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1 Introduction
Hyperspectral imaging technology integrates advanced 

technologies in the fields of optics, optoelectronics, information 
processing and computer (Zou et al., 2022), integrates image 
processing and spectral analysis, realizes the simultaneous 
acquisition of object spatial information and spectral information 
(Chen et al., 2022), and can detect the appearance characteristics 
and internal components of the object to be tested at the same 
time (Duan et al., 2022; Sulaiman et al., 2022). The hyperspectral 
images obtained based on imaging spectrometers have nanometer 
spectral resolution, covering the spectral range from ultraviolet 
to long-wave infrared (200~14000 nm), and continuously image 
at hundreds of wavelengths (Bai et al., 2022; Sun et al., 2021).

Because hyperspectral remote sensing can provide a large 
amount of characteristic spectral information, it has been widely 
used in the fields of surface material identification (Li et al., 
2022b; Ye et al., 2021), water quality detection (Cao et al., 2022; 
Liu  et  al., 2021), and vegetation coverage detection (Egorov 
& Kozoderov, 2021; Miller et al., 2022; Pi et al., 2021), and a 
series of research findings have been obtained. In recent years, 
hyperspectral imaging technology has been gradually applied 
to qualitative and quantitative research on fruit quality. Fu & 
Wang (2022) used fluorescence hyperspectral imaging technology 
to detect the surface scratch of pears. A qualitative analysis 
model was established based on a support vector machine and 
random forest machine learning method to distinguish the 

scratch degree and scratch time of samples. The results showed 
that different degrees of scratches could be recognized after 
15 minutes of scratching, with an accuracy of 93.33%. Xu et al. 
(2022) used hyperspectral imaging technology to carry out non-
destructive detection of total soluble solids (TSS) in grapes. They 
proposed a new method (VMD-RC) including variational mode 
decomposition and regression coefficient to select characteristic 
wavelengths, and established prediction models of TSS based 
on least squares support vector machine (LSSVM) and partial 
least squares (PLS). The results show that VMD-RC algorithm 
can be used to process high-dimensional hyperspectral image 
data, and HSI has great potential in the nondestructive and 
rapid evaluation of fruit quality attributes. Yuan et al. (2021) 
obtained data based on hyperspectral imaging technology, and 
established a jujube damage discrimination model based on 
PLS-DA, linear discriminant analysis (LDA) and support vector 
machine (SVM), respectively. The results show that PLS-DA is 
the best discriminant model, which can effectively detect the 
damage of jujube with time.

Existing related papers mostly focus on spectral data or 
image preprocessing and model building, and less on how to 
extract ROI. The selection of ROI in the hyperspectral image 
is the selection of the source data, which will directly affect the 
accuracy and stability of the qualitative or quantitative analysis 
model. In this study, the total sugar contents of Fuji apples were 

Study on the influence of region of interest on the detection of total sugar content in 
apple using hyperspectral imaging technology

Xueting MA1,2 , Huaping LUO1,2,*, Fei ZHANG1,2, Feng GAO1,2

a

Received 29 July, 2022 
Accepted 02 Sept., 2022
1	Modern Agricultural Engineering Key Laboratory at Universities of Education, Department of Xinjiang Uygur Autonomous Region, Tarim University, Alar, China
2	College of Mechanical and Electrical Engineering, Tarim University, Alar, China
*Corresponding author: 120160004@taru.edu.cn

Abstract
This paper explores the influence of the selection method of the region of interest (ROI) on the results in the total sugar of apple 
detection based on hyperspectral imaging technology. Taking Fuji apple as the detection object, the hyperspectral images of the 
samples were collected based on the 900~1750 nm hyperspectral imaging system, and the total sugar content of the samples was 
obtained based on the anthrone colorimetric method. The square ROI and circular ROI of different sizes were extracted. The 
average spectrum of the region was used to establish a quantitative analysis model of apple’s total sugar content by partial least 
squares (PLS). The results show that apple’s total sugar detection model established by extracting a circular ROI with a diameter of 
25 pixels has the highest accuracy and strongest prediction ability(Rc = 0.8977, RMSEC = 0.6459, RP = 0.8836, RMSEP = 0.6627). 
The research shows that selecting ROI with a suitable shape and size for the research object is of great significance for improving 
the accuracy of the prediction model of apple’s total sugar content and giving play to the advantages of hyperspectral images.

Keywords: hyperspectral imaging technology; ROI; PLS; Fuji apple; total sugar content.

Practical Application: Most scholars focus on the study of signal preprocessing and the algorithms involved in modeling 
when building fruit quality prediction models based on hyperspectral imaging technology. The selection of regions of interest 
in hyperspectral images is directly related to the quality of data sources. In this paper, the influence on the prediction model of 
apple total sugar content is explored by selecting regions of interest with different sizes of square and circular, to provide some 
technical support for the research in this field.

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-7534-5519


Food Sci. Technol, Campinas, 42, e87922, 20222

Hyperspectral imaging technology in apple

selected as the target of nondestructive testing, and a quantitative 
analysis model was established based on hyperspectral imaging 
technology. The average spectra of the square and circular ROI 
with different sizes were extracted, and the PLS was used to 
establish a quantitative analysis model for the total sugar content 
of apples, and the influence of the shape and size of ROI on the 
model was analyzed, to provide theoretical and technical support 
for the extraction of ROI in apple’s total sugar content detection.

2 Materials and methods
2.1 Apple samples preparation

The experiment selected Fuji apples as the research object, 
and the samples were picked from the apple orchard of Hongqipo 
Farm in Aksu City, Xinjiang, China. A total of 60 apples with 
ideal shape, uniform size, and no defects or contamination were 
selected, and the fruit diameter was 75~80 mm. The samples 
were numbered and stored in a 4 °C freezer. Before the test, the 
apples were taken out of the freezer and placed in the laboratory 
for 12 hours, so that the overall temperature of the apple samples 
was consistent with the ambient temperature, and moisture on the 
surface of the apples was prevented from affecting the collection 
of hyperspectral images. The laboratory temperature during the 
test was about 25 °C, and the relative humidity was about 55%.

2.2 Hyperspectral imaging system

As shown in Figure 1, the hyperspectral image data of apple 
samples were obtained by a spectrometer-based hyperspectral 
image acquisition system. The system is mainly composed of 
a spectral camera (Image-N17E-N3, Sichuan Shuangli Hepu 
Technology Co., Ltd.) and a push-broom hyperspectral sorting 
system (Hyperspectral Sorting System push-broom hyperspectral 
sorting system of Beijing Zhuoli Hanguang Co., Ltd.). The spectral 
image acquisition system has an effective spectral range of 
900~1750 nm, with 256 bands and 5 nm spectral resolution. 
The height of the camera is set at 45 cm, with an effective pixel 
of 320 × 256 and an exposure time of 11.5 ms. In the test, the 
moving speed of the transmission belt was set to 2.0 m/min.

2.3 Hyperspectral image acquisition and calibration

In the process of hyperspectral image acquisition, the image 
will be mixed with some noise information, due to the difference 
in the intensity distribution of light source in each band and 
the influence of camera dark current noise (Li et al., 2022a). 
These noise information will affect the quality of hyperspectral 
images, and then affect the accuracy and stability of qualitative 
or quantitative analysis models based on hyperspectral images. 
Therefore, it is necessary to correct the hyperspectral image to 
eliminate the influence of noise. The black-and-white correction 
method is often adopted in the study, and Equation 1 is used for 
correction, where Rb is the all-black reference hyperspectral image 
acquired when the light source is turned off and the lens cover 
is not opened, and Rw is the all-white reference hyperspectral 
image acquired from the polytetrafluoroethylene standard 
white plate. HSIA-CT-150 × 150 standard whiteboard was used 
in this study for spectral correction. The corrected image can 

be obtained by calculation according to the following formula 
(Equation 1) (Wang et al., 2022).
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Where, R is the relative reflectance of the corrected hyperspectral 
image, %; R0 is the original apple hyperspectral image; Rb is the 
blackboard calibration image; Rw is the whiteboard calibration image.

2.4 Region of interest selection

Extracting characteristic spectra is an important part of sample 
quality detection and analysis based on hyperspectral imaging 
technology. The shape and size of ROI will affect the subsequent 
spectral preprocessing, feature selection, modeling analysis and 
prediction accuracy. In the study, the selection of ROI is centered 
on the upper spatial vertex when the apple is laid flat, and the 
average spectra of circular and square ROI with different sizes 
are extracted. Where the size of the square ROI is sequentially 
set to 5 × 5, 10 × 10, 15 × 15, 20 × 20 and 25 × 25 (unit: pixel, 
represented by D5, D10, D15, D20 and D25 respectively), and the 
diameter of the circular ROI is set to 5, 10, 15, 20 and 25 (unit: 
pixel, represented by D5, D10, D15, D20 and D25 respectively). 
The spectral data of different ROI were obtained, and the PLS 
was used to establish the quantitative analysis model of apple’s 
total sugar content, to analyze the influence of the shape and 
size of ROI on the model results.

Figure 1. Schematic diagram of the hyperspectral imaging acquisition 
system. (1) Spectral camera; (2) Light source; (3) Light line; (4) Sample; 
(5) X-Z stage; (6) X stage controller; (7) Power supply.
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2.5 Determination of total sugar in Fuji apples

The determination of total sugar usually includes titration 
(Chang et al., 2022), spectrophotometry (Paunović et al., 2020), 
and high-performance liquid chromatography (Armoogum 
& Boodhoo, 2020; Saafi et al., 2022). The total sugar content 
of apples in this study was determined by spectrophotometry 
based on anthrone colorimetry (Zhou et al., 2022).

Detection principle

Sugars can be dehydrated by concentrated sulfuric acid at 
a high temperature to form furfural or hydroxymethyl sugar 
aldehyde, and then dehydrated and condensed with anthrone 
(C14H10O) to form furfural derivatives, which are blue-green. 
The material has a maximum absorption at 620 nm. Within the 
range of 150 µg/mL, the color depth is directly proportional to the 
soluble sugar content, so it can be used for the detection of total 
sugar in combination with spectrophotometry (Mu et al., 2021).

Detection process

The total sugar content detection process of Fuji apple is 
as follows:

(1)	Drawing of glucose standard curve. Take 7 large test tubes 
and prepare a series of glucose solutions with different 
concentrations (1 mL) according to the data in Table 1, 
and put them into the ice water bath for cooling, and take 
out the seven test tubes from the ice water bath after 5 
minutes; add 4.0 mL of anthrone reagent to each test tube, 
then put seven test tubes into boiling water bath (cover 
the tube mouth with glass balls to prevent evaporation), 
take them out after 10 minutes and continue to cool them 
with running water for 10 minutes; take 2 mL solution 
from the seven test tubes and add it to the cuvette, and 
put the seven cuvettes into the photometer to obtain the 
absorbance value of the solution in each test tube. The 
standard curve is made with the standard glucose content 
as the abscissa and the absorbance value as the ordinate.

(2)	Extraction of the total sugar content of Fuji apple. After 
collecting the hyperspectral images of Fuji apples, prepare 
1 g apple flesh and 3 mL distilled water, and put them into 
a mortar and grind it into a homogenate, and then transfer 
it into a triangular flask with 25 mL boiling water; take out 

the triangular flask and filter it after 30 minutes boiling 
water bath, and transfer the filtrate into a 50 mL volumetric 
flask; add an appropriate amount of distilled water to the 
precipitate in the triangular flask and conduct boiling water 
bath again for 30 minutes, take it out and filter it, transfer 
the filtrate into the above 100 mL volumetric flask, and 
repeat the operation twice; continue to add distilled water 
to the volumetric flask and dilute it to 100 mL.

(3)	Determination of total sugar content in Fuji apple. Suck 1 
mL solution and inject it into the test tube, and put it into 
the ice water bath for 5 minutes; take out the test tube from 
the ice water bath after 5 minutes, and add 4 mL anthrone 
reagent (0.2 g anthrone dissolved in 100 mL concentrated 
sulfuric acid), and put it into the boiling water bath for 10 
minutes after shaking it evenly; cool it with tap water for 10 
minutes after taking it out of the boiling water bath, then 
take 2 mL sample solution from the test tube and inject 
it into the cuvette (set three parallel samples), and put it 
into the photometer to obtain the absorbance value of the 
solution in each cuvette with the wavelength of 620 nm.

The total sugar content of the sample is obtained from 
formula (Equation 2):
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Where S is the total sugar content (%); C is the amount of sugar 
(μg) looked up from the standard curve that corresponded to 
the measured absorbance; D is dilution multiple; VT is the total 
volume of the extract (VT = 100 mL), VS is the volume of the 
extract taken during measurement (VS = 1 mL); W is the mass 
of the apple sample (W = 1 g).

In this study, 60 Fuji apple samples were randomly divided 
into correction set and prediction set at a ratio of 2:1. Table 2 lists 
the variation range, average value and standard deviation of the 
measured values of apple’s total sugar content.

2.6 Data processing and analysis

All of the acquired spectral images were processed and 
analyzed by the ENVI 5.1 (Research System Inc., Boulder, CO., 
USA), Origin 2021(Originlab, USA) and Matlab 2021a (The 
MathWorks Inc., Natick, USA) image processing toolbox.

Table 1. Preparation data of glucose solution in seven test tubes.

Tube No. 1 2 3 4 5 6 7
Glucose standard solution/mL 0 0.1 0.2 0.3 0.4 0.6 0.8
Distilled water/mL 1 0.9 0.8 0.7 0.6 0.4 0.2
Glucose content/μg 0 10 20 30 40 60 80

Table 2. Statistical results of total sugar content detection in correction set and prediction set of apple samples.

Subset Sample Range/% Mean/% Standard deviation/%
Calibration set 40 7.14~11.72 9.25 1.1281
Prediction set 20 6.49~11.48 9.40 1.2075
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The average spectrum of ROI is processed by continuum 
removal. continuum removal is a spectral analysis method that can 
effectively enhance the absorption characteristics of interest. It can 
effectively highlight the absorption and reflection characteristics 
of the spectral curve, normalize the reflectance to 0~1.0, and 
normalize the absorption characteristics of the spectrum to the 
consistent spectral background. It is conducive to comparing the 
characteristic values with other spectral curves, to extract the 
characteristic bands for classification and recognition.

2.7 Prediction model establishment for apple total sugar 
content

The quantitative analysis model of apples’ total sugar content 
was established by the PLS method. PLS is an excellent multivariate 
statistical data analysis method, which can simultaneously realize 
regression modeling (multiple linear regression), data structure 
simplification (principal component analysis) and correlation 
analysis (canonical correlation analysis) between two groups 
of variables. By projecting the high-dimensional data space of 
the independent variable and the dependent variable into the 
corresponding low-dimensional space, the orthogonal eigenvectors 
of the independent variable and the dependent variable are 
obtained respectively, and then the univariate linear regression 
relationship between the eigenvectors of the independent variable 
and the dependent variable is established (Yang et al., 2022). It is 
suitable for the model building when the sample size is small. 
The model is comprehensively evaluated by the correlation 
coefficient Rc between the measured value and the predicted 
value of the correction set, the correlation coefficient Rp between 
the measured value and the predicted value of the prediction 
set, the root mean square error of calibration (RMSEC) and the 
root mean square error of prediction (RMSEP). In the process 
of establishing the PLS analysis model, the number of principal 
factors is determined by the minimum root mean square error. 
If the number of selected principal factors is too small, more 
useful information of the original spectrum will be lost and the 
fitting will be insufficient; if the number of selected principal 
factors is too large, too much noise will be absorbed, and the 
phenomenon of overfitting will appear, causing the prediction 
error of the established model significantly increasing.

3 Results
3.1 Analysis of spectral characteristics of ROI

The reflection spectra of different sizes square ROI and 
circular ROI in the effective band range of apple hyperspectral 
images are shown in Figure 2 and Figure 3 (corrected by black 
and white plate). It can be seen from the two figures that the 
five spectral curves are more discriminative after continuum 
removal; the overall trends of the reflectance spectra of the 
square ROI and the circular ROI are almost the same, and the 
overall trends of the reflectance spectra of different ROI are also 
basically the same.

The spectrum of ROI of the calibration set sample after black 
and white plate correction and continuum removal is shown 
in Figure 4. The noise at 900~950 nm and 1700~1750 nm is 
relatively large, and the signal-to-noise ratio is low; the obvious 

peaks are 1050 nm, 1280 nm, and 1680 nm, and the troughs are 
1160 nm and 1430 nm. Considering the signal-to-noise ratio 
and saturation at both ends, the spectral data in the range of 
1150~1650 nm was selected for the establishment of a quantitative 
analysis model for the sugar content of apples.

3.2 Prediction results based on the PLS model

The PLS method was used to establish models for the spectral 
data of ROI with different shapes and sizes (Pranoto  et  al., 
2022; Rambo et al., 2020), and the results are shown in Table 3. 
The correlation coefficient and RMSE of the calibration set and 
the prediction set were improved with the expansion of the 
selected area for the circular and square ROIs. The detection 
model established using a circular ROI with a radius of 25 pixels 
has the best results. The correlation coefficient and root mean 
square error of the calibration set are 0.8977 and 0.6459, and 

Figure 2. Comparison of average spectra of square ROI with different sizes.
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the correlation coefficient and root mean square error of the 
prediction set are 0.8836 and 0.6627.

Figure 5 is the scatter plot between the predicted values 
and the measured values of the calibration set samples and the 
predicted set. It can be seen that the predicted values have a 
good correlation with the measured values, and shows that the 
hyperspectral image technology is effective for non-destructive 
testing of apple’s total sugar content.

4 Discussion and conclusion
Apple is a spherical body, and the fruit shape is irregular, 

thus causing uneven light distribution on the surface, which will 
cause fluctuations in the average spectrum. Properly expanding 
the area of ROI and taking the average spectrum of the region 
has a certain homogenization effect on the spectral fluctuation 
phenomenon, and at the same time is conducive to eliminating Figure 3. Comparison of average spectra of circular ROI with different sizes.

Figure 4. The apple spectrum of the calibration set.

Table 3. Comparison of apple total sugar content prediction results based on ROI with different sizes and shapes.

Shape Size PLS factor
Calibration set Prediction set

RC RMSEC/% RP RMSEP/%

Square D5 5 0.8217 0.6701 0.7983 0.7108

D10 5 0.8706 0.6691 0.8201 0.7092

D15 5 0.8767 0.6504 0.8376 0.7009

D20 5 0.8614 0.6607 0.8401 0.6981

D25 5 0.8723 0.6518 0.8489 0.6796

Roundness D5 5 0.8731 0.6673 0.8506 0.6921

D10 5 0.8892 0.6509 0.8703 0.6743

D15 5 0.8879 0.6501 0.8517 0.6729

D20 5 0.8953 0.6476 0.8729 0.6641

D25 5 0.8977 0.6459 0.8836 0.6627
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the random noise of each pixel, reducing the randomness of 
spectrum selection, and improving the stability and accuracy 
of the prediction model. In addition, using the continuum 
removal method to process the spectral signals is conducive 
to increasing the discrimination between the spectral signals 
of the samples, which is conducive to the detection of the total 
sugar content of apples.

The average spectra of circular and square ROI with 
different sizes are extracted from hyperspectral images, then 
the PLS method is used to establish the quantitative analysis 
model of the total sugar content of apples after continuum 
removal, and the prediction set of independent samples is used 
to verify the model. The influence of the shape and size of ROI 
on the modeling accuracy of hyperspectral images is analyzed. 
We found that the prediction result of the circular ROI with a 
radius of 25 pixels was the best, with the correlation coefficient 
Rc of the correction set being 0.8977, RMSEC being 0.6459, and 
the correlation coefficient Rp of the prediction set being 0.8836, 
and RMSEP being 0.6627. The research shows that selecting 
ROI with appropriate shape and size is of great significance 
to improve the model accuracy and give play to the technical 
advantages of hyperspectral images.
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