
Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 153

LINEAR ONE-DIMENSIONAL CUTTING-PACKING PROBLEMS:
NUMERICAL EXPERIMENTS WITH THE SEQUENTIAL VALUE

CORRECTION METHOD (SVC) AND A MODIFIED
BRANCH-AND-BOUND METHOD (MBB)

E.A. Mukhacheva
G.N. Belov
V.M. Kartack
A.S. Mukhacheva
Ufa State Aviation Technical University
Ufa, Russia

Abstract

Two algorithms for the one-dimensional cutting problem, namely, a modified branch-and-bound
method (exact method) and a heuristic sequential value correction method are suggested. In order to
obtain a reliable assessment of the efficiency of the algorithms, hard instances of the problem were
considered and from the computational experiment it seems that the efficiency of the heuristic method
appears to be superior to that of the exact one, taking into account the computing time of the latter. A
detailed description of the two methods is given along with suggestions for their improvements.

Keywords: packing, cutting, pseudo-values, branch-and-bound method.

ISSN 0101-7438

154 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

1. Introduction

The classical one-dimensional cutting stock problem (CSP) has the following input data:
length (bin capacity) L of the material to be cut, length (weight) li and demand bi for each
required item type m,1=i . The goal is to determine a cutting plan (A,x)=((aij),(xj))

njmi ,1;,1 == with minimal material consumption (the number of used bins). The columns
of A are called cutting patterns, aij being the number of items of type i obtained from the j-th
pattern. xj indicates how many times the j-th pattern has to be cut. A possible mathematical
model for the CSP is













=∈=== ∑∑
=

+
=

n

j
jijij

n

j
j njZxmibxaxN

11
,1,;,1,min , (1)

where n gives the number of different cutting patterns, N is the number of material units
consumed, is the set of non-negative integer numbers. +Z

According to Dyckhoff’s typology of cutting and packing this problem is classified as
1/V/I/M, Dyckhoff (1990). The one-dimensional bin-packing problem (BPP) (L,m,l) with

 is a specific case of the CSP (L,m,l,b),when b(mllll ,...,, 21=) i = 1, m,1=i . Both problems
are very well known NP-hard problems and can be formulated as integer linear programming
problems.

Heuristic methods e.g. the “first fit decreasing” (FFD) and “greedy” algorithm (GA) often
result in optimal solution. The results of experiment by Schwerin P. and Wäscher G. (1998)
prove this statement.

The authors though have not singled out the hard-problem classes of BPP. The experiment
results are presented for only those classes with 100% positive solution.

In this paper we will:

• introduce a new heuristic algorithm, the Sequential Value Correction (SVC) and
demonstrate its performance for the BPP;

• describe a new exact procedure for the BPP – a modified branch-and-bound method;

• show how the algorithm can be applied for grouping the initial data in order to increase
the number m of different items and its integration into the SVC Mukhacheva &
Zalgaller (1993) and a modified exact the branch-and-bound procedure (MBB) Katzev
(1997) Kartack (1997) in order to decrease the computation time for solving a problem
instance to a proven optimum;

• carry out numerical experiments according to Schwerin & Wäscher (1997) and try to
single out svc-hard and mbb-hard problem classes.

Schwerin & Wäscher (1997) singled out ffd-hard and extremely ffd-hard BPP problem
classes for FFD-algorithm. They also examined a branch and bound optimization procedure,
MTP, from Martello & Toth (1990). Our experiment does not go beyond examining the
variants of ffd-hard and extremely ffd-hard problem instances.

Additionally, a pre-processing technique for item grouping (GROUP) is implemented for the
SVC (MBB), and the integration of the SVC with MBB allows us to apply these methods for
problem classes with larger dimensions.

Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 155

We do not compare, although the effectiveness of SVC and MBB against other well-known
algorithms. However, some preliminary conclusions concerning MTP and MBB have been
made. We believe that their algorithms could eventually be improved. A comparison of the
results generated by the heuristic SVC and MBB can be viewed as a practical importance of
SVC. Additionally, SVC and MBB are supposed to be used for creating hybrid algorithms of
one- and two-dimensional packing.

The paper consists of Introduction, three Sections and Conclusion. The first section describes
the SVC and MBB methods, their general ideas and the corresponding algorithms. The
second section considers the grouping technique and its integration into SVC and MBB for
solving problems with larger dimensions. The third section presents the test sample selection
and the results of the computing experiments. It embraces all problem classes described in
the paper by Schwerin & Wäscher (1997) and compares the above results with those of
MTPCS, Schwerin & Wäscher (1998), and those of BISON, Scholl et al (1997). An outlook
on further possible developments is presented in the Conclusion.

2. The SVC Packing

The sequential value correction method is carried out by a modified FFD with priority and
repetition procedures.

The first phase of SVC is the generation of an initial feasible solution (or plan) and this is
carried out by the FFD, where the corresponding value of the goal function Nf is taken as an

upper bound. The lower bound is the natural bound or N



∑=

=
LblN i

m

i
i /

1
0 0: =Nµ =  ,

where is the optimal value of the continuous relaxation of (1) obtained by the revised
simplex method, Scheithauer & Terno (1995).

*
CZ

*
CZ

The paper by Mukhacheva & Zalgaller (1993) was the first work to present formulae for
calculating initial and current pseudo-values on the basis of the material-per-item
consumption calculation rules (the idea of the simplex multipliers is used). Based on the
initial cutting plan by FFD, trim losses h

iy v
iy

j of every pattern Nj ,1= are distributed pro rata
into the lengths of the items in the cutting patterns, taking an average within a single item
type:

 mi
hL

a
b
Lly

N

j j

ij

i

i
i ,1,

1

0 =
−

= ∑
=

. (2)

In any iteration a new cutting plan is built pattern by pattern, each one under maximization of
the total pseudo-value sum of the items, and these pseudo-values are corrected thereafter.
The new value is a weighted average of the old one and the material consumption of the new
pattern:

))((1
1,

1

1
1, −

−

−
− −+

−
= jii

j
i

j
iji

i

j
i aby

hL
Lla

b
y , , (3) 0: 1, >∀ −jiai

here
i

jii

b
ab 1, −−

 and
i

ji

b
a 1, − are the corresponding weights after pattern is generated. 1−j

156 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

Notice that formula (3) is deterministic, moreover, when applied to some classes of ffd-hard
problems the SVC algorithm does not lead these classes out of difficult domains boundaries.
A further modification of the method is proposed, the random value correction method, that
allows us to vary weights:

))((
)(

1 1

1
1,

1,

j
ii

j
i

j
iji

ji
j

ii

j
i bby

hL
Lla

abb
y +×Ω×+

−++×Ω
= −

−
−

−

, (4)

where Ω – is a parameter that should be changed randomly within the limits from one up to
several units. This introduces a chance mechanism into the search process and prevents
cycling. The weight of the old pseudo-value decreases when the current order demand

also decreases. This is one of many possible formulae which has proved its effectiveness.
Each problem instance has several values of Ω that bring best solutions. Since we are unable
to find them, we propose the use of Ω, varying in the interval [1,3] with a linear trend in a
period of 30 pattern generations with a random distortion. The algorithm stops at reaching a
lower bound or in a given number of iterations. We come to this conclusion having carried
out a great number of calculations. This technique was used by Scheithauer, Terno and
Belov.

j
ib

Algorithm: Sequentional Value Correction Method

procedure GeneratePattern: The Branch&BoundMethod
procedure CorrectValues according to (4).

Step 0: ConstructSimpleSolution; CalculateInitialValues (2); N=0 (Iteration number);
Step 1: (Generate all patterns of a new cutting plan): N=N+1; K=0; If N mod 100 = 0

then v = 2 + 4 rnd (0,1);
Step 2: (Setting the random correction parameter): K=K+1 (Pattern Index);
Step 3: ;)1,0(5.0/)1530mod)((1 rndvNKabs ⋅+−++=Ω
 If 1<Ω then else if Ω then ; 3=Ω 3> 12.1=Ω
Step 4: GeneratePattern; CorrectValues;
Step 5: If not all items used then go to Step 2;
Step 6: If not stop iterations then go to Step 1;
Step 7: STOP.

A peculiarity of the method was detected: the main improvement of the solution happens
within the initial iterations which are carried out in fractions of the total running time.
However, a large number of iterations may be necessary for the goal function to improve its
value for the last unit.

The branch-and-bound method used for the pattern generation has an advantage over
dynamic programming in speed and memory capacity even for large problems. It is so
because the priority list of items according to their specific weights makes it possible to find
a good solution very quickly. The pseudo-values do have the convenient property of

significantly different quotients
i

i
l

y that makes item dominance considerations effective

as well.

Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 157

3. The MBB Packing

For the context of this article an optimization algorithm is understood as an exact one. The
searching scheme, suggested by Katzev (1979), is taken as the algorithm basis. The main
idea is to develop an admissible solution based on the first fit decreasing algorithm (FFD).
The number of bins involved is the upper bound. The lower bound is the solution of the
continuous relaxation rounded up. In order to find the optimal solution one should first solve
a corresponding LP. In most cases it brings one to the most exact lower bound and helps to
escape using more “simple” lower bounds L1, L2, L3, Marthello & Todd (1990). If the upper
bound coincides with the lower one, then an optimal solution is found, otherwise the upper
bound is reduced by 1. For this purpose, the searching procedure is fulfilled with the branch
and bound method, using efficient bounding, based on the comparison of summary trim
losses and possible reserves. If the bound cannot be lowered, then the solution obtained is
considered to be an optimal one.

The above scheme cuts off in advance the solutions that are not optimal, but it does not take
into account the properties of the generated cutting plans and it results in the excessive
amount of information. Among the properties inherent to cutting plans the following ones
should be pointed out:

Symmetry

Definition. A plan is considered to be symmetrical to another one if both of the plans consist
of the same cutting patterns and differ only in which the pieces are allocated.

A plan consisting of K patterns has a symmetrical set of K! plans and they can be considered
as equals since only the patterns are of interest and not the relative order in which they
appear in a given plan.

In order to construct only this plan it is necessary to use the procedure of pattern
rearrangement according to some priority. The highest priority is assumed to belong to that
of some two patterns having a larger number of larger items (lexicographic ordering).

Dominance

Let two problems be given: Р1 = (L, l1i, m1) and Р2 = (L, l2j, m2), 1,1 mi = , 2,1 mj = , where
L – bin capacity; m1, m2 – the number of items in problems P1, P2; l1i, l2j – item weights in
problems P1, P2.

In problems P the number of items of each type is equal to 1. That is why any problem where
every lk item has some number of bk>1 can be easily reorganized into problem P by using a lk
item bk times.

Definition. Problem P1 dominates P2, if every item from P1 can be compared to an item from
P2 in such a way that in every resultant pair l1i ≤ l2j, 1,1 m=i , 2,1 mj = is observed.

Let us assume that Z*(P) is an optimal solution for problem P. The following statement is
obvious:

Lemma 1. If problem P1 = (L, l1i, m1) dominates P2 = (L, l2j, m2), then Z*(P1) ≤ Z*(P2).

A packing plan is built up from bin to bin so that each step may be presented as a
solution of some sub-problem P(k), the latter consisting of so far unused items. Let us store

158 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

all sub-problems solved at each step. If the current sub-problem appears to be dominated by
at least a single previously formed one, then there is no need to examine it, since the result
obtained cannot exceed the previous one.

In practice it is impossible to store all sub-problems due to the exponential amount of
memory required. However, a partial realization of the above condition is possible. Thus, at
each step, before generating a packing procedure of the next in turn bin (KH), we shall
memorize only the last sub-problem from those under consideration. Prior to generating a
new (KH) bin, we just check if a new sub-problem is not dominated by the previous one. If
this is not the case, then we make a step back, otherwise this new sub-problem is stored in
the memory.

Algorithm of MBB

Step 1. Initialization.

• ∑
=

=
m

1
iibl

i
S

• Set lower bound N0=  – simplex solution.)(PZC

• Construct initial solution with FFD (resulting matrix A – cutting plan),
Аbest=AFFD. The number of patterns used is the upper bound Nu.

• Set reserve (i.e. trim loss when a stock is cut according to pattern j)

 ∆j = L – . ∑
=

m

i
ijial

1
j

• Set partial reserve R(j) = . ∑
=

∆
i

i
1

Step 2. If N0=Nu then go to Step 10. (The received solution is optimal).

Step 3. Set Ro=L*(Nu-1)-S – admissible reserves. (A new attempt to build a cutting
plan using less number of stocks, one at least, will be undertaken. Total
remainder can’t be more than R0, that is why all solutions with the total
remainder more than Ro may be cut off.)

 Set K where R(K-1) ≤ Ro < R(K) .(The dimension of subproblem that satisfies to
the above condition is determined. For the sake of saving the lexicographic
order of cutting patterns the last stocks are removed.)

Step 4. Generation of new patterns A(K) that satisfy to R(K) ≤ Ro, symmetry and
dominance. If it is successfully done then go to Step 7, else go to Step 5.
(Sorting out all admissible variants with properties of dominance and
symmetry we try to construct a new cutting plan with the total remainder no
more than R0, choosing stock by stock. If it is impossible then we make a step
back and go on sorting.)

Step 5. К=К-1 (Back step).

Step 6. If К=0 then go to Step 10, else go to Step 4. (The cutting plan is not
improved.)

Step 7. If all items are used then go to Step 9. (An improved cutting plan is
constructed.)

Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 159

Step 8. К=К+1 (Forward Step), go to Step 4.
Step 9. Аbest=А, Nu – a number of stocks in Аbest, go to Step 2. (A new upper bound is

constructed and the process is repeated with this bound.)
Step 10. Optimal solution Аbest .
Step 11. STOP.

4. Methods of Expansion of SVC and MBB Application Area

The SVC and MBB algorithms described in Sections 2 and 3 as it will be presented in the
computational experiments have a good performance for BPP up to 100 items. Some
methods to attack problems with larger number of items are suggested here. The first method
is the grouping algorithm (GROUP) that allows us to decrease the initial problem dimension
m and this can help problems with instances m>100. The second method is the SVC and
MBB integration (IMBB&V) performed consequently. The suggested techniques have a
positive effect in diminishing the experimental running time necessary to solve the problem.

4.1. Grouping

The SVC and MBB procedures have some drawbacks when a problem with m>100 has to be
solved. It is also a characteristic of problems with average-sized items: the item lengths are
allocated in a small interval and their specific values

i

i
l

y are quite close. Therefore, priority
lists become of no use, branching ineffective and the overall process stalls. Item length
bounds must be drawn apart.

To overcome the above situations a grouping technique is used. It reduces dimension m of
the initial BPP, substituting it by a CSP. The problem of linear integer cutting E is known to
have IRUP property if () () EZEZ C=*

Thus a problem P is reorganized into Pr that includes a fewer number of item types but in a
larger than bi=1 quantity. Problem Pr should satisfy the following conditions:

10. P dominates Pr.

20. . ()  () rcc PZPZ =

30. . ()  ()rrc PZPZ *=

Lemma 2. If a problem Pr satisfies the above conditions 10, 20, 30, then optimal integer
solutions of P and Pr coincide, i.e. Z*(Pr) = Z* (P).

It is obvious that Z*(Pr) and a cutting plan corresponding to it would represent a plan for
problem P and Z*(Pr) = Z* (P). It results from the condition that P dominates Pr.

The final solution is generated by substituting items from cutting plan of Pr by the
domination of matched pairs from P. There are several different ways to construct the Pr. An
example follows.

Let a problem be given. Then a corresponding problem
 may be obtained by dividing all items from P into groups in such a
(P

i
P
i

P blmLP ,,,=
)Pr

ib
)

(PrPr ,,, ir lmLP =

160 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

way that the maximal difference between the item lengths in a group does not exceed a
certain threshold Kr. Here is the number of groups; l is the maximal item length in the
i-th group; is the total sum of order demands in the i-th group;

Prm Pr
i

Pr
ib Pr,1 mi = .

i
P
i bl ,, r

i
P b,

Z

P

If problem Pr satisfies the above conditions 2 and 3, then the procedure stops. Otherwise Kr
is diminished and the procedure reiterates again.

Algorithm SVC with grouping is executed successively: GROUP; SVC. During the
GROUP procedure, dimension m of the problem P is reduced. After SVC is done, the initial
item lengths are reconstructed.

Grouping MBB, after items have been grouped, solves problem Pr in two steps. LP
algorithm (continuous relaxation with suitable rounding) is applied to Pr at first. The solution
vector x, generally not integral, is rounded down producing unpacked items that constitute
the residual problem rP . The latter is processed as a trim loss problem (branch and bound
method) in the second step. If the residual problem has the IRUP property (the gap between
the integer and continuous solution less than 1), then we have an optimum for the main
problem. Otherwise the exact algorithm should be applied to the latter that may have IRUP,
see Scheithauer & Terno (1995). For the BPP we have order demands of one unit making
suitable rounding ineffective (residual problem is often equal to the whole one) which makes
such a technique as grouping necessary to produce larger order demands.

4.2. Integration of SVC and MBB

A great number of numerical experiments has shown that the solutions obtained by SVC
performing are often optimal (the number of bins in a cutting plan equals to the lower
bound). To quickly solve a problem to the optimum, one should use SVC first and then, if it
failed, try MBB. The aggregate scheme of SVC and MBB performance is as follows.

Notation:

(PPmLP ,= is the initial problem; is the problem obtained as a
result of the grouping algorithm performance applied to P; is the optimal continuous
solution of P, obtained by the simplex algorithm performance;

(rr P
i

P
r lmLP ,,=

ZC)(P
P

(MBB

 is the residual problem to
P which has been obtained by intercepting of an integer part from the simplex solution and
by reducing the number of items in the initial problem; is the integer optimal
solution of P obtained by MBB performance; is the solution of P obtained by SVC.

)PZ
)(PZSVC

))

Algorithm: Integration of SVC and MBB

Step 1: is calculated by the simplex algorithm;)(PC

Step 2: The residual problem P is constructed for P;

Step 3: The grouping problem Pr is constructed for P;

Step 4: The residual problem rP is constructed for ;

Step 5: rP is solved by SVC;

Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 161

Step 6: If optimal solution is found, that is ZSVC(rP)=Zc(rP) (Pr has the IRUP
property), then the end;

Step 7: rP is solved by MBB;
Step 8: If optimal solution is found, that is ZМВВ(rP)=Zc(rP) (Pr has the IRUP

property), then the end;

Step 9: If optimal solution is found, that is ZSVC(P)=Zc(P) (P has the IRUP
property), then the end;

Step 10: P is solved by MBB;

Step 11: If optimal solution is found, that is ZМВВ(P)=Zc(P) (P has the IRUP
property), then the end;

Step 12: The initial problem P has not the IRUP property that is why it is necessary to
solve the whole problem by MBB;

Step 13: STOP.

The performance of both algorithm procedures according to the above scheme can show one
of the following results:

1. Both algorithms supplement each other (almost all problems can be solved with the help
of SVC and MBB). There are no difficult classes.

2. The algorithms have their own areas where it is difficult to find solutions; their
combinatorial efficiency level is made up of individual levels.

3. The algorithms have the same difficult areas in each class; their combination does not
improve results.

5. Experiment with SVC and MBB Packing

5.1. Selection of test problem quantity

It is impossible to consider all the class problems within an acceptable time, hence a subset
of problems uniformly distributed in the class should be chosen for an experiment.

The experiment is aimed at estimating a quota for problems of each class, solved to an
optimum in a reasonable time. The value built on the basis of particular problem solutions,
chosen randomly and uniformly from the class, is unbiased.

No more than 100 problems are usually solved to build up a value. Below we test this case
reliability. The quota for the class problems solved optimally on the whole, denoted as p, is
equal to optimal solution probability for a problem taken at random. Let us denote the quota
of problems optimally solved in the test process as ; being a realized value of the
corresponding random variable. Let us build up a 95% confidence interval for when
p=0.5, 0.9, 0.99.

p~ p~
p~

As far as sampling problems are generated independently, the solution optimality of each
problem is independent too. Hence, is distributed according to the binomial law, so the
following is true:

p~

162 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

Laplace integral theorem. In a single test the probability of event A is equal to p, p ∈ [0;1].
The probability α that event A will appear from k1 to k2 times in a series of n independent
tests is approximated by the definite integral

∫
−

−

−
=

npqnpk

npqnpk

t
dte

/)(

/)(

2
2

1

2

2
1
π

α , where q=1-p.

The following relation is a corollary

() αεε =








−
×Φ≈≤−

)1(
2~

pp
nppP ,

where ε is the half length of the confidence interval, ∫
−

=Φ
x t

dtex
0

2
2

2
1)(
π

 is the Laplace

function, n is the sampling scope and α the confidence probability. For α=0.95 we find:

96.1
)1(

≈
− pp
n

ε . If n=100, then ε ≈ 0.196 ()pp −1 ; substituting p-values, we obtain:

5.0=p : , 098.0≈ε

9.0=p : , 0588.0≈ε

99.0=p : ε , 0195.0≈

and this is practically enough to estimate the algorithm efficiency. For n=10 the length of the
confidence interval multiplies by 10 which is too large.

5.2. Test problems for the SVC and MBB

In order to carry out the experiments, the problem generator BPPGEN is used, in which
every quadruple (L,m,v1,v2) describes a special homogeneous class of problems BPP. m is
the problem dimension (the number of items), L is the bin capacity, v1L and v2L are the lower
and upper bounds of item weight.

We conduct the test with FFD packing, Schwerin & Wäscher (1997), (Table 1) as initial
results. According to them we define ffd-problem classes as:

ffd-easy problems, when 100 ≥ ≥ 80, p~

ffd-hard problems, when 80 > ≥ 20, p~

extremely ffd- hard problems, when 20 > ≥ 0, p~

here – an number of problems solved optimally out of 100 problems. p~

In the test with SVC and MBB only ffd-hard and extremely ffd-hard problem classes were
considered. In Tables 1-3 gray and dark gray filling marks them. The calculation test has
been done for the following parameters:

Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 163

bin capacity: L = 1.000;
problem dimension: m = 20,40,..., 180,200;
lower limit of item weights: v1 = 0.001; 0.05; 0.15; 0.25;
upper limit of item weights: v2 = 0.1; 0.2;...; 0.8; 0.9; 1.0.

Thus the experiment covers all problem classes of Schwerin & Wäscher (1998). At first FFD
and LP were used to solve the problem instances. The lower bound N0 was found with the
help of LP. When Nf, received by FFD, coincided with the lower bound N0, the ffd-packings
were excluded out of the experiment and were interchanged with new ones.

5.3. Results of the MBB and SVC methods

The test results with MTPCS by Schwerin & Wäscher (1998) for the problem classes,
picked out by them, are presented in Table 1. Table 2 and 3 show the test results of mbb- and
svc-algorithms performance on the same problem classes. Table 4 shows the test results of
the integrated algorithm (IMBB&V) performance. The test results are compatible, since they
have been carried out on the same type of computer (Pentium-200) and with the same
computation time limit of 1,000 seconds for the optimization (exact) algorithm (not taking
into account the time of linear programming algorithm performance). Time for solving a
problem with the SVC algorithm has not been limited but it does not exceed 100 seconds.
The maximum number of iterations was set to 10m. It was reached in particular classes, e.g.
where m=60; v1=0.15 and v2=0.6 and 0.7. The average number of iterations varies from
0.05m to 0.5m.

All classes of problems, where m>100, have been solved by MBB with the help of grouping
technique. SVC with grouping has been applied to problem classes with v1=0.15; 0.25 and
m ≥ 120. IMBB&V has been used to solve the mbb-hard problems in cases where they have
been svc-easy. For problem classes with v1=0.25 MBB and SCV have been used
autonomously.

The following conclusions may be drawn after analyzing the MBB results and those of
MTPCS:

• there are no extremely mbb- hard problems;

• there are some extremely mtpcs- hard problems, namely v1= 0.15; v2= 0.3; 0.5 with
the item quantity m=180, 200;

• all classes are mbb-easy when m<100;

• for all v1 there are 32 classes of mbb-hard problems with 0.5≤ v2≤ 0.8 when m≥ 100;

• there are 43 classes of mtpcs- hard problems for all v1 when m≥ 100;

• MBB is preferable to MTPCS when v1= 0.001, 0.05, 0.15 with v2≤ 0.6;

• MTPCS is preferable to MBB when v1= 0.25 with v2= 0.5, 0.6 and m≥ 120;

• when m ≤140 all classes are svc-easy;

• when m ≥160, v1= 0.15; 0.25 there are 4 classes of svc-hard problems;

• the heuristic SVC, the exact MBB or their integration should be chosen depending on
the aim and a problem class, taking into account the computing time.

164 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

Table 1 – Number of problem instances per class
for which MTPCS provides optimal solutions

(ffd-hard instances only)

а) v1 = 0.001
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4
0.5 93
0.6 87 79 75 83 41
0.7 78 70 74 71 51 53
0.8 50 58 49
0.9

b) v1 = 0.05
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1 100 99 99 99
0.2 100
0.3 99 96
0.4 93 88
0.5 97 71 77 81 73 44 31
0.6 99 91 86 82 75 80 70 75 61
0.7 97 84 67 70 54 31 59
0.8 85 68 65 52 55
0.9

c) v1 = 0.15
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2 100 100 100 100 100 100 100 100 100
0.3 100 100 97 94 87 82 63 27 15
0.4 100 99 100 98 97 96 95 90 90
0.5 100 100 98 91 90 74 57 33 9 1
0.6 100 100 98 93 83 79 78 72 74
0.7 100 100 98 96 90 75 82 69 68
0.8 98 96 98
0.9

d) v1 = 0.25
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4 100 100 100 100 100 100 100 99 99 97
0.5 100 100 100 100 100 100 99 98 89 59
0.6 100 100 100 100 100 100 99 100 100
0.7 100 100 74 100 100 100
0.8
0.9

Table 2 – Number of problem instances per class
for which MBB provides optimal solutions

(ffd-hard instances only)

а) v1 = 0.001
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4
0.5 96
0.6 88 85 87 80 71
0.7 70 68 65 57 40 32
0.8 45 43 47
0.9

b) v1 = 0.05
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1 100 100 98 100
0.2 100
0.3 100 100
0.4 100 100
0.5 100 100 100 99 100 100 100
0.6 100 99 89 84 83 81 79 76 76
0.7 95 70 67 60 41 33 22
0.8 70 65 60 67 60
0.9

c) v1 = 0.15
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2 98 97 100 100 100 100 100 100 100
0.3 100 100 100 100 98 98 98 94 90
0.4 100 100 100 100 100 96 99 96 96
0.5 100 100 99 100 90 94 86 82 90 86
0.6 100 100 100 98 83 76 78 84 60
0.7 100 99 97 95 80 80 72 70 60
0.8 94 83 81
0.9

d) v1 = 0.25
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4 100 100 100 100 100 98 100 98 100 100
0.5 100 100 100 100 98 86 82 82 62 70
0.6 100 100 100 100 98 84 94 90 80
0.7 100 100 100 98 100 100
0.8
0.9

Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 165

Table 3 – Number of problem instances per class
for which SVC provides optimal solutions

(ffd-hard instances only)

а) v1 = 0.001
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4
0.5 100
0.6 100 100 100 100 100
0.7 100 100 100 100 99 82
0.8 98 95 98
0.9

b) v1 = 0.05
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1 100 100 100 100
0.2 100
0.3 100 100
0.4 100 100
0.5 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 98 98
0.7 100 100 98 93 98 95 90
0.8 92 92 97 88 92
0.9

c) v1 = 0.15
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2 100 99 100 99 100 99 96 98 96
0.3 100 100 100 100 100 100 100 100 100
0.4 100 100 100 100 100 100 100 100 100
0.5 100 99 98 99 100 100 100 100 98 94
0.6 100 99 99 98 91 95 94 88 85
0.7 100 99 99 93 94 94 84 80 77
0.8 91 90 90
0.9

d) v1 = 0.25
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4 100 100 100 100 100 100 98 94 99 96
0.5 100 99 94 84 81 91 80 76 68 70
0.6 99 99 99 95 100 92 91 83 81
0.7 100 92 90 81 84 80
0.8
0.9

Table 4 – Number of problem instances per class
for which IMBB&V provides optimal solutions

(ffd-hard instances only)

а) v1 = 0.001
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4
0.5 100
0.6 100 100 100 100 100
0.7 100 100 100 100 99 82
0.8 98 95 98
0.9

b) v1 = 0.05
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1 100 100 100 100
0.2 100
0.3 100 100
0.4 100 100
0.5 100 100 100 100 100 100 100
0.6 100 100 100 100 100 100 100 98 98
0.7 100 100 98 93 98 95 90
0.8 92 92 97 88 92
0.9

c) v1 = 0.15
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2 100 99 100 99 100 99 96 98 96
0.3 100 100 100 100 100 100 100 100 100
0.4 100 100 100 100 100 100 100 100 100
0.5 100 99 98 99 100 100 100 100 98 94
0.6 100 99 99 98 91 95 94 88 85
0.7 100 99 99 93 94 94 84 80 77
0.8 91 90 90
0.9

d) v1 = 0.25
v2

m

 20 40 60 80 100 120 140 160 180 200
0.1
0.2
0.3
0.4 100 100 100 100 100 98 100 98 100 100
0.5 100 100 100 100 98 86 82 82 70 70
0.6 100 100 100 100 100 93 94 90 83
0.7 100 100 100 98 100 100
0.8
0.9

166 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

5.4. Comparison with BISON packing

The hybrid algorithm BISON by Scholl et al (1997) appeared to be highly efficient for
solving BPP with different sets. One of the sets, data set 2, coincides with that considered in
our paper. However, BISON has been tested by the authors according to a scheme different
from the classification by Schwerin & Wäscher (1997, 1998). Scholl et al considers the
classes with the stock length L=1000 and with the items of average length lj=L/3, L/5, L/7,
L/9 in the range with deviations δ =20%, 50%, 90% and with different item quantities m=50,
100, 200, 500. Thus, they select 12 different classes for each m, while Schwerin & Wäscher
select 40 classes for the same purpose. We did not go beyond comparing the results for
m=50, 100, 200. Thus 36 classes (Scholl et al) are selected out of 400 classes (Schwerin &
Wäscher). Taking into account the fact that the test procedure did not involve ffd-easy
problems, our experiment covered 145 classes. Besides, more than half of the classes by
Scholl et al may also be classified as ffd-easy problems and should be eliminated from the
experiment. Note that a quantity of problems solved by Scholl et al is equal to 10 per class.
We think that it is not quite enough as a sample size (see 4.1). Nevertheless we show some
results in Table 5, built according to the type of Table A3, Scholl et al (1997). The quality
index is the number of problems solved to optimum out of 10 (#opt) with the help of
algorithms BISON, MBB and SVC.

Table 5 – Detailed results of BISON, MBBG and SVC for data set 2.

m li BISON MBB SVC

 δ=20% δ=50% δ=90% δ=20% δ=50% δ=90% δ=20% δ=50% δ=90%

50 L/3 10 10 9 10 10 10 10 10 10

 L/5 10 10 10 10 10 10 10 10 10

 L/7 10 10 10 10 10 10 10 10 10

 L/9 10 10 10 10 10 10 10 10 10

100 L/3 10 8 10 10 9 9 10 10 10

 L/5 10 10 10 10 10 10 10 10 10

 L/7 10 10 10 10 10 10 10 10 10

 L/9 10 10 10 10 10 10 10 10 10

200 L/3 10 10 9 10 9 8 10 9 10

 L/5 10 10 10 10 10 10 10 10 10

 L/7 10 10 10 10 10 10 10 10 10

 L/9 10 10 10 10 10 10 10 10 10

6. Conclusions and Outlook

In this paper, we have presented two algorithms for the Cutting Stock Problem and the Bin-
Packing Problem (CSP and BPP), namely: a sequential value correction method (SVC) and
a modification of the branch-and-bound method (MBB). Both heuristic and exact algorithms
were tested for BPP. They appeared to be highly efficient for solving problems with
m ≤ 100. As for large calculations of m we suggested a grouping procedure reducing the

Vol. 20, No. 2, p. 153-168, dezembro de 2000 Pesquisa Operacional – 167

problem dimension and an integrated algorithm IMBB&V. Grouping algorithms had been
applied for problems with m > 100. Then we compared the efficiency of IMBB&V
algorithm performing with that of MTPCS. The results appeared to be quite compatible with
those received by BISON.

Encouraged by the results of our experiments we take the liberty of suggesting that further
research should be as follows.

The GROUP algorithm is to be developed and corrected. It does not work well as yet for
problem classes with v1=0.001 and v1=0.05. It is necessary to specify and analyze different
grouping techniques for hard problems and to elaborate a suitable strategy for GROUP
procedure combined with MBB and SVC.

To increase the SVC efficiency we are planning to introduce a procedure of “dominance”
testing. It is proposed to wipe out all unpromising items when a new pattern is generated.

The hybrid algorithm, operating in MBB with a smaller upper bound obtained by the SVC
fast variant, seems to be very promising.

The hybrid algorithm is now being worked out for solving the two-dimensional problem. The
one-dimensional SVC with additional restrictions is used for this case to find a lower bound
and an initial upper solution. It is important because exact algorithms are usually used only
for m≤ 20.

The hybridization of SVC with exact algorithms for solving two-dimensional packing
problems deserves a special investigation.

Acknowledgements

Thanks to the referees for detailed comments and suggestions that improved the presentation.
Special thanks to Dr. Horacio Hideki Yanasse for his patience and goodwill.

This work was supported by the Russian Foundation for Basic Research, grand 99-01-00937.

References

(1) Belov, G. (1997). A modified sequential values correction method for the one-
dimensional cutting stock problem. Decision Making under Conditions of Uncertainty
(Cutting-Packing Problems). The International Scientific Collection, Ufa, Russia,
41-47.

(2) Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal of
Operational Research, 44, 145-159.

(3) Kartack, V.M. (1997). Combinatorial algorithms for solving linear cutting. Decision
Making under Conditions of Uncertainty (Cutting-Packing Problems). The International
Scientific Collection, Ufa, Russia, 33-40.

(4) Katzev, S.V. (1979). Solution of mini-maximum problems of set with determined
equivalent relations. Cybernetics, 3, Kiev, 113-118.

(5) Martello, S. & Toth, P. (1990). Knapsack problems: Algorithms and Computer
Implementations. John Wiley and Sons, Chichester, 1990.

168 Mukhacheva, Belov, Kartack & Mukhacheva – Linear one-dimensional cutting-packing problems

(6) Mukhacheva, E.A. & Zalgaller, V.A. (1993). Linear programming cutting problems.
International Journal of Software Engineering and Knowledge Engineering, 3, 463-476

(7) Scheithauer, G. & Terno, J. (1995). The modified integer round-up property of the one-
dimensional cutting stock problem. European Journal of Operational Research, 84,
563-571.

(8) Scheithauer, G.; Terno, J.; Muller, A. & Belov, G. (1999). Solving one-dimensional
cutting stock problems exactly with a cutting plane algorithm. Technische Universitet
Drezden Math-Nm-06-1999, 24p.

(9) Scholl, A.; Klein, R. & Juergens, C. (1997). BISON: A fast hybrid procedure for
exactly solving the one-dimensional Bin-Packing Problem. Computers and Operational
Research, 24(7), 627-645.

(10) Schwerin, P. & Wascher, G. (1997). The bin-packing problem: A problem generator
and some numerical experiments with FFD packing and МТР. International
Transactions in Operational Research, 4, No 5/6, 337-389.

(11) Schwerin, P. & Wäscher, G. (1998). A new lower bound for the Bin-Packing Problem
and its integration into MTP. Betriebswirtschaftliche Diskussionsbeiträge, Beitrag
Nr. 98/26. Martin-Luther Universität Halle-Wittenberg. 23p.

	LINEAR ONE-DIMENSIONAL CUTTING-PACKING PROBLEMS:�NUMERICAL EXPERIMENTS WITH THE SEQUENTIAL VALUE CORRECTION METHOD (SVC) AND A MODIFIED�BRANCH-AND-BOUND METHOD (MBB)
	
	Algorithm: Sequentional Value Correction Method
	Symmetry
	Dominance

	Algorithm of MBB
	Algorithm: Integration of SVC and MBB

	Acknowledgements
	References

