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Abstract 
 
One of the main characteristics of a subway line is its large transport capacity (e.g., about 60000 
travelers per hour in the Parisian subway) combined with a regular transport supply. The regularity is 
particularly important at rush time – peak hours – when an incident can provoke important delays. 
Experience shows that the consequences of an incident are highly dependent on the context in which 
the incident occurs (e.g., peak hours or not). The decisions taken by the operators are heavily relied on 
the incident context, and operators often make different decisions for the same incident in different 
contexts. The project SART (French acronym for Support system for traffic control) aims at developing 
an intelligent decision support system able of helping the operator in making decisions to solve an 
incident occurring on a line. This system relies on the notion of context. Context includes information 
and knowledge on the situation that do not intervene directly in the incident solving, but constrain the 
way in which the operator will choose a strategy at each step of the incident solving. The paper 
describes the SART project and highlights how Artificial Intelligence (AI) techniques can contribute to 
knowledge acquisition and knowledge representation associated with its context of use. Particularly we 
discuss the notion of context and show how we use this notion to solve a real-world problem. 
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1. Introduction 

One of the main characteristics of a subway line is its large transport capacity (about 60 000 
travelers per hour in the Parisian subway) combined with a regular transport supply. The 
regularity is particularly important at rush time – peak hours – when an incident can provoke 
important delays. Thus, the transport supply must always remain compatible with the users 
demand by keeping the time interval between trains close to the scheduled one given in a 
timetable. 

The regularity of the service is obtained by a complex association of automatic 
communication systems that allow on-line operations and permit operators to be aware of 
which events are occurring at a given moment. The control of the train timing aims to check 
if each train follows the theoretical timetable. 

A model of a subway line contains three types of information: a model of the line sections, 
theoretical and practical timetables and regulation algorithms. A model of the line sections 
contains static and dynamic information about the track and equipment of the line. The static 
information (e.g. a station, the architecture of the lines) does not change rapidly over the 
time. The dynamic information concern data like trains (how many trains are in operation at 
a given time), travelers, train drivers and so on. 

The timetables give the interval between trains and account for the hour of the day (peak or 
off-peak period), the day of the week (working day or week-end), the season, holidays, etc. 
Most of the work done by the operators is to ensure that trains follow the timetable which has 
been established on the prior experience basis – the Parisian subway is in operation for one 
hundred years. The timetable therefore appears to be a compiled expression of a number of 
contextual information concerning train regulation (number of trains, moment of the day, 
driver availability, etc.) The regulation algorithms are in charge of helping the operator to 
restore the regularity of the service when some incident occurs. Indeed, operators spend a 
great deal of their working time in managing incidents. 

An incident may concern any of the three types of information, particularly the static 
elements of the line (e.g., a station), trains (e.g., a door blocked), travelers (e.g., a suicide), 
train drivers (e.g., starting too late from the terminal of the line), others (e.g., a dog in a 
tunnel). When an incident appears, the operator must make predictive or corrective actions to 
avoid, if possible, a more critical situation that may disrupt the normal supply of transport on 
the line (especially at peak hours), and rapidly return to a normal situation after the incident 
(at least partially). 

Experience shows that the consequences of an incident are highly dependent on the context 
in which the incident occurs (e.g., peak hours or not). The decisions taken by the operator 
heavily rely on the incident context; and operators make different decisions for the same 
incident in different contexts. For example, the operator will consider that a rush of persons 
will be soon in the subway because a football match will be ending within few minutes, even 
if it is in the evening at an off-peak time. Thus, for identifying an incident, one needs to 
know its context, its origin and the consequences on the traffic. 

The high dependency on context is particularly important with heavy traffic. In this case, the 
number of incidents grows and rapidly becomes difficult to the operator to manage all the 
incidents. So, when the number of trains in circulation (and thus the number of users) is at its 
highest level, each incident can lead rapidly to a situation very far from the normal 
operational conditions. For example, on the French regional express subway (RER in French), 
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it has been shown that a delay of 10 seconds at a station is propagated all along the RER line 
and may imply in a delay of 30 min several stations beyond the initial station; in less than 
one hour. However, an incident occurring during off-peak hours may also lead to a peak-
hour situation if (1) the incident solving process during off-peak hours cannot be solved 
before the following peak hour time, and (2) an external event suddenly transforms the off-
peak hour situation in a peak hour situation. An example of the latter situation is an incident 
occurring at off-peak hour when the rain abruptly falls outside; a number of persons change 
their mind and take the subway to continue their travel. 

Thus, elements intervening in an incident situation are: the state of the line, the incident 
identification and the former strategy applied, the action carried out by the operator, and the 
context in which the incident occurred. 

The project SART (French acronym for Support system for traffic control) aims to 
developing an intelligent decision support system to help the operator who controls a line in 
taking decisions to solve an incident. In order to be a real intelligent assistant system, SART 
has to accomplish several functions (Brezillon & Cases, 1995) such as acquiring knowledge 
from operators; simulating the traffic on the line starting from the station where occurred an 
incident; changing the model of the line under operator’s request in testing alternative issues; 
proposing alternatives for an incident solving; training a new operator not familiar with a 
given line; etc. 

We are developing this project by using a multi-agent approach. In such an approach, each 
agent proceeds a function of SART. To date, our group has developed three agents in the last 
two years, namely a configuration agent, a simulation agent and an incident-management 
agent. We develop SART according to an off-line approach. This means that the operator 
provides the data, but an on-line use of the simulator can be considered later, with a data 
acquisition system by the simulator directly from the subway line. Specifications are now 
completed and we are in the programming phase. 

The multi-agent approach was chosen to permit SART to have an evolutionary architecture 
in which other agents – such as a communication agent, a training agent and an incident-
analyzer agent – will be added later to increase SART functionality. However, we limit our 
objective now to the line control and regulation, but the structure of SART should be reused 
easily for other tasks, say, for line maintenance. Thus, we progressively develop a complex 
system that will accomplish different tasks. Moreover, the architecture can also be reused for 
other subways in the world because all the subways rely on approximately the same 
philosophy and architecture. 

The SART project must be considered at different levels. First, it is the object of two 
conventions, one between the University Paris 6 and RATP (the French company who has in 
charge the subway in Paris, France), and the second between the Federal University and the 
Metro company in Rio de Janeiro (Brazil). At an upper level, an international convention 
concerns the University Paris 6 and the Federal University of Rio de Janeiro with the support 
of two governmental agencies: CAPES (Brazil) and COFECUB (France). About thirty 
persons have been working on the SART project in these two countries. 

This paper describes the SART project. In this first section we present our objectives, the 
domain chosen for this application – namely the line control in subways –, the problem to 
solve and the context in which is embedded the SART project. The second section discusses 
the importance of distinguishing clearly different types of knowledge to introduce the need 
of making context explicit in the knowledge representation and in case-based reasoning. 
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Section three focuses on the context modeling in our application and gives an example of 
context-based representation of the domain knowledge. In Section four, we present the 
general characteristics of an Intelligent Assistant System (IAS), the architecture of SART and 
the multi-agent approach that we have chosen. We describe also the specificities of a SART 
agent, and each agent that we are developing, namely the line configurator, a traffic simulator 
and the incident manager. The paper ends by providing the perspectives on the project. 

 

2. Knowledge Types and Case-based Reasoning 

2.1 Different types of knowledge 

Many authors have attempted to distinguish different types of knowledge. Worden et al. 
(1987) distinguish declarative domain knowledge (stored as rules and facts), dynamic 
knowledge (stored in datasets), procedural knowledge (stored in tasks and subtasks), task 
division knowledge (stored as rules), system self-knowledge about the structure and quality 
of its own knowledge (dependency rules, timestamps, sources of updates and measures of 
reliability), and “how to be an assistant” knowledge. Stothert & McLeod (1997) bring 
another distinction with a priori and operational knowledge. A priori knowledge defines what 
is known about the plant. It is used to build a framework that facilitates a solution for the 
control problem being addressed. Operational knowledge is the knowledge available during 
plant operation to determine future control actions. Reatgui et al. (1997) consider specific 
and general knowledge in a reasoning. Specific knowledge is represented in the form of 
cases while general knowledge is represented in the form of category descriptors. 

When talking of control of the line, we mean regulation, and control of the operation from 
train driving to security of the travelers at an integrated level. This is different from process 
control in which low level processors can be used. In our system, information pieces are so 
numerous and heterogeneous that only composite and integrative methods can be used and 
moreover automation is not at hand. 

These different views on knowledge show that one cannot speak about knowledge separately 
from its use. We will distinguish static knowledge from dynamic knowledge. Dynamic 
knowledge depends on the environment in which the problem occurs because this environment 
evolves dynamically. As a consequence of the changing environment in real-world 
applications, a given problem may be similar to one already treated, but never identical. This 
point meets Suchman’s point arguing that human actions are situated and are not controlled 
by prior plans in the same way that a program controls a computer (Suchman, 1987). 

 
2.2 Knowledge evolution 

Part of the domain knowledge is obtained through captors providing data which are further 
processed by reasoning. Aamodt & Nygard (1995) underline a distinction between data, 
information and knowledge and envision the consequences on the development of integrated 
systems. For the authors, data acquisition depends on prior knowledge. An specific problem 
solving episode or case, mobilizes data, information, and/or knowledge, accordingly to the 
place and moment in the decision-making process. 

The knowledge is framed by technology changes but also by specific problems. For instance, 
Degani & Wiener (1997) distinguish procedures, practices and techniques. Procedures are 
specified beforehand by developers to save time during critical situations. Practices 
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encompass what the users do with procedures. Ideally, procedures and practices should be 
the same, but the users either conform to the procedure or deviate from it, even if the 
procedure is mandatory. Techniques are defined as personal methods for carrying out 
specific tasks without violating procedural constraints. Techniques are developed by users 
over years of experience (Brezillon, 1996). Knowledge acquisition focuses on procedures and, 
eventually, practices, but rarely on techniques. Moreover, in most real-world applications, a 
decision maker faces ill-defined situations where the form of the argumentation rather than 
the explicit decision proposal is crucial (Forslund, 1995b). This implies that it would be 
better to record advantages and disadvantages with the final decision. 

 
2.3 Difficulties in using knowledge 

Identifying problems (diagnosis) is the first step of any troubleshooting. However, except in 
simple cases, it is not possible to establish a predefined table of solutions adapted to each 
case. This raises the difficulty to plan everything beforehand and the need to make context 
explicit in any application. Xiao et al. (1997) study anesthesiologists’ work for which each 
patient can represent a drastically different “plant” and thus there are relatively few well-
defined procedures stipulated either from inside by professional communities or from outside 
by regulatory agencies. It is claimed that the planning process is necessarily fragmentary and 
nonexhaustive. The same conclusion is observed in other domains too (e.g., see Hoc, 1996; 
Debenham, 1997; Bainbridge, 1997). The main reason is the impossibility of making explicit 
the relationships between a system and its changing environment. In an application in air 
control, Degani & Wiener (1997) have shown that the descent phase is highly context-
dependent due to the uncertainty of the environment (e.g. air traffic control, weather), 
making it quite resistant to procedurization. Hollnagel (1993) proposes a contextual control 
model that distinguishes between a competence model (actions, heuristics, procedures, plans) 
and a control model (mechanisms for constructing a sequence of actions in context), which 
are both heavily influenced by context (skills, knowledge, environmental cues, etc.). 

A solution to the impossibility of a comprehensive a priori planning is the acquisition of 
skills for anticipating or look-ahead (see Pomerol, 1997). For Hoc (1996), the anticipative 
mode is the usual functioning mode of human beings: the human operator always checks, 
more or less explicitly, hypotheses instead of being in a situation of discovery or surprise. An 
anticipatory system would be a system that uses knowledge about future states to decide 
what action to make at the moment. An anticipatory system has a model of itself and of the 
relevant part of its environment and will use this model to anticipate the future (Ekdahl et al., 
1995). The system then uses the prediction to determine its behavior, i.e., it allows the future 
states affect its present state. An intelligent system should be able to predict what will 
probably happen and pre-adapt itself for the occurrence of a crucial or time-critical event. 
This implies that a simulation component must be present in an intelligent system. 

One must also underline that if it is difficult to fix the status of the knowledge; the means 
used to represent knowledge intervenes too: the representation determines how the 
knowledge is manipulated and as a result affects the “intelligence” of the system. 

 
2.4 Context and case-based reasoning 

We have pointed out that two incidents are never identical because the environment is never 
exactly the same and it is necessary to account for the respective contexts of the incidents. 
This is not a problem for small domains, but for large repositories storing different 
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information (e.g., multifunctional information bases or federated databases), a request 
specification becomes a bottleneck (Jurisica, 1994). This problem begins to be addressed in 
different communities such as machine learning and case-based reasoning. 

In case-based reasoning, Jurisica (1994) proposes a context-based similarity as a basis for 
flexible retrieval. The proposed similarity assessment theory represents explicitly constraints 
for similarity matching, and the context is defined as a set of attribute values with associated 
constraints. Context allows us to specify how the matching should perform, giving local-
based matching criteria as proposed by Kolodner (1993). It also allows us to specify which 
parts of information to compare and what kind of matching criteria to use. Items are then 
considered relevant if they are similar to the current context. The motivation for considering 
context is its ability to bring additional knowledge to the reasoning process and thus focus 
attention on relevant details (Light & Butterworth, 1993). When retrieving items, we might 
want to consider all attributes used to describe them or only certain subsets of them – the 
relevant subsets may be different depending on the situation. 

The latest point is important because it may be impossible to represent all the attributes of a 
real world situation, and the items in the repository are constrained by a limited number of 
information carried by them. We can see this constraint as a context applied to real world 
objects, an implicit context. Implicit context allows us to map real world objects into a 
particular representation (an item) and explicit context allows us to define a specific view of 
the item in an information base. Explicit context allows to define mapping between items 
defined in different schematas (Jurisica, 1994). Reatgui et al. (1997) points out that 
context may also play a role in another way. Some findings can imply the presence of other 
findings. Thus the system is able to realize that a finding may be present in one case and not 
present in a second one, but its existence implies the presence of other findings that can be 
observed in the second case. This type of inference permits two cases that do not contain a 
large number of common findings to have a good degree of similarity. Thus, similarity 
judgments are made with respect to representations of entities, not with respect to the entities 
themselves. 

 

2.5 Appraisal 

Our approach relies on a decomposition as discussed in this section. We distinguish domain 
knowledge, meta-knowledge to use domain knowledge and the knowledge for 
communication. Each of the three categories presents its own problems. The meta-
knowledge is twofold. On one hand, the meta-knowledge explains “how to be an assistant,” 
and, on the other hand, it carries out the knowledge about the interactions among the 
software agents. Starting with three agents inside SART, we will tackle this last type of 
knowledge (knowledge for communication) by designing and developing the communication 
agent. 

This brief overview about the nature of knowledge leads us to the following conclusions 
concerning the SART project. A part of the domain knowledge can be represented by static 
knowledge, e.g. to build a line model. However, a part of the domain knowledge may change 
because the environment evolves dynamically. As a consequence, an intelligent assistant 
system must have: (1) a context-based representation of the changing knowledge (technology 
changes and description of incidents) and a special type of case-based reasoning; (2) the 
ability to assemble dynamically fragments of plans to bring an efficient decision support; and 
(3) simulation means for look-ahead. 
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3. Context and Knowledge Representation 

3.1 Context in the subway application 

Contextual considerations are normally drawn up on the basis of operators, drivers and 
maintenance staff’s experience. They analyze the on-line situation when an incident occurs 
(time of occurrence, track loads, seriousness of the incident, etc.) to define the strategies to 
be adopted to restore normal service. 

Representing knowledge with its context implies to rethink knowledge representation. There 
are two aspects of context that play an important role. One aspect is that context is composed 
of relationships between different knowledge pieces. This gives a static view on knowledge 
and the way in which knowledge pieces are related within their context of use. A dynamic 
view consists of considering context as a mechanism of contextualization for retrieving 
knowledge (Edmondson & Meech, 1993), and its links to the reasoning mechanism that 
associates the considered incident with incidents known by the system. We introduce these 
two aspects of context in SART. 

The incident-solving context contains a number of items (e.g., it is almost the end of the 
football match and a number of persons will come back by the subway) among which the 
operator will account for the most relevant ones to choose a strategy for the incident solving. 
Operators retrieve these items from their experience or from that of other operators. We define 
incident solving as a sequence of steps and distinguish two types of context: (1) the context 
of a step, and (2) the overall context of the incident solving. Processing the incident solving 
from one step to the following one implies to move from one context to another, generally 
after the occurrence of a new event or a new information. After this move, some pieces of 
contextual knowledge become uninteresting at the new step of the incident solving, and other 
pieces appear (knowledge pieces that are new or were previously contextualized). However, 
if one may speak of a discrete set of (static) contexts at the lower level as McCarthy (1993), 
at the level of the incident itself, there is a global continuous context (i.e., the incident-
solving context) that evolves dynamically along the successive steps. An integrated view of 
these different contexts is now given in (Brézillon & Pomerol, 1999). 

 
3.2 An example of context-based representation of knowledge 

Brézillon et al. (1997) present an example (Figure 1) which gives a partial view of the 
reasoning induced by the elementary incident “Sick traveler in a train.” Incidents are 
represented by ovals. Part of the steps of the incident solving is represented as rectangular 
boxes, e.g., “Alarm signal,” “Stop at the next station,” “Incident identification” and “Call 
operator.” Consider the step “Stop at the next station.” This step – contextualized knowledge 
– is imposed on the driver because, for example, this corresponds to procedures. Procedures 
arise from experience with similar incidents, and thus come from practices. For example, 
travelers’ security is better ensured in a station than in a tunnel, employees of the subway are 
not allowed to take care of injured persons, etc. At a deeper level, the driver has to avoid 
stopping the train for a long time in a tunnel. One reason for this is that some travelers may 
have claustrophobia and leave the train to wander about on the railway. 

All these pieces of contextual knowledge are not at the same distance of the step “Stop at the 
next station.” Some pieces of contextual knowledge are nearer than others. For instance, 
“Procedures” is a contextual knowledge that is close to the incident-solving step, while 
“Avoid stopping in a tunnel” is another piece of contextual knowledge that is far from the 
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same step. However, both of them make this step necessary. Such a kind of distance permits 
to order pieces of contextual knowledge in layers around the step like skins of an onion. We 
call this the onion metaphor. Layers of contextual knowledge are represented by stippled 
circles in Figure 1. 

 

 
Figure 1 – Context-based representation of the incident “Sick traveler in a subway” 

 
Tichener (cited by Jansen, 1995) also introduces the notion of a situation surrounding the 
organism as one of the roots of context. Tichener’s definition implies that context is not part 
of the actual chunk of knowledge but forms a layer, or a set of layers, around the knowledge. 

The onion metaphor reveals several interesting results: 

(1) A step takes a meaning in a given context. Contextual knowledge does not intervene 
directly at this step but constrains it. For instance, in the step “Stop at the next 
station,” the contextual knowledge “Easy help” is not the main reason for stopping 
the train at the station. However, it intervenes in its realization. 

(2) Pieces of contextual knowledge may be partially ordered. If we consider the step 
“Stop at the next station,” we observe that some knowledge pieces of its context 
(e.g. “Easy help”) are closer to the step than others (e.g. “Do not touch an injured 
traveler”) because the constraints applied on this step are more direct. 

(3) Contextual knowledge itself takes a meaning in a context. A piece of contextual 
knowledge “Procedures” of the step “Stop at the next station” has its own context 
with elements as “Past experience” and “Do not touch an injured traveler.” 
Recursively, one can link knowledge pieces together by layers. This result is a 
concrete example of McCarthy’s claims (1993) about the definition of a context in 
an outer context and about the infinite dimension of context. 

(4) Pieces of contextual knowledge relate incidents together. With an association 
between a number of contextual-knowledge pieces, it appears that there is a 
relationship between a given incident and the others. Figure 1 shows how such a 
relationship is established between “Stop at the next station” and another such as 
“Signal light problem” through contextual knowledge. Establishing such an incident 
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net accounts for the occurrence in real-life conditions of combinations of incidents 
that seem apparently not related (e.g. “Sick traveler in a train” and “Signal light 
problem”.) Common contextual components (or pieces of knowledge) of two 
contexts are highlighted by dotted, bold arrows in Figure 1. 

We now address only one type of context, the context at the level of the knowledge 
representation. This type of context will have to be related to others such as the context at the 
level of the reasoning mechanism and the user-system interaction. The representation of 
contextual knowledge in SART is implemented regardless of formal considerations (logic, 
programming languages, expert systems, etc.). 

 

4. General Characteristics of SART 

4.1 What is an intelligent assistant system (IAS)? 

To be an intelligent assistant, a system must accomplish many functions, firstly, for the 
transfer of knowledge and information to the user, and, secondly, for accepting knowledge 
and information from the user. The knowledge transfer from the system to the user was well 
studied for many years, and most expert systems and knowledge-based systems are ascribed 
to this realm. However, limits of such systems are now well known (e.g., see Brézillon & 
Pomerol, 1997 for a survey, and the Special Issue on Successes and Pitfalls of Knowledge-
Based Systems in Real-World Applications. Failures & Lessons Learned in Information 
Technology Management, June, 1(2), for discussions on several examples). 

The main problem is that knowledge-based systems lack interactivity and acquisition skills 
(Pomerol & Brézillon, 1996): There is no possibility for the system to accept knowledge and 
information from the user or the environment, and it cannot dynamically tailor its behavior to 
user’s needs. Frontin et al. (1993) points out that a system that cooperates with a user should 
have the possibility to adapt its behavior from the simple observations of users’ actions. 
Aamodt & Nygard (1995) claim that a decision support system should be able to provide the 
user with the right information when it is needed, and provide suggestions and criticism to 
the user during decision making. Here, the most important point is the contextual dimension 
of the system’s intervention (see Jones & Mitchell, 1994, for a survey). Worden et al. (1987) 
give the example of the user’s overriding interventions. When a decision has been overridden 
for various reasons the assistant does not understand, and the same decision is required to be 
made in altered circumstances (i.e. other contexts), the assistant should know when it is out 
of its domain and ask the user for his decision again. Fischer (1990) shows that the user is 
able to make statements about the domain that are out of context with respect to the current 
dialogue between the user and the system. Volunteering information allows users to be in the 
speaker role and focus the attention of the system on the information that they feel is 
relevant. The user is no longer just answering questions, but takes an active role in deciding 
what the knowledge-based system is reasoning about. Thus, the system plays the role of 
assisting users as opposed to directing users. 

However, a system cannot have all the needed knowledge at the design time. Previously, the 
user provided the system with the missing knowledge. However, such systems left in the 
hand of the end-user rapidly became intractable. The solution is that the system learns from 
experiences with users during the work process. Learning implies that the system is able to 
acquire, represent and use the knowledge in its context of use. This is an important feature, 
especially in a changing environment (Fischer, 1990; Aamodt & Nygard, 1995; Ekdahl et al., 
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1995; Reddy, 1996; Bainbridge, 1997). However, effective human-computer communication 
requires providing the computer with a considerable body of knowledge about the world 
(Fischer, 1990) and integrating the functions of databases, information systems and 
knowledge-based systems (Aamodt & Nygard, 1995). 

 
4.2 IAS architecture 

An Intelligent Assistant System (IAS) has two sides: the real-world process side and the 
human side. One changes the system (process side) during the design time and the interface 
(human side) through training and experience. This implies that an IAS has to understand: 
(a) the real-world process; (b) the current tasks; and (c) the operator’s behavior. This 
constitutes three inter-dependent knowledge bases as represented in Figure 2. 

In Figure 2 it is represented the relationships between the IAS, the operator and the real-
world process, and the three types of knowledge that the system needs to cooperate: 

(a) The real-world process (Process model). 
This type of knowledge corresponds mainly to a model of the process. The model enables 
the IAS to observe the process behavior by a comparison with the simulated behavior 
resulting of the same inputs given to both the process and its model. The three goals are: 
to observe the evolution of the process; to verify the coherence between variation of the 
process behavior and operator’s actions; and to enable the operator to simulate alternative 
solutions before making a decision. Models of real-world processes generally exist 
beforehand because they are important tools for the control of the processes by 
simulation. 

 

 
Figure 2 – General architecture of an IAS 

 
(b) The Task model. 

The task knowledge permits the IAS to simulate operators’ activity. The goals are 
threefold: identification of operators’ intentions from their action sequences, observation 
and explanation of the process behavior. Eventually, the IAS may correct the operator 
and suggest alternative sequences (e.g., short-cuts). The task analysis may be established 
in two steps. The first step corresponds to an elicitation of knowledge from operators and 
a use of reports, books and related matter. This permits to develop a first model of the 
task that operators can use, among other things, to choose the best representation of this 
knowledge, and to validate the approach. The second step starts with the model obtained 
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at the first step. This may be done either “on-line” when the operator intervenes on the 
real-world process or at a delayed time when the operator is not under time pressure. 
Note that the IAS is then only an observer and stays in an attentive waking state. 

(c) The operators (Operator model). 
This type of knowledge corresponds to the sequence of actions of the operators facing a 
problem in the process. From operators actions, the IAS may deduce from knowledge in 
(a) and (b) operators intentions, and their preferences from their choices during solving 
the problems (e.g., shortcuts). Identifying later a similar situation, the IAS may propose 
to any operator a similar solution that is chosen in the spirit of the case-based reasoning. 
One may proceed in the same way as for modelling the process, i.e., a short elicitation 
phase and an incremental development of the knowledge base during its use. The 
operator model can be enriched by adding operator preferences that may be determined 
automatically from a series of problem solvings. 

This approach has the advantage of rapidly providing a mockup that will be improved 
incrementally on the knowledge bases and later on the development of the visible part of the 
IAS, namely the interface. The IAS may learn (i.e., acquire knowledge) from the behaviors 
of the operator and the real-world process. This is a kind of incremental knowledge 
acquisition where knowledge is acquired when needed and in its context of use. Only a 
kernel of knowledge has to be elicited directly from operators, mainly to select the right 
representation formalism for knowledge. (For managing knowledge, the system must be able 
to accomplish such tasks as acquisition, assimilation, learning, validation-verification, 
information retrieval, indexing.) 

 
4.3 Role of an IAS 

The IAS must intervene spontaneously at an operator’s utterance, such as: announcement of 
the procedure that the operator intends to follow, the goal to be reached, the interpretation 
they make of some interface object, etc. It also must initiate interaction with the operator to 
provide information instead of waiting for a request and offer alternative solutions to the 
problem being addressed. In that sense, an IAS acts as a decision support system. It must also 
allow the operators to return easily to previous states of their information search. For 
managing cooperation with the operator, a cooperative system must be able to accomplish 
tasks such as: human-computer interaction management, dialogue management, explanation, 
documentation, simulation, user modelling, and support all aspect of conflict management. 

In complex tasks, the real-world process is under the control of the operator that will always 
make the final decision. For instance, Jones (1995) presents supervisory control systems as 
dynamic, event-driven, worlds in which human operators are responsible for the health and 
safety of a system that they control. The joint cognitive system perspective defines an IAS as 
a resource or a source of information for the problem solver (Woods, 1995). According to 
this perspective, the main form of cooperation is information sharing (Jennings, 1994). Even 
with fewer capacities than humans, IASs are more efficient when their capacities have a 
nature similar to those of the humans (Millot, 1995). This implies a mutual intelligibility, a 
“common ground” for communication and understanding (Jones & Mitchell, 1994). 
Cooperative work is often a form of redundancy that helps to ensure the reliability and safety 
of the system; coordinated activity is frequently planned in advance and quite structured as a 
“standard operating procedure”; and when unexpected events arise, the composition of the 
team itself typically changes (e.g., senior engineers join in to assist in problem solving). 
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SART follows the lines described in this section with however some restrictions on the 
architecture for taking into account the characteristics of our application. Thus, the process 
model needs to be changed for a new line or for introducing changes in an existing line. This 
implies that a part of SART must manage the process model, when another part will use it 
for simulation purposes. The task model concerns mainly incident management. According 
to our objective to have a dynamic management of incidents, another part of SART must be 
devoted to this task. We have chosen the multi-agent approach to, firstly, address these 
different tasks (line configuration, traffic simulation and incident management), and, 
secondly, to have the opportunity to introduce later other agents. Thus the process model is 
built by the line configurator (configuration agent) and is used by the traffic simulator 
(simulation agent), and incidents are managed by the incident manager (incident-
management agent). Once this minimal structure of SART is built, we will develop a 
communication agent that will have, among other tasks, to maintain an operator model. We 
first discuss the specificities of our agents. 

 
4.4 The multiagent representation of SART 

4.4.1 Agent specificity 

In SART, each agent (e.g., the incident manager) is a specialist that interacts with specialists 
in other areas (e.g., the line configurator and the traffic simulator). Thus, we are not in the 
position where a given task can be accomplished by different agents having approximately 
the same competences as in reactive agents 

the case of reactive agents (Drogoul, 1993). An advantage of our approach is that each agent 
can be designed and developed independently of the others. 

We consider that an agent must be considered as a reasoning mechanism that works with 
three knowledge bases: 

- A Personal Knowledge Base (PKB) that contains knowledge on how to communicate and 
how to work; 

- A Static Knowledge Base (SKB) that contains the description of the domain knowledge, 
e.g., the physical description of what a subway line is composed of; and 

- A Dynamic Knowledge Base (DKB) that contains the way of how to use domain 
knowledge as the assembly elements 

Figure 3 gives a general presentation of an agent in SART. The head of the agent (the half 
circle) ensures the communication with its environment, mainly with the communication 
agent when this agent will be built. It receives a request (input) and provides an answer 
(output). The head acts as a translator between what is entered and what it must do. The body 
(PKB) acts as an inference engine that will solve the problem that is submitted. SKB and 
DKB are just described above. The DKB is required because where an expert system can be 
happy with just knowing what to do, an IAS should also (or rather) know why to do it (see 
also Forslund, 1995a). For example, the SKB of the line configurator contains items such as 
the definition of a station, and its DKB the general length of a station, specificities of a 
station in a curve. The interest to distinguish these two types of knowledge comes from the 
fact that a change may occur in the general strategies of the subway company. For instance, 
trains in RER and subway in Paris have not the same number of wagons. Moreover, DKB is 
context-sensitive while SKB is not context-sensitive. 
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Figure 3 – A general schema for an agent. 

 
In a multi-agent system, each agent uses a particular expression of the domain knowledge. In 
SART, the line configurator uses the description of equipment pieces and their relationships-
-the static knowledge--and produces the model of a subway line that is used by the traffic 
simulator as its own domain knowledge. The building of the line model is the result of the 
interaction of the line configurator with a user. To do that, the line configurator uses 
knowledge – dynamic knowledge – on constraints imposed on equipment and contextual 
information. A piece of contextual information may be that a part of the line is a curve in an 
ascent. For the traffic simulator, contextual knowledge comprises the initial conditions of the 
simulation and the definition of an incident during the simulation. 

Our architecture of an agent is in the realm of the layered representations found in the 
literature. Huang et al. (1995) propose a layered agent architecture for decision support 
applications. The three layers are domain knowledge, inference knowledge, and control 
knowledge. Muller & Pischel (1994) structure the knowledge base in four layers that 
basically correspond to the structure of the agent control. The lowest layer contains facts 
representing the world model of the agent. The second layer defines the primitive actions and 
the behavior pattern. The third layer contains local plans. Finally, the layer four contains 
knowledge of and strategies for cooperation, e.g. beliefs about other agents’ goals. 

Most real world problems require the integration of different specialists, each of whom 
contributes to a unique point of view, and moreover one aspect of expertise is the ability to 
integrate specialist knowledge in some real problem context. Woods (1995) calls it the 
generalist-specialist problem. A three-layer model for organizing systems of interacting 
agents based on situation action is generally proposed (e.g., see Wawish & Graham, 1995). 
The top layer of the model consists of agents performing roles, the middle layer provides the 
skills which agents need to perform their roles, and the bottom layer consists of the behaviors 
that are needed to realize these skills. The model may be realized computationally by means 
of a production rule language or in any object-oriented programming language. Such 
specialists or agents may concern the simulation of a real-world process, its monitoring, its 
diagnosis, etc. For instance, Mentzas et al. (1995) describe an Intelligent Forecasting 
Information System, which, besides the traditional components of a decision-support system, 
contains four constituents that try to model the expertise required: a Process Expert, a 
Learning Expert, a Data Expert, and a Model Expert. 
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With such an architecture, an agent has the properties cited by Wooldrige & Jennings 
(1995): 

- autonomy: agents operate without the direct intervention of humans or others, and have 
some kind of control over their own action and internal state; 

- social ability: agents interact with other agents (and possibly humans) via some kind of 
agent-communication language; 

- reactivity: agents perceive their environment (which may be the physical world, a user 
via a graphical interface, a collection of other agents, the Internet, or perhaps all of these 
combined), and respond in a timely fashion to changes that occur in it; 

- pro-activeness: agents do not simply act in response to their environment, they are able to 
exhibit goal-directed behavior by taking the initiative. 

Thus an agent may behave in a situated, efficient and goal-directed way, and be able to 
interact (i.e. coordinate and collaborate) with other agents. 

 
4.4.2 Architecture of SART 

The SART project has started with three agents: a line-configuration agent, a traffic-
simulation agent and an incident-management agent. The fourth agent will be the 
communication agent. The main reason for the last agent is to limit the cognitive overload of 
the user that is facing several agents and communicating with different languages and 
interfaces. The secondary reason for this fourth agent is to answer to complex questions in 
which several agents must intervene in the answer building. The Figure 4 shows the 
architecture of SART. 

 

 
Figure 4 – SART architecture 

 
The role of the configurator agent is to support the operator either in building the model of an 
specific line or for changing an existing model. The role of the simulation agent is to support 
the operator for the validation of the model, generating answers about an incident or 
analyzing past incidents. The role of the incident management agent is to record sessions 
during which an incident occurs and to retrieve past incidents similar to a given one, in a 
case-based reasoning way. We now describe each agent in more details. 
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4.4.3 The communication agent 

The main characteristics of the communication agent are: 

Tasks: management of the interaction with the operator and agents   
management of a session 

Input: a request from the operator or another agent 
Output: the answer to the request 
PKB: How to execute a subrequest sequence, to transfer information between 

agents, and to choose the medium for information exchanges 
SKB: task definition of agents, frames of possible requests 
DKB: decomposition of a complex request in subrequests manageable by the other 

agents, building of the answer for a complex request, 
Comments: 
The communication agent avoids a cognitive overload of operators 

 
The communication agent is responsible for the communication with the user and among all 
the agents. In the latter case, it must be capable of managing complex requests such as: How 
is the traffic of this line? Which part of the line may be incident-sensitive? Is this change of 
the line adequate for avoiding 10% of the incidents? What is the evolution of this incidental 
situation? What is the traffic evolution after this incident? For a complex question asked by 
the line configurator such as “What are the risks for this line?”, the communication agent 
plans its answer in the following way. First, it asks the simulator to check the line in normal 
situations. Second, it asks the incident manager to retrieve known incidents for this line. 
Third, it asks the operator for possible incidents not known of the system. 

The communication agent will have a Man-Machine Interface (MMI). This interface must 
proceed all the inputs that come from the external environment of the application. For 
accomplishing its tasks, the communication agent has appropriated windows for introduction 
and selection of parameters to build its Static Knowledge Base (SKB). During the 
construction of the SKB, the communication agent is responsible for the dialogues with the 
operator. It analyzes the contents of the dialogue and produces a set of messages that are 
related to the questions. These messages are sent to the line configurator which will choose 
the actions to be performed. The MMI has thus functions that allow the operator to introduce, 
verify and modify parameters that are used on the simulation of the Dynamic Knowledge 
Base (DKB). 

 
4.4.4 The line configurator 

The main elements of the line configurator are: 

Task: Support the operator in the building or change of a line model 
Inputs: Characteristics of a line given progressively by interaction with the operator. 
Output: The new model of the line 
PKB: Choice of relevant alternatives, addition of elements not planned beforehand 
SKB: Line sections, time tables, regulation algorithms 
DKB: How to assemble elements of the SKB in the current context 
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Comments: 
The line configurator performs two types of validation: 

- an intrinsic coherence of the model with respect to the SKB and DKB 
- an extrinsic coherence of the line on a set of typical situations submitted to the 

simulator 
 
The role of the line configurator is to support the operator in the building of a model of a 
future subway line or in introducing changes in an existing model. Such a model contains 
information such as line sections, timetables, regulation algorithms. For accomplishing its 
task, the line configurator has a knowledge base containing: (1) the existing models of 
subway lines, (2) the basic elements for building a line (e.g., a section, a station, a train, etc.), 
and (3) the knowledge and the know-how about the model building according to some 
constraints. The development of a line model is made iteratively by interaction with the 
operator that knows the physical and operational data of the line. 

The two first types of knowledge can be described in a structured way and constitute the 
SKB. For instance, a line is composed of sections, a section can be a tunnel, a station, or a 
switching, etc. The third type of knowledge describes how to handle information on the first 
two types of knowledge. For instance, if the number of section is more than 10, then it is 
necessary to have two switchings to insure a temporary traffic (if a serious incident occurs 
near the middle of the line). 

The operator provides the characteristics of the line to build (number of sections, of stations, 
etc.). All this information defines the physical characteristics of the subway line in the 
model. The configurator builds the line, verifying that constraints are respected and the 
coherence with respect to the part of the line already built. 

Indeed, we consider that the static knowledge base contains classes that are instantiated by 
the operator in the model for a specific line. This approach is particularly modular and the 
change of one instance does not imply change of the whole model. The advantages are 
twofold. Firstly, the operator can introduce temporary changes in an existing model either to 
check the elimination of a class of incidents or to simulate the consequences of alternative 
decisions implying a change of the line structure. Secondly, the line configurator can be 
applied at a low cost at any subway in the world because most of the subways are built on the 
same principles. 

 
4.4.5 The traffic simulator 

The main characteristics of the traffic simulator are: 

Task: Provide the train movement on the line for a given situation, interact with the 
operator or the incident manager to simulate the traffic during and after an 
incident 

Inputs: A set of initial conditions, 
 The definition and the solving of an incident by either the operator or the 

incident manager 
Output: The traffic evolution on the line before, during and after an incident 
PKB: Context-based knowledge and incident-based reasoning, simulation management 
SKB: The line model, the timetables, and the regulation algorithms 
DKB: Possible changes in the timetables and regulation algorithms 
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Comments: 
The traffic simulator can be called for prediction purposes by: 

- the operator, to check alternative changes on the line or of train movement 
- the line configurator, to check the dynamic behavior of trains on a new line or a 

modified line 
- the incident manager, to give the traffic evolution after an incident solving 

 
The traffic simulator gives the dynamic behavior of the trains on the line (e.g., movement of 
the trains on the line, calculus of departure time of trains, etc.) for a given situation (e.g., 
position of trains at a given time), possibly with an incident. The main function of the traffic 
simulator is to give the train movement and the management of signals on the line. The 
traffic simulator can be called by the operator to check alternative changes on the line or in 
the movement of the trains, by the line configurator to check the dynamic behavior of a new 
line, and by the incident manager to give the behavior of the traffic during and after an 
incident. Thus, an important interest of the traffic simulator is the prediction of traffic 
behavior in different situations. The prediction can be used by the operator that wishes to 
intervene in the train traffic or to know the consequences of a possible decision (e.g., to 
suppress a train, to change the timetable). 

The traffic simulator would be integrated easily with the on-line control system. Acquiring 
data on-line will improve notably the behavior of the traffic simulator, e.g. with a predictive 
view of the traffic normally not seen by the operator. 

 
4.4.6 The incident manager 

The main characteristics of the incident manager are: 

Task: Management of incidents 
Inputs: Definition of an incident, its context and an action to attend 
Output: List of incidents in similar contexts, list of contexts for similar incidents 
PKB: Context-based knowledge and incident-based reasoning 
SKB: Context-based representation of incidents, their contexts of occurrence and 

the strategies applied to solve them 
DKB: Tailoring of a similarity measure between two incidents 
Comments: 
At each session, the incident manager records information on the considered incident, 
its context and the strategy finally retained. 
Contextual elements of an incident are: line topology, available means, position and 
state of the other trains on the line, the degree of experience of the driver, etc. 
The incident manager plays the role of the corporate memory of the company. 
Incidents are serious perturbations of the traffic for which regulation algorithms are 
insufficient to support operators in incident solving. 

 
The operator provides SART with the characteristics of an incident, the moment of its 
occurrence and the traffic situation at that moment. These pieces of information permit 
SART to draw up, from its base of incidents (recorded with their contexts), a strategy (or even 
more) likely to be adopted by the operator. For each incident, SART keeps a record of events 
that allow a careful analysis of the events leading up to the incident, and therefore an 
understanding of the decision and the selection process for the solution strategy proposed by 
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SART. SART incrementally acquires data and knowledge on the present incident, its context 
and the strategy used to exploit this knowledge for solving similar future incidents. 

When an incident occurs, several elements must be known or estimated carefully: the topology 
of the line, the means that are available, the position and state of the other trains on the line, the 
importance and nature of the incident, the context of the incident, the degree of experience of 
the operator, etc. The goal of SART then is to: acquire data and information concerning the 
incident situation, retrieve similar incidents in the past and similar contexts, propose an 
ordered list of the strategies used previously, record all the information on the incident 
situation. Recording information on an incident situation presents an interest in order to 
identify future incidents, but also for a detailed analysis of that incident and the chosen strategy, 
the classification of the incidents, and other operations on the incidents (e.g. training). 

The incident manager keeps a trace of the corporate memory that would be reused, say, for 
training purpose. 

 
4.5 Current status of the SART project 

The whole complex work of acquisition and representation of the knowledge of the operators 
is now concluded. The three agents (excluding the communication agent) meet their final 
phase of development and a mock-up of the three agents will be available soon. For the 
current version of the system we are working under the following restrictions: 

- the interaction between the line configurator and the traffic simulator will be limited, at the 
beginning, to the line model of the subway (the first building it and the second using it). 
In the future we should allow the operator to change the line model to test another strategy. 

- the dynamic information on the state of the lines is introduced off-line (by the operator 
himself). In another version of the system it should be capable to capture this information 
on-line. 

The main results obtained at the theoretical level are: 

- a representation of the contextual domain knowledge along the onion metaphor 
(Brézillon et al., 1997); 

- a distinction in context between the external knowledge, the contextual knowledge and 
the procedural context (Brézillon & Pomeorl, 1999); and 

- the development of a representation formalism as contextual graphs for representing the 
reasoning and its dynamics in incident solving (Brézillon et al., 2000). 

The next step is twofold. Firstly, we will develop an environment to manage the interaction 
among the three agents. Secondly, we will develop the communication agent to control the 
interaction among the three agents and with the users. 

 

5. Conclusions 

In this paper we showed how the notion of context can contribute to knowledge acquisition 
and to the representation of knowledge. The context-based representation of knowledge is 
made according to the onion metaphor that gives the possibility of organizing contextual 
knowledge around the contextualized knowledge at one step of the incident solving. We thus 
have a set of discrete contexts attached to the different steps of the incident solving. The 
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incident-solving context itself evolves continuously during the incident solving. The next 
step is to model a context-based representation of the reasoning. Such reasoning will be 
context-based and incident-based. 
SART is built on a multi-agent architecture. We implement now three agents, namely a line 
configurator, a traffic simulator and an incident manager, and we plan the design and 
development of another agent, the communication agent. The multi-agent approach presents 
several advantages. Firstly, we have an evolutive architecture in which agents will be added 
progressively according to the need of the application. Secondly, the same architecture can 
be reused for other tasks in the same domain. Now, the task at hand is the subway control. 
However, tasks as line exploitation and train maintenance can be implemented rapidly from 
this architecture. Thirdly, SART is not limited to the subway of Paris, but can be used for 
most of the subways in the world. 

The agents in SART have all the same architecture with three knowledge bases, a personal 
knowledge base, a static knowledge base and a dynamic knowledge base. Such a division of 
the knowledge permits to make context explicit in the knowledge representation. Knowledge 
in the system is for the user as well as the system itself. In the case of the incident manager, 
the incident base will growth with the use of SART. Incremental knowledge acquisition is 
the best way to adapt a system such as SART to a changing environment. 

The open architecture of SART is interesting for a long use of the system because most of the 
failures in previous knowledge-based systems come from the lack of consideration for the users 
(Brézillon & Pomerol, 1996, 1997). Taking into account users in their workplace requires 
making context explicit. The SART project shows that making context explicit opens a new 
insight of knowledge-based systems that can become real intelligent assistant systems. 
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