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1 Introduction
Diabetes is a serious worldwide problems and is an incurable 

disease. Chronic hyperglycemia will damage to their body 
functions (Chanchamroen et al., 2009; Alba-Loureiro et al., 2007). 
Furthermore, long-term hyperglycemia will result in obesity, 
glucose and lipid metabolism disorders. And current studies have 
found that the incidence of type II diabetes increased rapidly in 
the last decades (Mengual et al., 2010; Cani, 2012). Besides the 
genetic factors, the rapidly changes of environmental factors are 
the major causes of it (Willett, 2002). In the past time, people’s 
daily life has been changed greatly, with particularly in the changes 
of people’s diet. As a kind of social phenomenon, fast food is 
becoming increasing popular. Fast food mainly include fries, 
pizza, chips and other. As we know, fast food usually contains 
high-fat contents, and excessive intake of fast food will cause 
serious health problems and make you put on weight. These 
diseases, however, many have as much to do with our way of 
life and our high-fat diets. Diabetic patients has hyperglycemia 
and hyperlipidemia. Unlike health people, high-fat diet is a more 
serious threat to diabetes patients.

Intestinal flora is very important to people, and is closely 
related to our metabolism and health. Intestinal flora disturbance 

will cause many diseases like cardiovascular disease (Khan et al., 
2014; Tang & Hazen, 2014), intestinal inflammatory (Weingarden 
& Vaughn, 2017), obesity (Blaut & Klaus, 2012), metabolic 
diseases (Clavel et al., 2014), cancer (Dapito et al., 2012) etc. 
And even, the dysbiosis of intestinal flora is closely related to 
diabetes (Qin  et  al., 2012). Hence, regulating intestinal fora 
balance may provide a potential way to improve diabetes, and 
it has been received widespread attention.

Studies have shown that diabetes had serious intestinal 
flora disturbance, with markedly decreased some butyrate-
producing bacteria levels, and increased various opportunistric 
pathogens (Qin et  al., 2012) levels. Besides, when compared 
to non-diabetes, diabetes showed significantly decreased 
phylum Firmicutes and class Clostridia levels, and increased 
class Bataproteobacteria (Larsen et al., 2010) level. In addition, 
when compared to health controls, diabetes showed significantly 
decreased levels of Actinobacteria, Firmicutes, and the Firmicutes 
to Bacteroidetes ratio, increased Bacteroidetes at phyla levels. In 
genera levels, diabetes showed significantly increased Clostridium, 
Bacteroides and Veillonella levels, and decreased Lactobacillus 
and Bifidobacterium (Murri et al., 2013) levels.

An exploratory to analysis the effects of the dirrerent roles of mathca on lipid 
metabolism and intestinal flora regulation between normal and diabetic mice fed a 

high-fat diet
Jun LIU1 , Qiang LI1, Rong TAN1*

a

Received 24 Mar., 2022 
Accepted 20 June, 2022
1 Zhejiang Key Laboratory of Transboundary Applied Technology for Tea Resources, Hangzhou Tea Research Institute, China Coop, Hangzhou, China
*Corresponding author: trfish211@126.com

Abstract
Fast food is becoming increasing popular as a social phenomenon, and it usually contains high fat contents. Matcha is one 
versatile tea, and its application in food brings lots of new consumers. Herein, a high-fat diet containing matcha was prepared, 
and in this study we investigated the effects of such a diet on lipid metabolism and intestinal flora of normal and diabetic mice. 
Results showed that diabetes had significant weight loss, hyperphagia, hyperlipidemia and intestinal flora disturbance, with 
particularly significantly increased Alistipes, Prevotella, Helicobacter, Acetatifactor and Bacteroides, and decreased Alloprevotella, 
Lactobacillus, Allobaculum and Akkermansia. In diabetes, matcha decreased serum triglyceride and LDL-C, increased HDL-C, 
reversed those bacteria trends besides Alistipes, Prevotella and Akkermansia. In normal mice, matcha decreased serum LDL-C, 
increased Parabacteroides, Bacteroidales_unclassified, Erysipelotrichaceae_unclassified and Barnesiella, Lachnospiraceae_unclassified, 
and decreased Helicobacter and Clostridium XlVa. Most importantly, matcha increased Porphyromonadaceae_unclassified, 
Lactobacillus, Alloprevotella, Prevotella and Allobaculum; and decreased Bacteroides and Enterobacteriaceae_unclassified in 
diabetes, however these changed bacteria in normal mice showed an opposite trend from diabetes. Intestinal flora balance is 
vital important to host, matcha helps to improve the balance of lipid metabolism and intestinal flora according to different 
character of host, and is a valuable addition to develop functional food.

Keywords: diabetes; matcha; 16S rDNA sequencing; intestinal flora.

Practical Application: Matha regulates the ecological balance of intestinal flora to support the normal people and diabetes 
patients against potential threat brought by the high-fat diet.

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2706-7948


Food Sci. Technol, Campinas, 42, e25022, 20222
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Tea is one kind of non-alcoholic beverage and has been widely 
consumed. It has many kinds of functional active ingredients like 
tea polyphenols, which is good for human health (Kwon et al., 
2008; He et al., 2007). Functional ingredients in tea has many 
function actions, including reducing resistance to insulin 
(Lin and Lin, 2008) inhibiting lipid absorption (Nakai et al., 
2005), and enhancing fat oxidation (Sae-tan et al., 2011) . Most 
importantly, studies have shown that tea could positively modify 
the intestinal flora (Thomas et al., 2010), and it play a role in 
protecting against diabetes (Ribaldo et al., 2009) by reversing and 
promoting the ecological balance of intestinal flora (Zhang et al., 
2020; Liu et al., 2022). Matcha is one kind of tea resources, and 
is loved by young consumers because of its application in food. 
As we know, matcha (green tea) ice cream, cake, cookie, etc. is 
becoming highly fashionable. Although matcha is becoming 
more and more important in our life, the differentiated actions 
of matcha on biological functions between health and diabetic 
people still remains unknown, with particularly in these people 
also eating a high-fat diet at the same time. Therefore, a kind of 
high-fat diet was developed, and in this study we investigated 
the effects of such a diet supplemented with matcha on serum 
lipid metabolism between normal and diabetic mice. On this 
basis, 16S rDNA sequencing technology was used to deeply 
elucidate the regulatory mechanism of matcha on intestinal 
flora, aimed at providing some basic information for functional 
food development.

2 Material and methods
2.1 Materials

Female Kunming mice (body weight 20 ± 3 g) were provided 
by Experimental Animal Holding of Jilin University (Changchun, 
China). Matcha were made in our laboratory, containing 14% 
tea polyphenol, 4.5% EGCG, 1.0% ECG and 2.3% caffeine.

2.2 Experimental design

A mouse model with diabetes mellitus was established 
by alloxan (45 mg/kg body weight), and then was randomly 
allotted into two treatments (n = 8 or 10), named group D-C and 
D-M. Normal mice was treated with stroke-physiological saline 
solution, and then was randomly allotted into two treatments 
(n = 10), named groups N-C and N-M. Groups D-C and N-C 
fed a high-fat diet, groups D-M and N-M fed a high-fat diet 
supplemented with 0.25% matcha, respectively. The high-fat diet 
were consisted with 22.1% fat, 40.94% carbohydrate, and 20.93% 
protein, and with total calorific value of 19.18 kJ/g.

All the mice were raised under the same conditions, and 
housed in a temperature-controlled room at 50% ± 5% relative 
humidity and 24 °C ± 1 °C on a 12-h light/dark cycle. This study 
was approved by the ethics committee of Zhejiang University 
(Hangzhou, China), amd all the experimental procedures were 
approved by Zhejiang University Institutional Animal Care and 
Use Committee.

Intestinal flora play a significant role in health and disease, 
and faeces reflect the ultimate result of interaction of entire 
intestinal flora and host. When simultaneously subjected to a 
4-week experimental diet, the fecal samples from N-C, N-M, 

D-C and D-M were collected, and the changes of intestinal flora 
were analyzed by 16S rDNA sequencing.

2.3 Fecal sample collection and DNA extraction

Four weeks later, the fecal samples were harvested, collected 
and dipped in liquid nitrogen immediately. And finally the 
samples were transported and stored at -80 °C in a deep freezer 
until used. DNA was extracted from fecal with the E.Z.N.A. 
®Stool DNA Kit (D4015-02, Omega, Inc., USA) according to 
the manufacture’s instructions. The total DNA was eluted in 
50 μL of Elution buffer and stored at -80 °C until measurement.

DNA extraction, 16S rDNA gene sequencing and data quality 
control and data analysis

DNA was extracted using an E.Z.N.A. Stool DNA Kit 
(D4015-02, Omega Inc., USA) according to the manufacturer’s 
instructions. The V4 region of the gene encoding the prokaryotic 
small (16S) rRNA subunit was amplified with slightly modified 
versions of primers 515f (5’-GTGYCAGCMGCCGCGGTAA-3’) 
and 806R (5’-GGACTACNVGGGTWTCTAAT-3’) (Huang et al., 
2013). The 5’ ends of the primers were tagged with specific 
barcodes and universal sequencing primers. PCR amplification 
was performed with 25 μL reaction-mixture aliquots containing 
50 ng of template DNA, 12.5 μL pusion host start flex 2X master 
mix (M0536L, Shanghai Yitao Biological Instrument co., LTD, 
China), 2.5 μL of forward primer, 2.5 μL of reverse primer, 
and PCR-grade water to adjust the volume. PCR amplification 
procedure were carried out with PCR Amplifier (A200, Hangzhou 
Langji Scientific Instrument Co. LTD, China), and the specific 
PCR conditions were as follows: an initial denaturation at 98 °C 
for 30 s, followed by 35 cycles of denaturation at 98 °C for 10 
s, annealing at 54 °C for 30 s, and extension at 72 °C for 45 s, 
and a final extension at 72 °C for 10 min. PCR products were 
confirmed by 2% agarose gel electrophoresis, purified using 
AMPure XT breads (Beckman Coulter Genomics, Danvers, MA, 
USA), and quantified by Qubit (Invitrogen, USA).

Amplicon pools were prepared for sequencing, and library 
size and quality were assessed using an Agilent 2100 Bioanalyzer 
(Agilent, USA) and a Library Quantification Kit for Illumina (Kapa 
Biosciences, Woburn, MA, USA), respectively. The PhiX control 
library v3 (Illumina) and the amplicon library were combined 
except for a 30% PhiX spike-in. The libraries were sequenced 
using 2500 MiSeq runs. Additionally, one library was sequenced 
by both this method and using standard Illumina sequencing 
primers, eliminating the need for a third (or fourth) index read.

Samples were sequenced on an Illumina MiSeq platform 
according to the manufacturer’s recommendations. Paired-end 
reads was assigned to samples based on their unique barcode 
and truncated by removing the barcode and primer sequence. 
Paired-end reads were merged using FLASH software (Magoc 
& Salzberg, 2011). Quality filtering of raw tags was performed 
under specific filtering conditions to obtain high-quality clean 
tags according to FastQC (V0.10.0) (Babraham Bioinformatics, 
Zerbino & Birney, 2008). Chimeric sequences were filtered using 
Vsearch software (v2.3.4) (Rognes et al., 2016). Sequences with ≥ 
97% similarity were assigned to the same operational taxonomic 
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units (OTUs) using Vsearch (v2.3.4). Representative sequences 
were chosen for each OTU, and taxonomic data were then assigned 
to each representative sequence using Ribosomal Database Project 
(RDP) classifier (Wang et al., 2007). Determination of differences 
between dominant species in different groups and multiple 
sequence alignment were conducted using PyNAST software 
(Caporaso et al., 2010) to study phylogenetic relationships of 
different OTUs. The levels of OTUs was normalised relative to 
the sample with the fewest sequences.

2.4 Statistical analysis

Figures were made by GraphPad Prism (version 6), and 
the differences between treatments were analyzed by using 
Nonparametric Kruskal-wallis’s test in SPSS (version 24.0). 
p-values < 0.05 were considered significant.

3 Results and discussion
3.1 Analysis of feed intake and body weight changes

As Figure 1 shows, the body weight levels in group D-C were 
the lowest, but they consumed the highest feed intake level. From 
the highest to lowest performance, the body weights in this study 
were ranked in the following order, N-M > N-C > D-M > D-C. 
The feed intakes were: D-C > D-M > N-C, N-M. Results shows 
that diabetic mice had significant weight loss and hyperphagia. 
Matcha supplementation had no significant influence on feed 
intake, but improved body weights in normal mice group. A 
more interesting thing is that matcha supplementation obviously 
decreased feed intake level, but improved body weights level in 
diabetic mice group. The results suggesting that matcha may play 
an important role in improving health status, with particularly 
in diabetic mice.

3.2 Analysis of serum lipid index changes

As shown in Figure 2, no significant difference (P > 0.05) 
were found in the levels of serum triglyceride, cholesterol and 
HDL-C between groups N-C and group N-M. The levels of 
LDL-C in group N-M were significantly (P < 0.05) decreased 
compared to group N-C.

When compared to group N-C, the levels of serum triglyceride, 
HDL-C, LDL-C and cholesterol in group D-C were all obviously 
increased, except for HDL-C all reached significant levels (P < 
0.05). Moreover, when compared with group D-C, the levels of 
serum HDL-C in group D-M were significantly increased (P 
< 0.05), but serum triglyceride and LDL-C were all obviously 
decreased, but not reached the significant level (P > 0.05).

Results shows that diabetic mice had significant hyperlipidemia. 
Matcha could regulate and promote the balance of blood lipid, 
with particularly in diabetic mice. LDL-C, is usually regarded 
as a “bad” cholesterol which delivering fat and cholesterol to the 
cells. HDL-C, is usually regarded as a good cholesterol which 
reversing cholesterol transport and mobilizing cholesterol from 
the periphery to the liver (Stokić & Marinkov, 2007). In this 
study, high-fat diet were used, and it contains 22.1% fat, 40.94% 
carbohydrate, and 20.93% protein. Matcha used in this study 
contains 14% tea polyphenols, 4.5% EGCG, 1.0% ECG and 2.3% 
caffeine. As we know, tea polyphenols is one major functional 
ingredient enriched in tea, and it has many active functions. Most 
importantly, EGCG is one key catechin of tea polyphenols and 
it has been reached many attentions. Through comprehensive 
analysis, these functional ingredients in tea may undertake an 
important role in prompting lipid metabolism balance, and it 
has been confirmed from many studies. For example, functional 
ingredients in tea has some different strategy to intervene and 
regulate lipid metabolism, such as increasing serum HDL-C 
contents (Bin  et  al., 2009), interfering lipids emulsification, 
digestion, and micellar solubilisation (Koo and Noh, 2007) 
inhibiting lipase activity (Nakai et al., 2005), reducing absorption 
of lipid via intestinal tract (Klaus et al., 2005) and promoting 
faecal lipid excretion (Hsu et al., 2006).

3.3 Bacterial taxonomic differences analysis

Analysis of flora changes at the bacterial phylum levels

As Figure 3a-3b shows, analysis of the flora in fecal samples 
confirmed changes involving 10 phyla, with Bacteroidetes, 
Firmicutes, Proteobacteria and Actinobacteria being highly 
abundant and prevalent. These four phyla account for 98.36% 
of the reads in group D-C, 98.87% in D-M, 98.66% in N-C and 
97.78% in N-M, respectively.

As Figure 3c illustrates, compared with group N-C, the levels 
of Proteobacteria, Candidatus Saccharibacteria, Cyanobacteria, 
Tenericutes, Bacteria_unclassified and Cyanobacteria in group 
D-C were all significantly increased (p < 0.05).

More importantly, the levels of Bacteroidetes and Actinobacteria 
in group D-M were significantly (p < 0.05) increased by 23.64% 
and 141.17% compared to group D-C, respectively; Firmicutes, 
Tenericutes and Proteobacteria were decreased by 20.99%, 

Figure 1. Effects of matcha on feed intake and body weights in normal 
and diabetic mice fed a high-fat diet. Note: Box parameters, the “- ” 
symbol represents median value, and the upper and lower ranges of the 
box represent the 75% and 25% quartiles, respectively. Mice in diabetic 
group D-C fed a high-fat diet, D-M fed a high-fat diet supplemented 
with matcha, respectively (n = 8 or 10). Mice in normal group N-C 
fed a high-fat diet, N-M fed a high-fat diet supplemented with matcha, 
respectively (n = 10).



Food Sci. Technol, Campinas, 42, e25022, 20224

Effects of mathca on intestinal flora in normal and diabetic mice

Figure 2. Effects of matcha on serum lipid index in normal and diabetic mice fed a high-fat diet. Note: Box parameters, the “- ” symbol represents 
median value, and the upper and lower ranges of the box represent the 75% and 25% quartiles, respectively. “*” represent significant difference 
were identified between groups. Mice in diabetic group D-C fed a high-fat diet, D-M fed a high-fat diet supplemented with matcha, respectively 
(n = 8 or 10). Mice in normal group N-C fed a high-fat diet, N-M fed a high-fat diet supplemented with matcha, respectively (n = 10).

Figure 3. Effects of matcha on intestinal flora at the phyla levels in normal and diabetic mice fed a high-fat diet. a. Comparison of the abundances 
of bacterial phyla of each sample; b. Comparison of the average abundance of each bacterial phyla in treatment groups, respectively; c. Differences 
among the abundances of discriminatory phyla among four treatments. Values were express as Median with interquartile, each symbol represents 
a sample, and three horizontal line, respectively represent 3/4, 1/2, 1/4 quantile from the top to bottom. p-values were calculated using the non-
parametric Kruskal-Wallis test. “*” “**”“***” represent significant difference were identified between groups and the differences levels reached as 
p < 0.05, p < 0.01 and p < 0.001, respectively. Mice in diabetic group D-C fed a high-fat diet, D-M fed a high-fat diet supplemented with matcha, 
respectively (n = 8 or 10). Mice in normal group N-C fed a high-fat diet, N-M fed a high-fat diet supplemented with matcha, respectively (n = 10). 
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38.10% and 58.43%, respectively, but these differences were not 
significant (p > 0.05).

Moreover, levels of Bacteroidetes in group N-M were increased 
by 16.82% compared to group N-C; Firmicutes, Proteobacteria 
and Actinobacteria were decreased by 39.70%, 1.94% and 79.76%, 
respectively, but all not significantly (p > 0.05).

Analysis of flora changes at the bacterial family levels

As Figure 4a-4b shows, twenty families demonstrated flora 
changes. The 10 most prominent were Porphyromonadaceae, 
Lachnospiraceae, Lactobacillaceae, Bacteroidaceae, Prevotellaceae, 
Bacteroidales_unclassified, Helicobacteraceae, Erysipelotrichaceae, 
Ruminococcaceae and Enterobacteriaceae (93.17%, 94.04%, 
94.73% and 94.37% of reads in groups D-C, D-M, N-C and 
N-M, respectively).

Figure 4c also shows that when compared to group N-C, 
the levels of Porphyromonadaceae, Bacteroidales_unclassified 
and Erysipelotrichaceae in group N-M were increased by 
1.49%, 78.82% and 7.24%; Lachnospiraceae, Helicobacteraceae 
and Ruminococcaceae were decreased by 40.25%, 39.34% and 
22.32%, respectively.

When compared with group N-C, the levels of Lachnospiraceae, 
Ruminococcaceae and Enterobacteriaceae were all significantly (p 
< 0.05) increased; Porphyromonadaceae and Prevotellaceae were 
all significantly (p < 0.05) decreased in D-C. Meanwhile, when 
compared to group D-C, the levels of Porphyromonadaceae, 
Bacteroidales_unclassified and Erysipelotrichaceae in group D-M 
were increased by 44.90%, 43.70% and 60.98%, respectively, but 
these differences were not significant (p > 0.05); Lachnospiraceae, 
Helicobacteraceae and Ruminococcaceae were decreased by 40.17% 
(p > 0.05), 55.68% (p > 0.05) and 70.22% (p < 0.05), respectively.

For this study, the most interesting is that the regulatory effects 
of matcha on intestinal flora between normal and diabetic mice 
is quite different in the family Lactobacillaceae, Prevotellaceae, 
Bacteroidaceae and Enterobacteriaceae. Results showed that after 
matcha treatment, the levels of Lactobacillaceae and Prevotellaceae 
were increased in diabetic mice group by 101.36% and 81.44%, 
but they were decreased by 26.92% and 5.23% in normal mice, 
respectively compared to their counterparts. Besides, the levels 
of Bacteroidaceae and Enterobacteriaceae were decreased in 
diabetic mice by 51.50% and 78.00%, but they were obviously 
increased in normal mice, respectively.

Figure 4. Effects of matcha on intestinal flora at the family levels in normal and diabetic mice fed a high-fat diet. a. Comparison of the abundances 
of bacterial family of each sample; b. Comparison of the average abundance of each bacterial family in treatment groups, respectively; c. Differences 
among the abundances of discriminatory family among four treatments. Values were express as Median with interquartile, each symbol represents 
a sample, and three horizontal line, respectively represent 3/4, 1/2, 1/4 quantile from the top to bottom. p-values were calculated using the non-
parametric Kruskal-Wallis test. “*” “**”“***” represent significant difference were identified between groups and the differences levels reached as 
p < 0.05, p < 0.01 and p < 0.001, respectively. Mice in diabetic group D-C fed a high-fat diet, D-M fed a high-fat diet supplemented with matcha, 
respectively (n = 8 or 10). Mice in normal group N-C fed a high-fat diet, N-M fed a high-fat diet supplemented with matcha, respectively (n = 10).
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Analysis of flora changes at the bacterial genus levels

As Figure 5a-5b shows, analysis of the flora in fecal samples 
confirmed changes involving 20 genera, with Porphyromonadaceae_
unclassified, Lachnospiraceae_unclassified, Lactobacillus, Bacteroides, 
Parabacteroides, Alloprevotella, Bacteroidales_unclassified, Helicobacter, 
Barnesiella, Clostridium XlVa, Erysipelotrichaceae_unclassified, 
Ruminococcaceae_unclassified, Enterobacteriaceae_unclassified, 

Prevotella and Allobaculum being highly abundant and prevalent. 
These 10 genera account for 89.05% of the reads in group D-C, 
90.89% in D-M, 92.88% in N-C and 92.84% in N-M, respectively.

Figure 5c shows that when compared with group N-C, the levels 
of Enterobacteriaceae_unclassified, Ruminococcaceae_unclassified 
and Clostridiales_unclassified in group D-C were significantly 
(p < 0.05) increased; Bacteroides, Bacteroidales_unclassified, 

Figure 5. Effects of matcha on intestinal flora at the genera levels in normal and diabetic mice fed a high-fat diet. a. Comparison of the abundances 
of bacterial genus of each sample; b. Comparison of the average abundance of each bacterial genera in treatment groups, respectively; c. Differences 
among the abundances of discriminatory genus among four treatments. Values were express as Median with interquartile, each symbol represents 
a sample, and three horizontal line, respectively represent 3/4, 1/2, 1/4 quantile from the top to bottom. p-values were calculated using the non-
parametric Kruskal-Wallis test. “*” “**”“***” represent significant difference were identified between groups and the differences levels reached as 
p < 0.05, p < 0.01 and p < 0.001, respectively. Mice in diabetic group D-C fed a high-fat diet, D-M fed a high-fat diet supplemented with matcha, 
respectively (n = 8 or 10). Mice in normal group N-C fed a high-fat diet, N-M fed a high-fat diet supplemented with matcha, respectively (n = 10).
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Helicobacter, Alistipes and Prevotella were all increased, but not 
significantly (p > 0.05); Alloprevotella and Allobaculum were 
significantly (p < 0.05) decreased; Lactobacillus was obviously 
decreased, but not significantly (p > 0.05).

When compared with group D-C, the levels of Parabacteroides, 
Bacteroidales_unclassified, Erysipelotrichaceae_unclassified and 
Barnesiella in group D-M were all increased; Lachnospiraceae_
unclassified, Helicobacter and Clostridium XlVa were all decreased, 
respectively, but not significantly (p > 0.05). Meanwhile, 
when compared to group N-C, the levels of Parabacteroides, 
Bacteroidales_unclassified, Erysipelotrichaceae_unclassified and 
Barnesiella in group N-M were all increased; Lachnospiraceae_
unclassified, Helicobacter and Clostridium XlVa were all obviously 
decreased, respectively, but again these differences were not 
significant (p > 0.05).

It is also interesting to note that the regulatory effects of 
matcha on flora changes between normal and diabetic mice is 
quite different in the genus Porphyromonadaceae_unclassified, 
Lactobacillus, Alloprevotella, Prevotella, Allobaculum, Bacteroides 
and Enterobacteriaceae_unclassified. After matcha treatment, 
levels of Porphyromonadaceae_unclassified, Lactobacillus, 
Alloprevotella, Prevotella and Allobaculum were increased in 
diabetic mice group, but they were decreased in normal mice 
group when compared to their counterparts. Besides, the 
levels of Bacteroides and Enterobacteriaceae_unclassified were 
decreased in diabetic mice group, but they were increased in 
normal mice group.

Intestinal flora is closely related to our health, and increasing 
a lot of total bacteria or certain bacterial groups of it represents the 
changes of intestinal flora resilience and gut health (Turnbaugh et al., 
2009). In this study, significant differences were observed in the 
changes of intestinal flora at genera, family and phyla levels of 
diabetes compared to health controls. The results showed that 
diabetes had significant changes of some specific bacteria, and 
those significant changes may related to diabetes mellitus. Most 
importantly, matcha supplementation obviously changed and 
reversed those changed specific bacteria in diabetes. Therefore, 
these results, as some supplementary evidences, suggesting that 
matcha may improve and promote the intestinal microecological 
balance. Through comprehensive analysis, results also showed 
the functional actions of matcha on intestinal flora regulation 
between normal and diabetic mice groups is quite different.

After 16S rDNA sequence analysis, results show here that 
many genus bacteria like Alloprevotella, Lactobacillus, Allobaculum, 
Alistipes, Prevotella, Ruminococcaceae_unclassified, Helicobacter 
and Clostridiales_unclassified changed greatly among treatment 
groups. Diabetes had significant intestinal flora disturbance, and 
showed increased levels of Alistipes, Prevotella, Ruminococcaceae_
unclassified, Helicobacter and Clostridiales_unclassified at the genera 
levels, which are associated with Rikenellaceae, Prevotellaceae, 
Ruminococcaceae, Helicobacteraceae and Clostridiales_unclassified 
at the family levels, Bacteroidetes, Bacteroidetes, Firmicutes and 
Proteobacteria at phyla levels. Meanwhile, diabetes also showed 
decreased levels of Alloprevotella, Lactobacillus, Allobaculum 
and Akkermansia at the genera levels, which are associated 
with Prevotellaceae, Lactobacillaceae, Erysipelotrichaceae and 

Verruncomicrobiaceae at the family levels, Bacteroidetes, Firmicutes, 
Firmicutes and Verrcomicrobia at the phyla levels.

Evidences have shown that the composition of intestinal 
flora between health and diabetes is quite different. Investigating 
the changes of intestinal flora is an important way to study 
the pathogenesis of metabolic diseases (Bäckhed et al., 2007). 
The differentiated intestinal flora mentioned above represent 
different group functions, and maybe represent the dysfunction 
of intestinal flora. Till now, many studies have found that 
those changed bacteria are closely related to our health. For 
example, the decreased levels of Akkermansia may increase 
the competitiveness of intestinal flora. Studies have shown that 
Akkermansia were identified as benign microbes (Shang et al., 
2017), and also Akkermansia does not compete with other 
flora in getting nutrient from intestine. Alloprevotella and 
Allobaculum are closely related to energy metabolizing bacteria. 
Alloprevotella can produce short-chain fatty acids (Shang et al., 
2017; Qu et al., 2017). Allobaculum is a kind of active glucose 
utilizers (Herrmann et al., 2017). Hence, the decreased levels 
of Allobaculum, Akkermansia and Alloprevotella in diabetes 
represent the growing competitiveness of intestinal flora, with 
particularly in getting nutrient from host intestine.

In this study, diabetes showed a decreased levels of Lactobacillus 
at the genera levels. The changes of Lactobacillus may result in 
exacerbation of diabetes. Studies have shown that Lactobacillus is 
closely related to body health. Lactobacillus (Lactobacillus casei) can 
regulate reduce plasma glucose level and modify the host immune 
responses in diabetes (Matsuzaki et al., 1997a). Lactobacillus 
(Lactobacillus casei) can regulate and reduce the incidence of 
diabetes (Matsuzaki et al., 1997b). Hence, Lactobacillus exhibits 
great potential against diabetes (Bejar et al., 2013). And studies 
have found that Lactobacillus acidophilus and Lactobacillus casei 
can decrease the accumulation of glycogen in liver, improve glucose 
intolerance, hyperglycemia, hyperinsulinemia, dyslipidemia, 
and oxidative stress (Yadav et al., 2007). Besides, Lactobacillus 
is one kind of energy metabolizing bacteria. Lactobacillus spp. 
administration can increase body weight (Khan et al., 2007). 
Therefore, the decreased levels of Lactobacillus in diabetes may 
be not a good thing to diabetes patients.

Previous studies showed that positive Helicobacter (Helicobacter 
pylori) colonization (Bener et al., 2007), frequency of Helicobacter 
(Helicobacter pylori) infection (Oldenburg et al., 1996) are higher 
than that of health controls, and this kind of findings also can 
been found in our results. Our results also showed that diabetes 
exhibited an increased levels of Helicobacter. Helicobacter infection 
will result in an increasing rate of incident diabetes (Jeon et al., 
2012). Most importantly, matcha supplementation changed 
and reversed the changes of some specific intestinal flora. In 
particular, matcha supplementation resulted in an increased levels 
of Alloprevotella, Lactobacillus, Parabacteroides and Allobaculum; 
a decreased Acetatifactor, Ruminococcaceae_unclassified, 
Clostridiales_unclassified, Helicobacter and Bacteroides when 
compared with diabetic controls. The levels of Alistipes were 
increased in diabetes compared to health controls. Interestingly 
enough, matcha supplementation further increase the levels of 
Alistipes in diabetes. Genera Alistipes contains three species, 
Alistipes finegoldii, Alistipes onderdonkii and Alistipes shahii. 
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