged 
between 50.28%-70.27%, 26.80%-55.12% increased with increasing 
gum concentrations. Also, the percentage of recovery for storage 
and loss modulus, respectively ranged between 81.2%-42% and 

104%-55% decreased with increasing concentrations of the RSG. 
These results indicated that minimum and maximum recovery 
and deformation were obtained at 1% and 0.2% concentration 
of the RSG solutions for storage and loss modulus, respectively.

Also, k' and k" values known as thixotropic values were 
found from 9.3-12.85 and 7.82–13.64 1/s, respectively, and 
decreased with increasing gum concentrations. Higher thixotropic 
rate values meaning a higher tendency to structural recovery 
(Akcicek  &  Karasu, 2018). According to the results, 0.2% 
concentrations of the RSG solutions’ concentrations higher tend 
to recover than the other concentrations. These results indicated 
that RSG solutions could be used in the food industry due to 
providing structural recovery advantages during food process 
conditions like pumping and filling (Wang et al., 2019).

3.4 Dynamic shear properties

Figure 5 showed the viscoelastic behavior of the RSG 
solutions. G' and G" values of the samples at all concentrations 
increased with the increase of angular velocity. Similar behavior 
was reported for locust bean gum (Dakia et al., 2008) Hymenaea 
courbaril L. gum seed (Hernández-Morales et al., 2018). Figure 5 
demonstrated that the RSG solutions at all concentrations G' were 
higher than Gʹʹ indicating that RSG showed solid viscoelastic 
character like gel behavior with all in frequency ranges.

A solid viscoelastic character is the desired rheological 
behavior for gum solutions. Such results are compatible with other 
hydrocolloids like L. perfoliatum seed gum gel (Hesarinejad et al., 2014), 
purified basil seed gum (Farahmandfar et al., 2019), cress seed 
gum (Razmkhah et al., 2017) basil seed gum (Rafe et al., 2012) 
Chinese quince seed gum (Wang et al., 2019), and A.homolacarpum 
seed gum (Anvari et al., 2016). An increase in concentrations 
of the RSG solutions led to an increase in Gʹ and Gʹʹ (Table 4).

A similar result (Farahmandfar  et  al.,  2019; Naji-
Tabasi  &  Razavi, 2017). This increase could be explained by 
the formation of a complex molecular structure at higher RSG 
concentrations (Hesarinejad et al., 2014). The rise in G' and G" 
with an increase in concentrations of the RSG solutions can be 

Figure 3. Time-dependent flow behavior of RSG solutions.
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Figure 4. 3-ITT rheological properties of RSG solutions.

Table 3. Second-order structural model parameters

Concentration (%)
Gʹ Gʹʹ The percentage of Deformation The percentage of Recovery

R k (s-1) R k (s-1)×1000 Gʹ Gʹʹ Ge/ G0 Ge/G0

0.2 0.974 12.850a 0.9761 13.642a 50.28e 26.80e 81.205a 104.101a

0.4 0.973 11.910b 0.9493 11.602b 62.63d 40.77d 66.386b 89.353b

0.6 0.971 11.499c 0.9655 10.697c 63.87c 43.55c 49.953c 68.801c

0.8 0.967 10.090d 0.9627 9.949d 65.24b 48.63b 46.061d 60.487d

1.0 0.968 9.300e 0.9573 7.822e 70.27a 55.12a 42.540e 55.054e

*Different letters in the same column indicate significant differences among samples (P < 0.05).
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explained by intermolecular networks between RSG and water 
molecules (Farahmandfar  et  al.,  2019). A low concentration 
of RSG solution (0.2%) also had elastic behavior. The reasons 
could be the high molecular weight and high branching degree 
of RSG (Wang et al., 2019).

Non-linear regression analyses were applied to data which 
is obtained from the frequency sweep test to calculate K', K", n', 
n", and R2. R2 was found to be higher than 0.95, which means 
that the Power Law model was fitted and compatible with 
our finding results. At all concentration levels, K' (0.03-8.22) 

values were higher than the K" (0.11-2.15) values. These results 
indicated that the solid character index of the samples was 
higher than the liquid character index. It means that all of the 
samples show solid viscoelastic behavior at all concentrations 
of the RSG solutions. n' and n" values of the samples indicating 
the nature and elastic properties of the gels. Besides, n'=0 means 
that a covalent gel while n' > 0 for a physical gel. A higher n' 
value means that the RSG solutions act a viscous gel while n' 
and n " value near to zero means that G' and G" don’t change 
with frequency (Balaghi et al., 2011).

Figure 5. Dynamic rheological properties of RSG solutions.
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